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Excursions
Let f : R2 → R a stationary random field (law invariant under
translations).
For ` ∈ R, define

E` = E`(f ) = {x ∈ R2 : f (x) > `}

Figure – Excursions of a shot noise field (Credit : PhD Thesis, Antoine
Lerbet)
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Percolation

We are interested in the following questions :

1 Does E` have (a unique) unbounded connected component(s) ?

2 Is there a critical value `c ?

3 Behaviour of

P(E` crosses large rectangles)

for ` = `c or ` 6= `c ?
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Poisson shot noise fields
Let P = {xi ; i ∈ N} be a homogeneous Poisson process on R2.

Let g : R2 → R2 integrable

Poisson shot noise field with kernel g :

f (x) :=
∑
i∈N

g(x − xi ); x ∈ R2.

Let Yi , i ∈ N iid symmetric integrable variables with law µ.

Symmetric Poisson shot noise field with kernel g and mark
distribution µ :

f (x) =
∑
i∈N

Yig(x − xi ); x ∈ R2.

Well defined in virtue of Campbell formula :

E

[∑
i∈N
|Yig(x − xi )|

]
=

∫
R2

|yg(x − t)|dtµ(dy) = E(|Y1|)‖g‖L1 <∞
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Gaussian Random Fields

The same questions have been thouroughly investigated for stationary
continuous centred Gaussian fields, i.e. random functions f : Rd → R
such that

∀x1, . . . , xn ∈ R2, (f (x1), . . . , f (xn)) is a centred Gaussian vector

a.s., x → f (x) is continuous

Such a field is uniquely determined by its covariance function

E(f (x)f (y)) =: C (x − y).

Reciprocally, to each SDP function C , i.e. such that

n∑
i=1

aiajC (xi − xj ) > 0

for all x1, . . . , xn ∈ Rd , a1, . . . , an ∈ R, one can associate a unique
centred stationary Gaussian field.
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White noise construction
Most fields can actually be seen as the convolution of a kernel g ∈ L1(Rd )
with a white noise W

f (x) = g ?W(x) :=

∫
g(x − y)dW(y)

• W : random signed measure satisfying for A,B disjoint

W(A) and W(B) are independent

W(A ∪ B) =W(A) +W(B)

Var(W(A)) = Ld (A)

• Poisson shot noise fields : WP(A) := #P ∩ A ∼ Poiss(Ld (A))
• Gaussian fields : WG(A) ∼ N (0,Ld (A))
• In dimension 1, the Gaussian white noise can be built from a Brownian
motion {Bt ; t ∈ R},

WG([a, b]) := Bb − Ba.

• Similar constructions exist in all dimensions with Brownian sheets
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Covariance property
• For A,B with finite measure,

Cov(W(A),W(B)) = Ld (A ∩ B) = 〈1{A}, 1{B}〉L2(Rd )

• For all g1, g2 ∈ L2(Rd )

Cov

(∫
g1dW,

∫
g2dW

)
= 〈g1, g2〉 =

∫
g1g2.

• In particular, the covariance function of f satisfies

C (x − y) = Cov(f (x), f (y)) =〈g(x − ·), g(y − ·), 〉

=

∫
g(x − y)g(x − y − z)dz

=g ?̃g(x − y)

• Some SDP functions with singular spectral measures cannot be built this
way (e.g. Gaussian Random Planar Wave with C =Bessel Function)
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Percolation of Gaussian excursions

Figure – Credit : D. Beliaev

R. Lachieze-Rey Percolation of random fields excursions 8 / 23



Assumptions (Gaussian case)

Assumption Field f Kernel g

Regularity C3 C3

Symmetry D4

(Axis reflections,π
2
−rotations) D4

Positive
Association

for A,B increasing events

P(A ∩ B) > P(A)P(B) g > 0

Asymptotic
Independence

for A,B “far away”

P(A ∩ B) ≈ P(A)P(B)
for some β>2

g(x) 6 c(1 + ‖x‖)−β

• Increasing event A = A(f ) :1{A(f )} 6 1{A(g)} for f 6 g

Example : A(f ) = {E`(f ) crosses Q} for some Q ⊂ R2

• Symmetry f
(d)
= −f entails self-duality

E0
(d)
= Ec

0 (up to the boundary)

⇒ It is natural to expect `c = 0.
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Bernoulli-like percolation (Gaussian case)

Theorem (Sharp phase transition (Beffara & Gayet, Vanneuville,
Muirhead, Ribera))

Under the previous assumptions, {E`, ` ∈ R} behaves like Bernoulli
percolation around the critical value : for Q a rectangle

1 ` < 0 : E` has a unique unbounded component a.s. and

P(E` crosses rQ) > 1− Ce−cr , r > 0

2 ` > 0 : E` has bounded components a.s.

