Percolation of random fields excursions

Raphaël Lachièze-Rey, Univ. Paris Cité, MAP5 UMR CNRS Joint work with Stephen Muirhead, University of Melbourne

Excursions

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a stationary random field (law invariant under translations).
- For $\ell \in \mathbb{R}$, define

$$
\mathcal{E}_{\ell}=\mathcal{E}_{\ell}(f)=\left\{x \in \mathbb{R}^{2}: f(x) \geqslant \ell\right\}
$$

Figure - Excursions of a shot noise field (Credit : PhD Thesis, Antoine Lerbet)

Percolation

We are interested in the following questions:
(1) Does \mathcal{E}_{ℓ} have (a unique) unbounded connected component(s)?
(2) Is there a critical value ℓ_{c} ?
(3) Behaviour of
$\mathbb{P}\left(\mathcal{E}_{\ell}\right.$ crosses large rectangles $)$
for $\ell=\ell_{c}$ or $\ell \neq \ell_{c}$?

Poisson shot noise fields

- Let $\mathcal{P}=\left\{x_{i} ; i \in \mathbb{N}\right\}$ be a homogeneous Poisson process on \mathbb{R}^{2}.
- Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ integrable
- Poisson shot noise field with kernel g :

$$
f(x):=\sum_{i \in \mathbb{N}} g\left(x-x_{i}\right) ; x \in \mathbb{R}^{2}
$$

- Let $Y_{i}, i \in \mathbb{N}$ iid symmetric integrable variables with law μ.
- Symmetric Poisson shot noise field with kernel g and mark distribution μ :

$$
f(x)=\sum_{i \in \mathbb{N}} Y_{i} g\left(x-x_{i}\right) ; x \in \mathbb{R}^{2}
$$

- Well defined in virtue of Campbell formula :
$\mathbb{E}\left[\sum_{i \in \mathbb{N}}\left|Y_{i} g\left(x-x_{i}\right)\right|\right]=\int_{\mathbb{R}^{2}}|y g(x-t)| d t \mu(d y)=\mathbb{E}\left(\left|Y_{1}\right|\right)\|g\|_{L^{1}}<\infty$

Gaussian Random Fields

The same questions have been thouroughly investigated for stationary continuous centred Gaussian fields, i.e. random functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

- $\forall x_{1}, \ldots, x_{n} \in \mathbb{R}^{2},\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ is a centred Gaussian vector
- a.s., $x \rightarrow f(x)$ is continuous
- Such a field is uniquely determined by its covariance function

$$
\mathbb{E}(f(x) f(y))=: C(x-y) .
$$

- Reciprocally, to each SDP function C, i.e. such that

$$
\sum_{i=1}^{n} a_{i} a_{j} C\left(x_{i}-x_{j}\right) \geqslant 0
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}, a_{1}, \ldots, a_{n} \in \mathbb{R}$, one can associate a unique centred stationary Gaussian field.

White noise construction

Most fields can actually be seen as the convolution of a kernel $g \in L^{1}\left(\mathbb{R}^{d}\right)$ with a white noise \mathcal{W}

$$
f(x)=g \star \mathcal{W}(x):=\int g(x-y) d \mathcal{W}(y)
$$

- \mathcal{W} : random signed measure satisfying for A, B disjoint
- $\mathcal{W}(A)$ and $\mathcal{W}(B)$ are independent
- $\mathcal{W}(A \cup B)=\mathcal{W}(A)+\mathcal{W}(B)$
- $\operatorname{Var}(\mathcal{W}(A))=\mathcal{L}^{d}(A)$
- Poisson shot noise fields : $\mathcal{W}_{\mathcal{P}}(A):=\# \mathcal{P} \cap A \sim \operatorname{Poiss}\left(\mathcal{L}^{d}(A)\right)$
- Gaussian fields: $\mathcal{W}_{\mathcal{G}}(A) \sim \mathcal{N}\left(0, \mathcal{L}^{d}(A)\right)$
- In dimension 1, the Gaussian white noise can be built from a Brownian motion $\left\{B_{t} ; t \in \mathbb{R}\right\}$,

