## Percolation of random fields excursions

Raphaël Lachièze-Rey, Univ. Paris Cité, MAP5 UMR CNRS Joint work with Stephen Muirhead, University of Melbourne







通 ト イ ヨ ト イ ヨ ト

## Excursions

- Let  $f : \mathbb{R}^2 \to \mathbb{R}$  a stationary random field (law invariant under translations).
- For  $\ell \in \mathbb{R}$ , define

$$\mathcal{E}_{\ell} = \mathcal{E}_{\ell}(f) = \{x \in \mathbb{R}^2 : f(x) \ge \ell\}$$

Figure – Excursions of a shot noise field (Credit : *PhD Thesis, Antoine Lerbet*)



# Percolation

We are interested in the following questions :

- **(**) Does  $\mathcal{E}_{\ell}$  have (a unique) unbounded connected component(s)?
- 2 Is there a critical value  $\ell_c$ ?
- Behaviour of

 $\mathbb{P}(\mathcal{E}_{\ell} \text{ crosses large rectangles})$ 

for  $\ell = \ell_c$  or  $\ell \neq \ell_c$ ?

・ 同 ト ・ ヨ ト ・ ヨ ト …

# Poisson shot noise fields

- Let  $\mathcal{P} = \{x_i; i \in \mathbb{N}\}$  be a homogeneous Poisson process on  $\mathbb{R}^2$ .
- Let  $g: \mathbb{R}^2 \to \mathbb{R}^2$  integrable
- Poisson shot noise field with kernel g :

$$f(x) := \sum_{i \in \mathbb{N}} g(x - x_i); x \in \mathbb{R}^2.$$

- Let  $Y_i, i \in \mathbb{N}$  iid symmetric integrable variables with law  $\mu$ .
- Symmetric Poisson shot noise field with kernel g and mark distribution  $\mu$ :

$$f(x) = \sum_{i \in \mathbb{N}} Y_i g(x - x_i); x \in \mathbb{R}^2.$$

• Well defined in virtue of Campbell formula :

$$\mathbb{E}\left[\sum_{i\in\mathbb{N}}|Y_ig(x-x_i)|
ight]=\int_{\mathbb{R}^2}|yg(x-t)|dt\mu(dy)=\mathbb{E}(|Y_1|)\|g\|_{L^1}<\infty$$

く 何 ト く ヨ ト く ヨ ト

# Gaussian Random Fields

The same questions have been thouroughly investigated for stationary continuous centred **Gaussian fields**, i.e. random functions  $f : \mathbb{R}^d \to \mathbb{R}$  such that

- $\forall x_1, \ldots, x_n \in \mathbb{R}^2, (f(x_1), \ldots, f(x_n))$  is a centred Gaussian vector
- a.s.,  $x \to f(x)$  is continuous
- Such a field is uniquely determined by its covariance function

$$\mathbb{E}(f(x)f(y)) =: C(x-y).$$

• Reciprocally, to each SDP function C, i.e. such that

$$\sum_{i=1}^n a_i a_j C(x_i - x_j) \ge 0$$

for all  $x_1, \ldots, x_n \in \mathbb{R}^d$ ,  $a_1, \ldots, a_n \in \mathbb{R}$ , one can associate a unique centred stationary Gaussian field.

ヘロト 人間 トイヨト 人見トー 油

# White noise construction

Most fields can actually be seen as the convolution of a kernel  $g \in L^1(\mathbb{R}^d)$  with a **white noise**  $\mathcal{W}$ 

$$f(x) = g \star W(x) := \int g(x-y) dW(y)$$

- $\mathcal{W}$  : random signed measure satisfying for A, B disjoint
  - $\mathcal{W}(A)$  and  $\mathcal{W}(B)$  are independent