3 ` = 0 : E` has bounded components and

P(E0 crosses from ∂B(0, r) to ∂B(0,R)) 6 c
( r

R

)βarm
, r > 0.

0 < inf
r
P(E0 crosses rQ) 6 sup

r
P(E0 crosses rQ) < 1.
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Early works

Molchanov and Stepanov ’83 : give conditions for `c <∞ for some
positive shot noise fields

Alexander ’96 : For a stationary C1 random field on R2, ergodic and
positively associated, the level lines are a.s. bounded.

Broman and Meester ’17 : Conditions for `c <∞
Beffara Gayet ’17 : Bounded components for ` sufficiently large

Ribera Vanneuville ’19 : Bounded components for ` > 0

Muirhead Vanneuville ’19 : Optimal condition β > 2 on decay of g ,
sharp phase transition

Muirhead, Rivera, Vanneuville ’20 : Results without positive
association and fast decay outside the critical level
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Assumptions (Symmetric Poisson case )

Regularity C3 C3

Symmetry D4

(Axis reflections,π
2
−rotations) D4

Positive
Association

for A,B increasing events

P(A ∩ B) > P(A)P(B) g > 0

Asymptotic
Independence

for A,B “far away”

P(A ∩ B) ≈ P(A)P(B)
for some β>3, for |k|63

∂kg(x) 6 c(1 + ‖x‖)−β−|k|

Self-Duality E0
(d)
= Ec

0 Yi
(d)
= −Yi

Density (f (0),∇f (0))
has bounded joint density

g(x)=c exp(−‖x‖α), α∈(0,1)
or g(x)=c(1+‖x‖)−β , β>d

Concentration + Use of OSSS inequality Law of Yi log-concave

Theorem (Lr,Muirhead 2022)

Under these assumptions, there is Bernoulli-like percolation for Poisson
shot noise fields.
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Non-symmetric case
• Let λ > 0, Pλ

(d)
= λ−1/dP a Poisson homogeneous process with intensity

λ. We consider

fλ(x) = g ?WPλ
(x) =

∑
y∈Pλ

g(y − x).

• Under mild assumptions, there is a finite critical density

`c (fλ) = sup{` : P(E` has unbounded component) > 0} <∞

• Asymptotic regime λ→∞? Elementary Central Limit Theorem

f̃λ(x) :=
fλ(x)− E(fλ(x))√

Var(fλ(x))
→ G (x) with

{
E(fλ(x)) = λ

∫
g ,

Var(fλ(x)) = λ
∫
g2

• Multivariate CLT (Heinrich, Schmidt ’85) : Convergence of FDD
• G (x) is Gaussian centred with same covariance g ?̃g
• Question :

`c(f̃λ)→ `c(G ) = 0?
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Assumptions (Non-symmetric Poisson case )

Assumption Field f Kernel g

Regularity C4 C4

Symmetry
Isotropy

(invariance to rotations)
Isotropy

Positive
Association

for A,B increasing events

P(A ∩ B) > P(A)P(B) g > 0

Asymptotic
Independence

for A,B “far away”

P(A ∩ B) ≈ P(A)P(B)
for some β>2, for |k|63

∂kg(x) 6 c(1 + ‖x‖)−β

Density (fλ(0),∇fλ(0))
has bounded density

g(x)=c exp(−‖x‖α), α∈(0,1)
or g(x)=c(1+‖x‖)−β , β>d
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Critical value approximation

Theorem (Lr,Muirhead 21+)

Recall

`c(f̃λ) = cλ−1/2(`c(fλ)− λ
∫
g)

Assume the previous hypotheses, except positive association. Then

without positive association,

`c(f̃λ)→ 0

with positive association (g > 0),

`c (f̃λ) = O(λ−1/2 log(λ)3/2)
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Strong Invariance principles

• Proof based on the construction of a coupling (fλ, g), for each λ > 0.
• Historical result : Komlos, Major, Tusnady 85’, coupling of Xi , i.i.d
Rademacher variables with i.i.d Gaussian variables G1, . . . ,Gn such that

P( sup
06k6n

|
k∑

i=1

Xi −
k∑

i=1

Gi | > c ln(n) + t) 6 Ce−ct

and the order ln(n) is optimal.
• “Random measure” point of view

k∑
i=1

Xi =(
n∑

i=1

δXi
)(1[1,...,k]), 1 6 k 6 n

Similarly fλ(k) =WPλ
(g(k− ·)), k ∈ Zd

G (k) =WG(g(k− ·)), k ∈ Zd
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Strong invariance principle for shot noise fields