$$
\mathcal{W}_{\mathcal{G}}([a, b]):=B_{b}-B_{a} .
$$

- Similar constructions exist in all dimensions with Brownian sheets

Covariance property

- For A, B with finite measure,

$$
\operatorname{Cov}(\mathcal{W}(A), \mathcal{W}(B))=\mathcal{L}^{d}(A \cap B)=\left\langle\mathbf{1}_{\{A\}}, \mathbf{1}_{\{B\}}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

- For all $g_{1}, g_{2} \in L^{2}\left(\mathbb{R}^{d}\right)$

$$
\operatorname{Cov}\left(\int g_{1} d \mathcal{W}, \int g_{2} d \mathcal{W}\right)=\left\langle g_{1}, g_{2}\right\rangle=\int g_{1} g_{2}
$$

- In particular, the covariance function of f satisfies

$$
\begin{aligned}
C(x-y)=\operatorname{Cov}(f(x), f(y)) & =\langle g(x-\cdot), g(y-\cdot),\rangle \\
& =\int g(x-y) g(x-y-z) d z \\
& =g \tilde{\star} g(x-y)
\end{aligned}
$$

- Some SDP functions with singular spectral measures cannot be built this way (e.g. Gaussian Random Planar Wave with $C=$ Bessel Function)

Percolation of Gaussian excursions

> Figure - Credit : D. Beliaev

Figure 1. A simulation of the excursion set \mathcal{E}_{ℓ} of the Bargmann-Fock field restricted to a large square (in grey) at (i) the zero level $\ell=0$ (left figure), at (ii) the level $\ell=0.1$ (right figure), with the connected component of greatest area distinguished (in black). The Bargmann-Fock field is the stationary, centred Gaussian field with covariance kernel $\kappa(x)=e^{-|x|^{2} / 2}$. Credit: Dmitry Beliaev.

Assumptions (Gaussian case)

Assumption	Field f	Kernel g		
Regularity	\mathcal{C}^{3}	\mathcal{C}^{3}		
Symmetry	$\left(\right.$ Axis reflections, $D^{4}-$ rotations $)$	D^{4}		
Positive	for A, B increasing events			
Association	$\mathbb{P}(A \cap B) \geqslant \mathbb{P}(A) \mathbb{P}(B)$	$g \geqslant 0$		
Asymptotic	for A, B "far away"	for some $\beta>2$		
Independence	$\mathbb{P}(A \cap B) \approx \mathbb{P}(A) \mathbb{P}(B)$	$g(x) \leqslant c(1+\\|x\\|)^{-\beta}$		

- Increasing event $A=A(f): \mathbf{1}_{\{A(f)\}} \leqslant \mathbf{1}_{\{A(g)\}}$ for $f \leqslant g$

$$
\text { Example : } A(f)=\left\{\mathcal{E}_{\ell}(f) \text { crosses } Q\right\} \text { for some } Q \subset \mathbb{R}^{2}
$$

- Symmetry $f \stackrel{(d)}{=}-f$ entails self-duality

$$
\mathcal{E}_{0} \stackrel{(d)}{=} \mathcal{E}_{0}^{c} \quad \text { (up to the boundary) }
$$

\Rightarrow It is natural to expect $\ell_{c}=0$.

