Nodal sets variance for Gaussian stationary processes

Raphaël Lachièze-Rey

New trends in Point processes KIT Karlsruhe February 28 - March 2, 2022

New trends in Point processes KIT Karlsruhe

21

Raphaël Lachièze-Rey

Nodal sets variance for Gaussian stationary pr

Gaussian fields

- Centered Gaussian fields : $X : \mathbb{R}^d \to \mathbb{R}$ such that :
 - (X(x₁),...,X(x_q)) is a Gaussian vector for x₁,...,x_q ∈ E
 𝔼(X(x)) = 0, x ∈ E.
- Stationarity : $\mathbf{X}(x+\cdot) \stackrel{(d)}{=} \mathbf{X}$ for $x \in \mathbb{R}^d$

Excursion and level sets are privileged observables : for $\ell \in \mathbb{R}$

$$\mathbf{E}_{\ell} = \{ x : \mathbf{X}(x) \ge \ell \}$$
$$\mathbf{L}_{\ell} = \{ x : \mathbf{X}(x) = \ell \}$$

Variance linearity :

• in $\mathbb R$:

$$\mathsf{Var}(\mathsf{L}_0 \cap [0, R]) = o(R)? \sim R?$$

• in \mathbb{R}^d :

$$\operatorname{Var}(\mathsf{E}_{\ell} \cap \mathsf{B}(0,R)) = o(R^d)? \sim R^d?$$

Raphaël Lachièze-Rey

Nodal sets variance for Gaussian stationary pr

A non-stationary field with stationary zeros

Let $\boldsymbol{X}:\mathbb{C}\rightarrow\mathbb{C}$ be a GAF, i.e. a Gaussian field such that

- X is a.s. holomorphic
- For all x₁,..., x_q, (X(x₁),..., X(x_q)) ∈ C^q has a centered standard Complex distribution (≠ standard distribution that is complex)

Then ${\boldsymbol{\mathsf{X}}}$ is not stationary. Still it is possible that the point process

$$\mathsf{Z}=\mathsf{L}_0=\mathsf{X}^{-1}(\{\mathsf{0}_\mathbb{C}\})$$

is stationary, in this case the law of ${\bf Z}$ is uniquely determined up to a scaling factor :

 $\exists \mathbf{Z}_1$ stationary point process such that $\mathbf{Z} \stackrel{(d)}{=} \alpha \mathbf{Z}_1$ for some $\alpha > 0$.

and \mathbf{Z}_1 is hyperuniform :

$$\mathsf{Var}(\#\mathsf{Z}_1\cap\mathsf{B}(0,R))=o(R^d)$$

Raphaël Lachièze-Rey

Nodal sets variance for Gaussian stationary pr

Hyperuniformity (S. Torquato, J. Lebowitz, S. Ghosh, ...)

• A point process Z is hyperuniform if

FIGURE – (*left :* critical points of the RPW, *middle* : Poisson, *Right* : DPP. Credit : Torquato et al.)

Stationary zeros

• A problem going back to the 50's is the study of zeros of a smooth Stationary Gaussian Process (SGP) **X** in dimension 1 :

$$\mathsf{Z} := \mathsf{L}_0 = \{ x \in \mathbb{R} : \mathsf{X}(x) = 0 \}$$

- "Nodal" : the properties of Z might differ from those of the $L_{\ell}, \ell \neq 0$.
- First order : $\mathbb{E}(\mathsf{Leb}^1([0, T] \cap \mathsf{Z}))$ is proportionnal to T ("linear")

Tools

A SGP \boldsymbol{X} is characterised by :

• Its reduced covariance function $C_X : \mathbb{R}^d \to \mathbb{R}$ satisfying

$$\mathbb{E}(\mathbf{X}(x)\mathbf{X}(y)) = \mathbf{C}_{\mathbf{X}}(x-y), x, y \in E$$

• Its spectral measure $\mu_{\mathbf{X}}$, defined by

$$\mathsf{C}_{\mathsf{X}}(x) = \int_{\mathbb{R}^d} e^{i \langle t, x
angle} \mu_{\mathsf{X}}(dt)$$

• Example :

$$C_{\mathbf{X}}(x) = \cos(x), \ \mu_{\mathbf{X}} = \frac{\delta_1 + \delta_{-1}}{2}, \ \mathbf{X}(x) = A\cos(x) + B\sin(x),$$
$$A, Bi.i.d. \sim \mathcal{N}(0, 1)$$