• 
$$\mathcal{W}(A \cup B) = \mathcal{W}(A) + \mathcal{W}(B)$$

- $Var(\mathcal{W}(A)) = \mathcal{L}^d(A)$
- Poisson shot noise fields :  $\mathcal{W}_{\mathcal{P}}(A) := \#\mathcal{P} \cap A \sim \mathsf{Poiss}(\mathcal{L}^d(A))$
- Gaussian fields :  $\mathcal{W}_{\mathcal{G}}(A) \sim \mathcal{N}(0, \mathcal{L}^{d}(A))$
- In dimension 1, the Gaussian white noise can be built from a Brownian motion  $\{B_t; t \in \mathbb{R}\}$ ,

$$\mathcal{W}_{\mathcal{G}}([a,b]) := B_b - B_a.$$

• Similar constructions exist in all dimensions with Brownian sheets 📱 🥠

# Covariance property

• For A, B with finite measure,

$$\mathsf{Cov}(\mathcal{W}(A), \mathcal{W}(B)) = \mathcal{L}^d(A \cap B) = \langle \mathbf{1}_{\{A\}}, \mathbf{1}_{\{B\}} \rangle_{L^2(\mathbb{R}^d)}$$
  
• For all  $g_1, g_2 \in L^2(\mathbb{R}^d)$ 

$$\mathsf{Cov}\left(\int g_1 d\mathcal{W}, \int g_2 d\mathcal{W}\right) = \langle g_1, g_2 \rangle = \int g_1 g_2.$$

• In particular, the covariance function of f satisfies

$$C(x - y) = \operatorname{Cov}(f(x), f(y)) = \langle g(x - \cdot), g(y - \cdot), \rangle$$
$$= \int g(x - y)g(x - y - z)dz$$
$$= g\tilde{\star}g(x - y)$$

• Some SDP functions with singular spectral measures cannot be built this way (e.g. Gaussian Random Planar Wave with C = Bessel Function)

# Percolation of Gaussian excursions

Figure – Credit : D. Beliaev



FIGURE 1. A simulation of the excursion set  $\mathcal{E}_{\ell}$  of the Bargmann-Fock field restricted to a large square (in grey) at (i) the zero level  $\ell = 0$  (leff figure), at (ii) the level  $\ell = 0.1$  (right figure), with the connected component of greatest area distinguished (in black). The Bargmann-Fock field is the stationary, centred Gaussian field with covariance kernel  $\kappa(x) = e^{-|x|^2/2}$ . Credit: Dmitry Beliaev.

イロト イポト イヨト イヨト

# Assumptions (Gaussian case)

| Assumption                 | Field f                                                                                    | Kernel g                                                       |
|----------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Regularity                 | $\mathcal{C}^3$                                                                            | $\mathcal{C}^3$                                                |
| Symmetry                   | $D^4$ (Axis reflections, $\frac{\pi}{2}$ – rotations)                                      | $D^4$                                                          |
| Positive<br>Association    | for $A,B$ increasing events<br>$\mathbb{P}(A \cap B) \geqslant \mathbb{P}(A)\mathbb{P}(B)$ | $g \geqslant 0$                                                |
| Asymptotic<br>Independence | for $A,B$ "far away"<br>$\mathbb{P}(A\cap B)pprox \mathbb{P}(A)\mathbb{P}(B)$              | for some $\beta > 2$<br>$g(x) \leqslant c(1 + \ x\ )^{-\beta}$ |

• Increasing event  $A = A(f) : \mathbf{1}_{\{A(f)\}} \leq \mathbf{1}_{\{A(g)\}}$  for  $f \leq g$ 

 $\mathsf{Example}: A(f) = \{\mathcal{E}_\ell(f) \text{ crosses } Q\} \text{ for some } Q \subset \mathbb{R}^2$ 

• Symmetry  $f \stackrel{(d)}{=} -f$  entails self-duality

$$\mathcal{E}_0 \stackrel{(d)}{=} \mathcal{E}_0^c$$
 (up to the boundary)

 $\Rightarrow$  It is natural to expect  $\ell_c = 0$ .