Bernoulli-like percolation (Gaussian case)

Theorem (Sharp phase transition (Beffara \& Gayet, Vanneuville, Muirhead, Ribera))
Under the previous assumptions, $\left\{\mathcal{E}_{\ell}, \ell \in \mathbb{R}\right\}$ behaves like Bernoulli percolation around the critical value : for Q a rectangle
(1) $\ell<0: \mathcal{E}_{\ell}$ has a unique unbounded component a.s. and

$$
\mathbb{P}\left(\mathcal{E}_{\ell} \text { crosses } r Q\right)>1-C e^{-c r}, r>0
$$

(2) $\ell>0: \mathcal{E}_{\ell}$ has bounded components a.s.
(3) $\ell=0: \mathcal{E}_{\ell}$ has bounded components and

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{E}_{0} \text { crosses from } \partial B(0, r) \text { to } \partial B(0, R)\right) \leqslant c\left(\frac{r}{R}\right)^{\beta_{\text {arm }}}, r>0 \\
& 0<\inf _{r} \mathbb{P}\left(\mathcal{E}_{0} \text { crosses } r Q\right) \leqslant \sup _{r} \mathbb{P}\left(\mathcal{E}_{0} \text { crosses } r Q\right)<1
\end{aligned}
$$

Early works

- Molchanov and Stepanov '83 : give conditions for $\ell_{c}<\infty$ for some positive shot noise fields
- Alexander ' $\mathbf{9 6}$: For a stationary \mathcal{C}^{1} random field on \mathbb{R}^{2}, ergodic and positively associated, the level lines are a.s. bounded.
- Broman and Meester '17 : Conditions for $\ell_{c}<\infty$
- Beffara Gayet '17: Bounded components for ℓ sufficiently large
- Ribera Vanneuville '19: Bounded components for $\ell>0$
- Muirhead Vanneuville '19 : Optimal condition $\beta>2$ on decay of g, sharp phase transition
- Muirhead, Rivera, Vanneuville '20 : Results without positive association and fast decay outside the critical level

Assumptions (Symmetric Poisson case)

Regularity	\mathcal{C}^{3}	\mathcal{C}^{3}				
Symmetry	$\begin{gathered} D^{4} \\ \text { (Axis reflections, } \frac{\pi}{2} \text {-rotations) } \end{gathered}$	D^{4}				
Positive Association	for A, B increasing events $\mathbb{P}(A \cap B) \geqslant \mathbb{P}(A) \mathbb{P}(B)$	$g \geqslant 0$				
Asymptotic Independence	$\begin{gathered} \text { for } A, B \text { "far away" } \\ \mathbb{P}(A \cap B) \approx \mathbb{P}(A) \mathbb{P}(B) \end{gathered}$	$\begin{gathered} \text { for some } \beta>3, \text { for }\|k\| \leqslant 3 \\ \partial^{k} g(x) \leqslant c(1+\\|x\\|)^{-\beta-\|k\|} \end{gathered}$				
Self-Duality	$\mathcal{E}_{0} \stackrel{(d)}{=} \overline{\mathcal{E}_{0}^{c}}$	$Y_{i} \stackrel{(d)}{=}-Y_{i}$				
Density	$\begin{gathered} (f(0), \nabla f(0)) \\ \text { has bounded joint density } \end{gathered}$	$\begin{gathered} g(x)=c \exp \left(-\\|x\\|^{\alpha}\right), \alpha \in(0,1) \\ \text { or } g(x)=c(1+\\|x\\|)^{-\beta}, \beta>d \end{gathered}$				
Concentration +	Use of OSSS inequality	Law of Y_{i} log-concave				

Theorem (Lr,Muirhead 2022)

Under these assumptions, there is Bernoulli-like percolation for Poisson shot noise fields.

Non-symmetric case

- Let $\lambda>0, \mathcal{P}_{\lambda} \stackrel{(d)}{=} \lambda^{-1 / d} \mathcal{P}$ a Poisson homogeneous process with intensity λ. We consider

$$
f_{\lambda}(x)=g \star \mathcal{W}_{\mathcal{P}_{\lambda}}(x)=\sum_{y \in \mathcal{P}_{\lambda}} g(y-x)
$$

- Under mild assumptions, there is a finite critical density

$$
\ell_{c}\left(f_{\lambda}\right)=\sup \left\{\ell: \mathbb{P}\left(\mathcal{E}_{\ell} \text { has unbounded component }\right)>0\right\}<\infty
$$