Zeros number variance

Define

$$V_X(T) = Var(Z \cap [0, T])$$

• If X is τ -periodical, $V_X(T) \sim T^2 Var(Z \cap [0, \tau])$, hence quadratic ($\sim T^2$), except if

$$\mathbf{X}(t) = A\cos(\frac{2\pi x}{\tau}) + B\sin(\frac{2\pi x}{\tau}) \Leftrightarrow \mathbf{C}_{\mathbf{X}}(x) = \mathbf{C}_{\mathbf{X}}(0)\cos(\frac{2\pi x}{\tau}), x \in \mathbb{R}$$

for A, B i.i.d. Gaussian variables.

- Kac-Rice (1950') : Expression of V_X in fonction of C_X.
- Cramer & Leadbetter (1967) : V_X(T) < ∞ if C_X is twice differentiable and a little bit mode : for some δ > 0

$$\int_0^\delta \frac{1}{t^2} (\mathbf{C}'_{\mathbf{X}}(t) - \mathbf{C}''_{\mathbf{X}}(0)t) dt < \infty. \tag{1}$$

New trends in Point processes KIT Karlsruhe

Nodal sets variance for Gaussian stationary pr

Bibliography

- Geman (1972) : Sufficient condition ("Geman's condition")
- \bullet Cuzick (1976) : If furthermore $C_X \in L^2, C_X'' \in L^2,$ the variance is at most linear

$$\limsup_{T\to\infty} T^{-1} \mathbf{V}_{\mathbf{X}}(T) < \infty$$

Central Limit Theorem under the additional assumption that the variance is at least linear :

$$\lim_{T\to\infty} T^{-1} \mathbf{V}_{\mathbf{X}}(T) = \sigma > 0$$

- Slud (1991) : gets rid of the "at least linear" assumption (chaotic decomposition of X)
- Kratz & Léon (2001) : Chaotic decomposition in (X, X') : generalisations, levels ℓ ≠ 0, ...

Variance linearity

Can we have hyperuniform zeros?

Theorem (Lr 20)

- The variance is sub-linear only if $C_X(x) = \cos(2\pi x/\tau), \tau \ge 0$
- \bullet If the variance is linear, $C_X''-C_X\in L^2$
- It is a NSC equivalent to $[C_X, C''_X \in L^2]$ iff C_X has a density L^2 in the neighbourhood of $\pm \sqrt{-C''(0)}$.
- Extension to linear statistics of zeros

Proof : Based on the decomposition of Kratz & Léon
Legendre, Ancona '20 : Linear statistics in the linear regime
Assaf, Buckley, Feldheim '21 : Similar results + upper bounds

Rigidity

- Zeros of a GSP are not hyperuniform :(In dimension 1!
- A stationary Point process Z is rigid if #(Z ∩ B(0, R)) is measurable wrt Z ∩ B(0, R)^c
- Most HU examples are rigid :
 - Some DPP
 - Zeros of the planar Gaussian Analytic Function
 - Coulomb systems
- Link hyperuniformity / rigidity?

An exemple rigid and hyper-fluctuating

Exemple

Let X with covariance

$$\mathsf{C}(x) = \prod_{k=1}^{\infty} \cos(x/k!)$$

The zeros **Z** of **X** are hyper-fluctuating and super rigid (**X** is not too much dependent : it is weakly mixing, as is the PP **Z**, and **X** is a.s. unbounded.)

Klatt & Last '20 : Other (hyperfluctuating rigid) example in dimension d ≥ 2 with "random grids"

Hyperuniform random sets

• A stationary random set **E** is HU if

$$\frac{\mathsf{Var}(\mathsf{Leb}^d(\mathsf{E}\cap\mathsf{B}(0,R)))}{R^d}\to 0$$

• Torquato, Stillinger : Labyrinth-like Turing pattern (Left), hard sphere packings (Right)

Raphaël Lachièze-Rey

New trends in Point processes KIT Karlsruhe Nodal sets variance for Gaussian stationary pr

Gaussian excursions volume variance

Theorem (Lr 21)

- $\mathbf{X}: \mathbb{R}^d \to \mathbb{R}$ stationary
- $V^{\ell}_{X}(R) := Var(Leb({X > \ell} \cap B(0, R)))$
- μ_X : Spectral measure
- \mathbf{U}_n : Random walk with i.i.d. increments with law μ