Theorem (Lr,Muirhead 21+)

P

(
sup

x∈B(0,R)
|f̃λ(x)− G (x)| > λ−1/2 ln(λ)1/2t

)
< CRdλc exp(−ct)

• Optimal up to the power of ln(λ) (see also Berry-Esseen inequality)
• Based on Koltchinski 94’ : There is a coupling of Pλ and WG such that
for any k ∈ Zd ,

P(|f̃λ(k)− G (k)| > tλ−1/2 ln(λ)) 6 Ce−ct

• For x ∈ Rd \ Zd , approximate f (x) by f ([x ]) +∇f (ξ) · (x − [x ]).
• There is a coupling of N ∼ Pois(λ) and Z ∼ N (0, 1) such that

P(|N − λ−
√
λZ | > t) 6 Ce−ct

.
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Elements of proof for the
symmetric case
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Box crossing estimates (RSW) stem from the work of Tassion ’16
because we have :

I Positive association of the discretised field (FKG inequality on a finite
space)

I E0 is invariant in law under reflections and rotation by π/2
I Spatial asymptotic independence (of f , hence of E`)

One arm decay stems from
I Positive association of the discretised field (FKG inequality on a finite

space)
I Asymptotic independence
I Box crossing estimates (RSW)
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Proof of sharp phase transition (bounded Mills ratio case)

1 First prove that P(Cross`(2R,R))→ 0 and then use bootstraping
argument

2 Proof based on a differential inequality of

θ : h→ P(f ε,hr ∈ Cross`(2R,R))

where f ε,hr is obtained from f εr by adding h to all the marks. We prove

∂

∂h
θ(h) > c

θ(h)(1− θ(h))

inf2r<ρ<R/2{2ρ/R + P(f εr ∈ Arm`(2r , ρ))}

3 Use of the OSSS inequality applied to randomized algorithms ; after
the ideas of Duminil-Copin, Tassion, Raoufi.
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Sharp phase transition

Theorem (Lr & Muirhead 19+)

For ` > 0 there is c > 0 such that

P(Cross`(2R,R)) 61− exp(−cR),R > 0

It implies the main result :

For ` > 0, E` has only bounded connected components a.s..

For ` < 0, E` has a unique unbounded component a.s..

Proof : •` > 0 : P(Arm0(1,R))→ 0.
•` < 0 : Borel-Cantelli lemma with∑

k>1

(1− P(Cross`(2k+1, 2k ))) <∞⇒ (Cross`(2k+1, 2k )) occurs for k > k0

and arrange the rectangles so that the connected components overlap.
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OSSS inequality (O’Donnell, Saks, Schramm, Servedio ’05)
For an event A on a product probability space (En, µn) and a random
algorithm determining A, (θ := P(A))

Var(1{A}) = θ(1− θ) 6
n∑

i=1

δµi (A)Iµi (A)

where

δµi (A) : Probability that coordinate i is revealed by the algorithm

Influence of coordinate i : Iµi (A) = P(1{A} 6= 1{Ai}) where Ai is
obtained by resampling coordinate i

For percolation events, typically :

A is a progressive uncovering of all the connected components
touching a random crossing line (in a rectangle) / circle (in a disc)

δµi (A) is the probability that a point i is “close” to one of these
connected components (one-arm decay is useful here)

Iµi (A) is related to ∂hθ(h) for h ∼ 0
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Key point
First remark that crossing events are monotonous in the marks
(higher mark = more chances to percolate). Hence for each i there is
a.s. a random level yi such that there is percolation for Yi > yi .

Assume for f ε that mark Yi is replaced by Yi + hi for some parameter
hi ∈ R. Then

∂

∂hi
P(Cross`(2R,R)) =

∂

∂hi
P(Yi + hi > yi ) > uµac (yi − hi )

Ii = P(1{A} 6= 1{Ai}) =P(Yi + hi > yi ,Y
′
i + hi < Y ′i )

+ P(Yi + hi < yi ,Y
′
i + hi > Y ′i )

62P(Yi > yi − hi )

Mills
6 cuµac (yi − hi )

We end up with

∂

∂h
θ(h) =

∑
i

∂

∂hi
θ(h) > c

∑
i

Ii > c

∑
i Iiδi

supi δi

OSSS
=

θ(1− θ)

supi δi
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