- Asymptotic regime $\lambda \rightarrow \infty$? Elementary Central Limit Theorem

$$
\tilde{f}_{\lambda}(x):=\frac{f_{\lambda}(x)-\mathbb{E}\left(f_{\lambda}(x)\right)}{\sqrt{\operatorname{Var}\left(f_{\lambda}(x)\right)}} \rightarrow G(x) \text { with }\left\{\begin{array}{l}
\mathbb{E}\left(f_{\lambda}(x)\right)=\lambda \int g, \\
\operatorname{Var}\left(f_{\lambda}(x)\right)=\lambda \int g^{2}
\end{array}\right.
$$

- Multivariate CLT (Heinrich, Schmidt '85) : Convergence of FDD
- $G(x)$ is Gaussian centred with same covariance $g \tilde{\star} g$
- Question :

$$
\ell_{c}\left(\tilde{f}_{\lambda}\right) \rightarrow \ell_{c}(G)=0 ?
$$

Assumptions (Non-symmetric Poisson case)

Assumption	Field f	Kernel g				
Regularity	\mathcal{C}^{4}	\mathcal{C}^{4}				
Symmetry	Isotropy (invariance to rotations)	Isotropy				
Positive Association	for A, B increasing events $\mathbb{P}(A \cap B) \geqslant \mathbb{P}(A) \mathbb{P}(B)$	$g \geqslant 0$				
Asymptotic Independence	$\mathbb{P}(A \cap B) \approx \mathbb{P}(A) \mathbb{P}(B)$	$\left.\begin{array}{c}\text { for } A, B \text { "far away" } \\ \partial^{k} g(x) \leqslant c(1+\\|>2, \text { for }\|k\| \leqslant 3 \\ g(x)\end{array}\right]$				
Density	$\left(f_{\lambda}(0), \nabla f_{\lambda}(0)\right)$ has bounded density	$g(x)=c \exp \left(-\\|x\\|^{\alpha}\right), \alpha \in(0,1)$ or $g(x)=c(1+\\|x\\|)^{-\beta}, \beta>d$				

Critical value approximation

Theorem (Lr,Muirhead 21+)

Recall

$$
\ell_{c}\left(\tilde{f}_{\lambda}\right)=c \lambda^{-1 / 2}\left(\ell_{c}\left(f_{\lambda}\right)-\lambda \int g\right)
$$

Assume the previous hypotheses, except positive association. Then

- without positive association,

$$
\ell_{c}\left(\tilde{f}_{\lambda}\right) \rightarrow 0
$$

- with positive association $(g \geqslant 0)$,

$$
\ell_{c}\left(\tilde{f}_{\lambda}\right)=O\left(\lambda^{-1 / 2} \log (\lambda)^{3 / 2}\right)
$$

Strong Invariance principles

- Proof based on the construction of a coupling $\left(f_{\lambda}, g\right)$, for each $\lambda>0$.
- Historical result : Komlos, Major, Tusnady 85', coupling of X_{i}, i.i.d Rademacher variables with i.i.d Gaussian variables G_{1}, \ldots, G_{n} such that

$$
\mathbb{P}\left(\sup _{0 \leqslant k \leqslant n}\left|\sum_{i=1}^{k} X_{i}-\sum_{i=1}^{k} G_{i}\right| \geqslant c \ln (n)+t\right) \leqslant C e^{-c t}
$$

and the order $\ln (n)$ is optimal.