•
$$\mathbf{K}(\varepsilon) := \sum_{n} n^{-3/2} \mathbb{P}(\|\mathbf{U}_{2n+1}\| < \varepsilon).$$

Then

$$c_{-}R^{2d}\mathbf{K}(R^{-1}) \leqslant \mathbf{V}^{0}_{\mathbf{X}}(R) \leqslant c_{+}R^{2d}\mathbf{K}(R^{-1}) + I(R)$$

 $cR^{2d}\mathbb{P}(\|\mathbf{U}_{2}\| < R^{-1}) \leqslant \mathbf{V}^{\ell}_{\mathbf{X}}(R), \ell \neq 0$

If $\mathsf{K}(arepsilon)\simarepsilon^{lpha}$, then $I(R)\sim\mathsf{V}^0_X(R)\sim T^{2d-lpha}$ (and $lpha\leqslant d+1$).

Example : Gaussian planar wave and isotropic models

$$\mu_X(dx) = \mathbf{1}_{\{\mathbb{S}^{d-1}\}}(x)\mathcal{H}^{d-1}(dx) \Leftrightarrow \Delta \mathbf{X} = -\mathbf{X}a.s.$$

We can prove for ε small

$$\mathbb{P}(\|\mathbf{U}_1\| < \varepsilon) = 0$$
$$\mathbb{P}(\|\mathbf{U}_2\| < \varepsilon) \sim \varepsilon^{d-1}$$
$$\mathbb{P}(\|\mathbf{U}_n\| < \varepsilon) \sim \varepsilon^d, n \ge 3$$

hence

$${f V}^\ell_{f X}(R) \geqslant c' R^{d+1} > 0 \quad ext{ and } \quad {f K}(arepsilon) \sim arepsilon^d ext{ and } f V^0_{f X}(R) \sim R^d$$

- Variance cancellation phenomenon (cf. Marinucci-Wigman '11, Rossi '19, ...)
- Every isotropic model has a higher variance ⇒ No isotropic hyperuniform model !

Raphaël Lachièze-Rey

Gaussian excursions

We consider spectral measures with finite support, for instance

$$\begin{split} \mathbf{C}(x) &= \cos(x) + \cos(\omega x) \text{ where } \omega \in \mathbb{R} \setminus \mathbb{Q} \\ \mathbf{X}(x) &= A_1 \cos(x) + A_2 \sin(x) + A_3 \cos(\omega x) + A_4 \sin(\omega x) \end{split}$$

where the A_i are i.i.d. centered standard Gaussian. Let

$$\mathbf{V}(R) = \mathbf{Var}(\mathbf{Leb}^1(\mathbf{E}_0 \cap [0, R])).$$

Theorem

Let $\beta \in [0,2)$, L a slowly varying function in some sense. Then there are uncountably many $\omega \in \mathbb{R}$ such that

$$0 < c_- R^eta L(R) \stackrel{\textit{inf.often}}{\leqslant} {f V}(R) \leqslant c_+ R^eta L(R) < \infty$$

Raphaël Lachièze-Rey

Variance exponent and approximability of $\boldsymbol{\omega}$

• ω is η -approximable :

$$c_-q^{-1-\eta}\leqslant \min_{p\in\mathbb{Z}}|p-\omega q| \stackrel{\textit{inf.often}}{\leqslant} c_+q^{-1-\eta}, q\in\mathbb{N}^*,$$

- If ω = √2 (badly approximable, η = 0), β = 0, the variance is bounded (true for Leb¹-a.e. ω)
- If $\omega = \sum_{k=1}^{\infty} 10^{-k!}$ (Liouville number; well approximated, η -approx $\forall \eta$), for all $\varepsilon > 0$, $R^{2-\varepsilon} << \mathbf{V}(R) << R^2$
- In dimension d, if

$$\mathsf{C}(x_1,\ldots,x_d)=\cos(x_1)+\cos(x_1\omega)+\cdots+\cos(x_d)+\cos(x_d\omega)$$

the variance on $\mathbf{B}(0, R)$ is in

$$R^{\max(d-1,2d-rac{1+2d}{1+\eta})}.$$

New trends in Point processes KIT Karlsruhe

Nodal sets variance for Gaussian stationary pr

Several frequencies

• Dimension 1 :

$$\mathbf{C}(x) = \sum_{i=0}^{m} \cos(\omega_i x) \text{ (with } \omega_0 = 1)$$

the variance depends on the diophantine properties of the vector $(\omega_1,\ldots,\omega_m)$, i.e. on the number $\eta \ge 0$ such that

$$c_+ \|q\|^{-m-\eta} \stackrel{\text{inf.often}}{\geqslant} \operatorname{dist}(q_1\omega_1 + \cdots + q_m\omega_m, \mathbb{Z}) \geqslant c_- \|q\|^{-m-\eta}$$