# Bernoulli-like percolation (Gaussian case)

Theorem (Sharp phase transition (Beffara & Gayet, Vanneuville, Muirhead, Ribera))

Under the previous assumptions,  $\{\mathcal{E}_{\ell}, \ell \in \mathbb{R}\}$  behaves like **Bernoulli** percolation around the critical value : for Q a rectangle

**0**  $\ell < 0$  :  $\mathcal{E}_{\ell}$  has a unique unbounded component a.s. and

 $\mathbb{P}(\mathcal{E}_{\ell} \text{ crosses } rQ) > 1 - Ce^{-cr}, r > 0$ 

- 2  $\ell > 0$  :  $\mathcal{E}_{\ell}$  has bounded components a.s.
- **(**)  $\ell = 0$  :  $\mathcal{E}_{\ell}$  has bounded components and

 $\mathbb{P}(\mathcal{E}_0 \text{ crosses from } \partial B(0,r) \text{ to } \partial B(0,R)) \leqslant c \left(\frac{r}{R}\right)^{\beta_{arm}}, r > 0.$ 

$$0 < \inf_{r} \mathbb{P}(\mathcal{E}_0 \ \textit{crosses} \ rQ) \leqslant \sup_{r} \mathbb{P}(\mathcal{E}_0 \ \textit{crosses} \ rQ) < 1.$$

• • • • • • • • • • • •

# Early works

- Molchanov and Stepanov '83 : give conditions for  $\ell_c < \infty$  for some positive shot noise fields
- Alexander '96 : For a stationary  $C^1$  random field on  $\mathbb{R}^2$ , ergodic and positively associated, the level lines are a.s. bounded.
- Broman and Meester '17 : Conditions for  $\ell_c < \infty$
- Beffara Gayet '17 : Bounded components for  $\ell$  sufficiently large
- Ribera Vanneuville '19 : Bounded components for  $\ell > 0$
- Muirhead Vanneuville '19 : Optimal condition β > 2 on decay of g, sharp phase transition
- Muirhead, Rivera, Vanneuville '20 : Results without positive association and fast decay outside the critical level

く 目 ト く ヨ ト く ヨ ト

# Assumptions (Symmetric Poisson case )

| Regularity                 | $\mathcal{C}^3$                                                                            | $\mathcal{C}^3$                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Symmetry                   | $D^4$ (Axis reflections, $\frac{\pi}{2}$ – rotations)                                      | $D^4$                                                                                                |
| Positive<br>Association    | for $A,B$ increasing events<br>$\mathbb{P}(A \cap B) \geqslant \mathbb{P}(A)\mathbb{P}(B)$ | $g \geqslant 0$                                                                                      |
| Asymptotic<br>Independence | for $A,B$ "far away"<br>$\mathbb{P}(A\cap B)pprox \mathbb{P}(A)\mathbb{P}(B)$              | for some $\beta > 3$ , for $ k  \leq 3$<br>$\partial^k g(x) \leq c(1 +   x  )^{-\beta -  k }$        |
| Self-Duality               | $\mathcal{E}_0 \stackrel{(d)}{=} \overline{\mathcal{E}_0^c}$                               | $Y_i \stackrel{(d)}{=} -Y_i$                                                                         |
| Density                    | $(f(0), \nabla f(0))$<br>has bounded joint density                                         | $g(x) = c \exp(-  x  ^{\alpha}), \ \alpha \in (0,1)$<br>or $g(x) = c(1+  x  )^{-\beta}, \ \beta > d$ |
| Concentration +            | Use of OSSS inequality                                                                     | Law of $Y_i$ log-concave                                                                             |

#### Theorem (Lr, Muirhead 2022)

Under these assumptions, there is Bernoulli-like percolation for Poisson shot noise fields.