- "Random measure" point of view

$$
\sum_{i=1}^{k} X_{i}=\left(\sum_{i=1}^{n} \delta X_{i}\right)\left(\mathbf{1}_{[1, \ldots, k]}\right), 1 \leqslant k \leqslant n
$$

Similarly $f_{\lambda}(\mathbf{k})=\mathcal{W}_{\mathcal{P}_{\lambda}}(g(\mathbf{k}-\cdot)), \mathbf{k} \in \mathbb{Z}^{d}$

$$
G(\mathbf{k})=\mathcal{W}_{\mathcal{G}}(g(\mathbf{k}-\cdot)), \mathbf{k} \in \mathbb{Z}^{d}
$$

Strong invariance principle for shot noise fields

Theorem (Lr,Muirhead 21+)

$$
\mathbb{P}\left(\sup _{x \in B(0, R)}\left|\tilde{f}_{\lambda}(x)-G(x)\right|>\lambda^{-1 / 2} \ln (\lambda)^{1 / 2} t\right)<C R^{d} \lambda^{c} \exp (-c t)
$$

- Optimal up to the power of $\ln (\lambda)$ (see also Berry-Esseen inequality)
- Based on Koltchinski 94' : There is a coupling of \mathcal{P}_{λ} and $\mathcal{W}_{\mathcal{G}}$ such that for any $\mathbf{k} \in \mathbb{Z}^{d}$,

$$
\mathbb{P}\left(\left|\tilde{f}_{\lambda}(\mathbf{k})-G(\mathbf{k})\right| \geqslant t \lambda^{-1 / 2} \ln (\lambda)\right) \leqslant C e^{-c t}
$$

- For $x \in \mathbb{R}^{d} \backslash \mathbb{Z}^{d}$, approximate $f(x)$ by $f([x])+\nabla f(\xi) \cdot(x-[x])$.
- There is a coupling of $N \sim \operatorname{Pois}(\lambda)$ and $Z \sim \mathcal{N}(0,1)$ such that

$$
\mathbb{P}(|N-\lambda-\sqrt{\lambda} Z|>t) \leqslant C e^{-c t}
$$

Elements of proof for the symmetric case

- Box crossing estimates (RSW) stem from the work of Tassion '16 because we have :
- Positive association of the discretised field (FKG inequality on a finite space)
- \mathcal{E}_{0} is invariant in law under reflections and rotation by $\pi / 2$
- Spatial asymptotic independence (of f, hence of \mathcal{E}_{ℓ})
- One arm decay stems from
- Positive association of the discretised field (FKG inequality on a finite space)
- Asymptotic independence
- Box crossing estimates (RSW)

Proof of sharp phase transition (bounded Mills ratio case)

(1) First prove that $\mathbb{P}\left(\operatorname{Cross}_{\ell}(2 R, R)\right) \rightarrow 0$ and then use bootstraping argument
(2) Proof based on a differential inequality of

$$
\theta: h \rightarrow \mathbb{P}\left(f_{r}^{\varepsilon, h} \in \operatorname{Cross}_{\ell}(2 R, R)\right)
$$

where $f_{r}^{\varepsilon, h}$ is obtained from f_{r}^{ε} by adding h to all the marks. We prove

$$
\frac{\partial}{\partial h} \theta(h) \geqslant c \frac{\theta(h)(1-\theta(h))}{\inf _{2 r<\rho<R / 2}\left\{2 \rho / R+\mathbb{P}\left(f_{r}^{\varepsilon} \in \operatorname{Arm}_{\ell}(2 r, \rho)\right)\right\}}
$$

(3) Use of the OSSS inequality applied to randomized algorithms; after the ideas of Duminil-Copin, Tassion, Raoufi.

Sharp phase transition

Theorem (Lr \& Muirhead 19+)
For $\ell>0$ there is $c>0$ such that

$$
\mathbb{P}\left(\operatorname{Cross}_{\ell}(2 R, R)\right) \leqslant 1-\exp (-c R), R>0
$$

It implies the main result :

- For $\ell \geqslant 0, \mathcal{E}_{\ell}$ has only bounded connected components a.s..
- For $\ell<0, \mathcal{E}_{\ell}$ has a unique unbounded component a.s..