- For Leb^{*m*}-a.a. $(\omega_1, \ldots, \omega_m)$, the variance is in $R^{1-\frac{2}{m+\varepsilon}}, \varepsilon$ arb. small
- Dimension d: Several vectors $\omega_k = (\omega_k, i)_{1 \leqslant i \leqslant m}$, for $1 \leqslant k \leqslant d$,

$$\mathbf{C}(x_1,\ldots,x_d) = \sum_{k=1}^d \sum_{i=1}^m \cos(\omega_{k,i} x_k)$$

The lower bound depends on the properties of **simultaneous** diophantine approximations of the ω_k

Raphaël Lachièze-Rey

Variance - random walk

X : Stationary Gaussian Field with spectral measure
$$\mu$$

U_n : Random walk with i.i.d. increments distributed as μ
 μ is \mathbb{Z} -free : $\mathbb{P}(\mathbf{U}_{2n+1} = 0) = 0$
 $\mathbf{K}(\varepsilon) := \sum_{n} n^{-3/2} \mathbb{P}(\|\mathbf{U}_{2n+1}\| < \varepsilon)$

Recall that

$$\mathbf{K}(arepsilon)\simarepsilon^lpha\Rightarrow\mathbf{V}_{\mathbf{X}}(R)\sim R^{2d-lpha}$$

Irrational random walk

• Spectral measure

$$\mu = \sum_{k,i} (\delta_{\omega_{k,i}} + \delta_{-\omega_{k,i}}) \mathbf{e}_k$$

• X_j i.i.d. with law μ and

$$\mathbf{U}_n = \sum_{j=1}^n \mathbf{X}_j$$

 $\mathbf{\bar{U}}_n = \mathbf{U}_n - [\mathbf{U}_n] \in \mathbb{T}^d$

• What are

$$\mathbb{P}(0 < \|\mathbf{U}_n\| < \varepsilon)?$$
$$\mathbb{P}(0 < \| \mathbf{\bar{U}}_n\| < \varepsilon)?$$

Raphaël Lachièze-Rey

New trends in Point processes KIT Karlsruhe Nodal sets variance for Gaussian stationary pr

Random walk (Cont'd)

• Known results (Su 1998)

$$\sup_{\substack{I \text{ interval of } [0,1]}} |\mathbb{P}(\bar{\mathbf{U}}_n \in I) - \mathbf{Leb}^1(I)| \xrightarrow[n \to \infty]{} 0$$
$$\operatorname{Hence} \sup_{0 < \varepsilon < 1} |\mathbb{P}(|\bar{\mathbf{U}}_n| < \varepsilon) - 2\varepsilon| \xrightarrow[n \to \infty]{} 0$$

• Need : Uniform bound over n and ε of the form

$$\mathbb{P}(|\bar{\mathbf{U}}_n| \in (0,\varepsilon)) < cn^{-\frac{1}{2}}\varepsilon^{\gamma}.$$

Let

$$\mathsf{J}(\varepsilon) = \sum_{n} n^{-3/2} \mathbb{P}(\overline{\mathsf{U}}_{2n+1} \in (0, \varepsilon))$$

Random walk bounds

Theorem

If the $\omega_{k,i}$ are \mathbb{Z} -free and η -approximable, there are finite c, c', c'' > 0 such that

$$\mathbb{P}(|\bar{\mathbf{U}}_{n}| \in (0,\varepsilon)) \leqslant cn^{-d/2}\varepsilon^{\frac{md}{m+\eta}}$$
$$\varepsilon''\varepsilon^{-\frac{1+d(m+1)}{m/d+\eta}} \stackrel{\text{inf.often}}{\leqslant} \overline{\mathbf{J}}(\varepsilon) \leqslant c'\varepsilon^{-\frac{1+d(m+1)}{m+\eta}}$$

• Case m=d=1: If $\eta = 0$ (badly approximable numbers, e.g. $\sqrt{2}$), we retrieve the linear order ε^1 , otherwise the optimal bound is larger.