R. Lachieze-Rey

### Non-symmetric case

• Let  $\lambda > 0$ ,  $\mathcal{P}_{\lambda} \stackrel{(d)}{=} \lambda^{-1/d} \mathcal{P}$  a Poisson homogeneous process with intensity  $\lambda$ . We consider

$$f_{\lambda}(x) = g \star \mathcal{W}_{\mathcal{P}_{\lambda}}(x) = \sum_{y \in \mathcal{P}_{\lambda}} g(y - x).$$

• Under mild assumptions, there is a finite critical density

 $\ell_{c}(f_{\lambda}) = \sup\{\ell: \mathbb{P}(\mathcal{E}_{\ell} \text{ has unbounded component}) > 0\} < \infty$ 

• Asymptotic regime  $\lambda \to \infty$ ? Elementary Central Limit Theorem

$$ilde{f}_{\lambda}(x) := rac{f_{\lambda}(x) - \mathbb{E}(f_{\lambda}(x))}{\sqrt{\mathsf{Var}(f_{\lambda}(x))}} o G(x) ext{ with } egin{cases} \mathbb{E}(f_{\lambda}(x)) = \lambda \int g, \ \mathsf{Var}(f_{\lambda}(x)) = \lambda \int g^2 dx \end{bmatrix}$$

- Multivariate CLT (Heinrich, Schmidt '85) : Convergence of FDD
- G(x) is Gaussian centred with same covariance  $g \tilde{\star} g$
- Question :

$$\ell_c(\tilde{f}_\lambda) \to \ell_c(G) = 0?$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

# Assumptions (Non-symmetric Poisson case )

| Assumption                 | Field f                                                                                    | Kernel g                                                                                         |
|----------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Regularity                 | C <sup>4</sup>                                                                             | $\mathcal{C}^4$                                                                                  |
| Symmetry                   | lsotropy<br>(invariance to rotations)                                                      | lsotropy                                                                                         |
| Positive<br>Association    | for $A,B$ increasing events<br>$\mathbb{P}(A \cap B) \geqslant \mathbb{P}(A)\mathbb{P}(B)$ | $g \geqslant 0$                                                                                  |
| Asymptotic<br>Independence | for $A,B$ "far away" $\mathbb{P}(A\cap B)pprox \mathbb{P}(A)\mathbb{P}(B)$                 | for some $\beta > 2$ , for $ k  \leq 3$<br>$\partial^k g(x) \leq c(1 +   x  )^{-\beta}$          |
| Density                    | $(f_{\lambda}(0), \nabla f_{\lambda}(0))$<br>has bounded density                           | $g(x) = c \exp(-\ x\ ^{\alpha}), \alpha \in (0,1)$<br>or $g(x) = c(1+\ x\ )^{-\beta}, \beta > d$ |

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

# Critical value approximation

#### Theorem (Lr,Muirhead 21+) Recall

$$\ell_c(\tilde{f}_{\lambda}) = c\lambda^{-1/2}(\ell_c(f_{\lambda}) - \lambda \int g)$$

Assume the previous hypotheses, except positive association. Then • without positive association,

$$\ell_c(\widetilde{f}_\lambda) o 0$$

• with positive association  $(g \ge 0)$ ,

$$\ell_c(\tilde{f}_{\lambda}) = O(\lambda^{-1/2}\log(\lambda)^{3/2})$$

# Strong Invariance principles

• Proof based on the construction of a coupling  $(f_{\lambda}, g)$ , for each  $\lambda > 0$ .

• **Historical result :** Komlos, Major, Tusnady 85', coupling of  $X_i$ , i.i.d Rademacher variables with i.i.d Gaussian variables  $G_1, \ldots, G_n$  such that

$$\mathbb{P}(\sup_{0\leqslant k\leqslant n}|\sum_{i=1}^{k}X_{i}-\sum_{i=1}^{k}G_{i}|\geqslant c\ln(n)+t)\leqslant Ce^{-ct}$$

and the order ln(n) is optimal.