Proof : $\bullet \ell 0: \mathbb{P}\left(\operatorname{Arm}_{0}(1, R)\right) \rightarrow 0$.
$\bullet \ell<0$: Borel-Cantelli lemma with
$\sum_{k \geqslant 1}\left(1-\mathbb{P}\left(\operatorname{Cross}_{\ell}\left(2^{k+1}, 2^{k}\right)\right)\right)<\infty \Rightarrow\left(\operatorname{Cross}_{\ell}\left(2^{k+1}, 2^{k}\right)\right)$ occurs for $k>k_{0}$
and arrange the rectangles so that the connected components overlap.

OSSS inequality (O'Donnell, Saks, Schramm, Servedio '05)

 For an event A on a product probability space $\left(E^{n}, \mu^{n}\right)$ and a random algorithm determining $A,(\theta:=\mathbb{P}(A))$$$
\operatorname{Var}\left(\mathbf{1}_{\{A\}}\right)=\theta(1-\theta) \leqslant \sum_{i=1}^{n} \delta_{i}^{\mu}(\mathcal{A}) l_{i}^{\mu}(A)
$$

where

- $\delta_{i}^{\mu}(\mathcal{A})$: Probability that coordinate i is revealed by the algorithm
- Influence of coordinate $i: I_{i}^{\mu}(A)=\mathbb{P}\left(\mathbf{1}_{\{A\}} \neq \mathbf{1}_{\left\{A^{i}\right\}}\right)$ where A^{i} is obtained by resampling coordinate i
For percolation events, typically :
- \mathcal{A} is a progressive uncovering of all the connected components touching a random crossing line (in a rectangle) / circle (in a disc)
- $\delta_{i}^{\mu}(\mathcal{A})$ is the probability that a point i is "close" to one of these connected components (one-arm decay is useful here)
- $I_{i}^{\mu}(A)$ is related to $\partial_{h} \theta(h)$ for $h \sim 0$

Key point

- First remark that crossing events are monotonous in the marks (higher mark $=$ more chances to percolate). Hence for each i there is a.s. a random level y_{i} such that there is percolation for $Y_{i} \geqslant y_{i}$.
- Assume for f^{ε} that mark Y_{i} is replaced by $Y_{i}+h_{i}$ for some parameter $h_{i} \in \mathbb{R}$. Then

$$
\begin{aligned}
\frac{\partial}{\partial h_{i}} \mathbb{P}\left(\operatorname{Cross}_{\ell}(2 R, R)\right)= & \frac{\partial}{\partial h_{i}} \mathbb{P}\left(Y_{i}+h_{i} \geqslant y_{i}\right) \geqslant u_{\mu_{\text {ac }}}\left(y_{i}-h_{i}\right) \\
l_{i}=\mathbb{P}\left(\mathbf{1}_{\{A\}} \neq \mathbf{1}_{\left\{A_{i}\right\}}\right)= & \mathbb{P}\left(Y_{i}+h_{i} \geqslant y_{i}, Y_{i}^{\prime}+h_{i}<Y_{i}^{\prime}\right) \\
& +\mathbb{P}\left(Y_{i}+h_{i}<y_{i}, Y_{i}^{\prime}+h_{i} \geqslant Y_{i}^{\prime}\right) \\
\leqslant & 2 \mathbb{P}\left(Y_{i} \geqslant y_{i}-h_{i}\right)
\end{aligned}
$$

$$
\stackrel{\text { Mills }}{\leqslant} c u_{\mu_{\text {ac }}}\left(y_{i}-h_{i}\right)
$$

- We end up with

$$
\frac{\partial}{\partial h} \theta(h)=\sum_{i} \frac{\partial}{\partial h_{i}} \theta(h) \geqslant c \sum_{i} I_{i} \geqslant c \frac{\sum_{i} I_{i} \delta_{i}}{\sup _{i} \delta_{i}} \stackrel{\text { OSSS }}{=} \frac{\theta(1-\theta)}{\sup _{i} \delta_{i}}
$$