• "Random measure" point of view

$$\sum_{i=1}^{k} X_{i} = (\sum_{i=1}^{n} \delta_{X_{i}})(\mathbf{1}_{[1,...,k]}), 1 \leq k \leq n$$
  
Similarly  $f_{\lambda}(\mathbf{k}) = \mathcal{W}_{\mathcal{P}_{\lambda}}(g(\mathbf{k} - \cdot)), \mathbf{k} \in \mathbb{Z}^{d}$   
 $G(\mathbf{k}) = \mathcal{W}_{\mathcal{G}}(g(\mathbf{k} - \cdot)), \mathbf{k} \in \mathbb{Z}^{d}$ 

# Strong invariance principle for shot noise fields

#### Theorem (Lr, Muirhead 21+)

$$\mathbb{P}\left(\sup_{x\in B(0,R)}|\tilde{f}_{\lambda}(x)-G(x)|>\lambda^{-1/2}\ln(\lambda)^{1/2}t\right)< CR^{d}\lambda^{c}\exp(-ct)$$

- Optimal up to the power of  $ln(\lambda)$  (see also Berry-Esseen inequality)
- Based on Koltchinski 94': There is a coupling of  $\mathcal{P}_{\lambda}$  and  $\mathcal{W}_{\mathcal{G}}$  such that for any  $\mathbf{k} \in \mathbb{Z}^d$ ,

$$\mathbb{P}(| ilde{f}_{\lambda}(\mathbf{k}) - \mathcal{G}(\mathbf{k})| \geqslant t\lambda^{-1/2}\ln(\lambda)) \leqslant Ce^{-ct}$$

- For  $x \in \mathbb{R}^d \setminus \mathbb{Z}^d$ , approximate f(x) by  $f([x]) + \nabla f(\xi) \cdot (x [x])$ .
- There is a coupling of  $N \sim \mathsf{Pois}(\lambda)$  and  $Z \sim \mathcal{N}(0,1)$  such that

$$\mathbb{P}(|\mathsf{N}-\lambda-\sqrt{\lambda}Z|>t)\leqslant Ce^{-ct}$$

# Elements of proof for the symmetric case

▲御 と ▲ 臣 と ▲ 臣 とし

- Box crossing estimates (RSW) stem from the work of Tassion '16 because we have :
  - Positive association of the discretised field (FKG inequality on a finite space)
  - $\mathcal{E}_0$  is invariant in law under reflections and rotation by  $\pi/2$
  - Spatial asymptotic independence (of f, hence of  $\mathcal{E}_{\ell}$ )
- One arm decay stems from
  - Positive association of the discretised field (FKG inequality on a finite space)
  - Asymptotic independence
  - Box crossing estimates (RSW)

<日<br />
<</p>

Proof of sharp phase transition (bounded Mills ratio case)

- First prove that  $\mathbb{P}(\mathrm{Cross}_{\ell}(2R,R)) \to 0$  and then use bootstraping argument
- Proof based on a differential inequality of

$$\theta: h \to \mathbb{P}(f_r^{\varepsilon,h} \in \mathrm{Cross}_{\ell}(2R,R))$$

where  $f_r^{\varepsilon,h}$  is obtained from  $f_r^{\varepsilon}$  by adding *h* to all the marks. We prove

$$\frac{\partial}{\partial h}\theta(h) \ge c \frac{\theta(h)(1-\theta(h))}{\inf_{2r < \rho < R/2} \{2\rho/R + \mathbb{P}(f_r^{\varepsilon} \in \operatorname{Arm}_{\ell}(2r,\rho))\}}$$

Use of the OSSS inequality applied to randomized algorithms; after the ideas of Duminil-Copin, Tassion, Raoufi.

# Sharp phase transition

Theorem (Lr & Muirhead 19+)

For  $\ell > 0$  there is c > 0 such that

 $\mathbb{P}(\mathrm{Cross}_{\ell}(2R,R)) \leqslant 1 - \exp(-cR), R > 0$ 

It implies the main result :

• For  $\ell \geqslant 0$ ,  $\mathcal{E}_{\ell}$  has only bounded connected components a.s..

• For  $\ell < 0$ ,  $\mathcal{E}_{\ell}$  has a unique unbounded component a.s..

$$\begin{array}{l} \textbf{Proof:} \bullet \ell \geqslant 0 : \mathbb{P}(\operatorname{Arm}_0(1, R)) \to 0. \\ \bullet \ell < 0 : \text{Borel-Cantelli lemma with} \end{array} \\ \end{array}$$

 $\sum_{k \ge 1} (1 - \mathbb{P}(\operatorname{Cross}_{\ell}(2^{k+1}, 2^k))) < \infty \Rightarrow (\operatorname{Cross}_{\ell}(2^{k+1}, 2^k)) \text{ occurs for } k > k_0$ 

and arrange the rectangles so that the connected components overlap.

イロト イヨト イヨト イヨト 三日

# OSSS inequality (O'Donnell, Saks, Schramm, Servedio '05) For an event A on a product probability space $(E^n, \mu^n)$ and a random

algorithm determining A,  $( heta:=\mathbb{P}(A))$ 

$$\operatorname{Var}(\mathbf{1}_{\{A\}}) = \theta(1-\theta) \leqslant \sum_{i=1}^{n} \delta_{i}^{\mu}(\mathcal{A}) I_{i}^{\mu}(\mathcal{A})$$

where

- $\delta^{\mu}_i(\mathcal{A})$  : Probability that coordinate i is revealed by the algorithm
- Influence of coordinate i : I<sup>µ</sup><sub>i</sub>(A) = ℙ(1<sub>{A}</sub> ≠ 1<sub>{A<sup>i</sup>}</sub>) where A<sup>i</sup> is obtained by resampling coordinate i

For percolation events, typically :

- A is a progressive uncovering of all the connected components touching a random crossing line (in a rectangle) / circle (in a disc)
- δ<sup>μ</sup><sub>i</sub>(A) is the probability that a point *i* is "close" to one of these connected components (one-arm decay is useful here)
- $I_i^\mu(A)$  is related to  $\partial_h heta(h)$  for  $h\sim 0$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Key point

- First remark that crossing events are monotonous in the marks (higher mark = more chances to percolate). Hence for each *i* there is a.s. a random level  $y_i$  such that there is percolation for  $Y_i \ge y_i$ .
- Assume for  $f^{\varepsilon}$  that mark  $Y_i$  is replaced by  $Y_i + h_i$  for some parameter  $h_i \in \mathbb{R}$ . Then

$$\begin{split} \frac{\partial}{\partial h_i} \mathbb{P}(\mathrm{Cross}_{\ell}(2R,R)) &= \frac{\partial}{\partial h_i} \mathbb{P}(Y_i + h_i \ge y_i) \ge u_{\mu_{ac}}(y_i - h_i) \\ I_i &= \mathbb{P}(\mathbf{1}_{\{A\}} \neq \mathbf{1}_{\{A_i\}}) = \mathbb{P}(Y_i + h_i \ge y_i, Y'_i + h_i < Y'_i) \\ &+ \mathbb{P}(Y_i + h_i < y_i, Y'_i + h_i \ge Y'_i) \\ &\leq 2\mathbb{P}(Y_i \ge y_i - h_i) \end{split}$$

$$\stackrel{\mathrm{Mills}}{\leqslant} c u_{\mu_{ac}}(y_i - h_i)$$

• We end up with

$$\frac{\partial}{\partial h}\theta(h) = \sum_{i} \frac{\partial}{\partial h_{i}}\theta(h) \ge c \sum_{i} I_{i} \ge c \frac{\sum_{i} I_{i}\delta_{i}}{\sup_{i}\delta_{i}} \stackrel{OSSS}{=} \frac{\theta(1-\theta)}{\sup_{i}\delta_{i}}$$