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Abstract

We prove an almost sure invariance principle for the partial sums of a strictly stationary
sequence of Hilbert-valued random variables. As a consequence, we extend the almost sure
invariance principle of Dehling and Philipp (1982) for strongly mixing sequences, by giving
the balance between the strong mixing rate and the moment of the norm of the variables,
for any moment greater than 2. We also show that our result holds for many non mixing
sequences, including a class of Hilbert-valued Markov chain which appears when studying
randomly forced partial differential equations.
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1 Introduction and Notations

Let us start with few notations.

Let (Ω,A,P) be a probability space, and T : Ω 7→ Ω be a bijective bi-measurable transforma-

tion preserving the probability P. We denote by I the σ-algebra of T -invariant sets. The map T

is P-ergodic if each element of I has measure 0 or 1. Let F0 be a sub-σ-algebra of A satisfying

F0 ⊆ T−1(F0).
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†Université Paris Est-Marne-la-Vallée, LAMA and CNRS UMR 8050.
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Let H be a real separable Hilbert space with norm ‖ · ‖H generated by an inner product

< ·, · >. Let X0 be a F0-measurable H-valued random variable, such that E(‖X0‖2
H) < ∞ and

E(X0) = 0H. Define then the stationary sequence (Xi)i∈Z by Xi = X0 ◦ T i, and the partial sums

Sn = X1 + · · ·+ Xn.

In this paper, we shall give sufficient conditions under which the almost sure invariance

principle (ASIP) holds: there exists a sequence (Zi)i∈Z of iid H-valued gaussian random variables

with E(‖Z0‖2
H) < ∞ and E(Z0) = 0H, and such that

∥∥∥Sn −
n∑

i=1

Zi

∥∥∥
H

= o(
√

n ln(ln(n))) almost surely. (1.1)

Let us briefly describe the application of our main result (Theorem 4) to the case of strongly

mixing sequences in the sense of Rosenblatt (1956). Recall that the strong mixing coefficient

between two σ-algebras F and G is defined by

α(F ,G) = sup
A∈F ,B∈G

|P(A ∩B)− P(A)P(B)| .

For the sequence (Xi)i∈Z and the σ-algebra F0 = σ(Xi, i ≤ 0), define then

αX(n) = α(F0, σ(Xi, i ≥ n)) and α2,X(n) = sup
i≥j≥n

α(F0, σ(Xi, Xj)) . (1.2)

Note that, by definition, α2,X(n) ≤ αX(n).

Corollary 1. Let Q be the cadlag inverse of the tail function t → P(‖X0‖H > t). If

∞∑

k=1

∫ α2,X(k)

0

Q2(u)du < ∞ , (1.3)

then, enlarging Ω if necessary, there exists a sequence (Zi)i∈Z of iid H-valued gaussian random

variables with E(‖Z0‖2
H) < ∞ and E(Z0) = 0H, and such that (1.1) holds. The covariance

operator of Z0 is given by (2.8).

If H = R, the condition (1.3) is weaker than Rio’s condition (1995) for real-valued strongly

mixing sequences :
∞∑

k=1

∫ αX(k)

0

Q2(u)du < ∞ . (1.4)

We refer to Theorem 3 in Rio’s paper for a discussion about the optimality of (1.4).

In 2008, Merlevède proved that the compact law of the iterated logarithm holds for Hilbert-

valued random variables under the condition (1.4). Concerning the ASIP for strongly mixing
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sequences, the best result known until now was that by Dehling and Philipp (1982), who obtained

the ASIP (1.1) under the condition: for 0 < δ ≤ 1 and ε > 0,

E(‖X0‖2+δ
H ) < ∞ and αX(n) = O(n−(1+ε)(1+2/δ)) . (1.5)

Many new tools were developed by Dehling and Philipp in this seminal paper. Among them,

let us cite a covariance inequality for bounded strongly mixing Hilbert-valued random variables

(see their Lemma 2.2) which is based on a deep result from Banach space theory given in

Lindenstrauss and Tzafriri (1977).

To compare the condition of Dehling and Phillip (1982) with (1.3), note that (1.3) holds as

soon as

E(‖X0‖2+δ
H ) < ∞ for some δ > 0 and

∞∑

k=1

k2/δα2,X(k) < ∞ ,

which is weaker than (1.5), and is true without any limitation on δ. In particular, if ‖X0‖H ≤ M

almost surely, we obtain the ASIP under the simple condition
∑

k>0 α2,X(k) < ∞.

In fact, we shall prove in Theorem 4 a much more general result than Corollary 1. The

condition is expressed in terms of a dependence coefficient which is much weaker than α2,X and

can be computed for many non strongly mixing processes. In particular, our result also improves

on Theorem 3 in Dedecker and Merlevède (2006) for τ -dependent sequences (see Section 4.2).

In the bounded case (Theorem 2) our conditions are even weaker, and are expressed in terms of

conditional expectations, in the spirit of Corollary 2(δ) in Dedecker and Merlevède (2003) for

the central limit theorem.

The starting point of this paper is the remark made by Merlevède (2008), that no coupling

techniques can lead to the result given in Corollary 3, because of a counter example given by

Dehling (1983), and that new tools have to be developed. She then proved a new Fuk-Nagaev

inequality by using a blocking technique and a martingale approximation of the blocks. As a

consequence, she obtained first a bounded law of the iterated logarithm with a precise upper

bound, which enables her to go back to the d-dimensional case, and to obtain the compact law

of the iterated logarithm.

However, at this stage, an essential argument was missing to obtain the ASIP: find under

the same assumption as for the compact law, a suitable martingale approximation of < Sn, x >

in order to use the equivalence between the ASIP and the compact law given in Theorem 3.2 of

Berger (1990). This point will be fully explained in Section 5.3.

We shall also prove a new Fuk-Nagaev inequality (Theorem 3), which improves on Theorem

1 in Merlevède (2008). The proof is more complicated than in Merlevède’s paper, for we only

control the dependence between the past σ-algebra F0 and two points Xi, Xj through lipschitz

functions of the norms ‖Xi + Xj‖H and ‖Xi −Xj‖H.
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2 ASIP: the bounded case

Our first result is a maximal inequality for partial sums of bounded random variables.

Theorem 1. Assume that ‖X0‖H ≤ M almost surely for a M > 0. Let

δ(n) = max
{
E(‖E(Xn|F0)‖H), sup

i≥j≥n

1

M
‖E(< Xi, Xj > |F0)− E(< Xi, Xj >)‖1

}
.

For any x > 0, r ≥ 1, and sn > 0 with s2
n ≥ n

∑n−1
i=0 |E(< X0, Xi >)|, one has

P
(

sup
1≤k≤n

‖Sk‖H ≥ 4x
)

≤ 4 exp

(
−r2s2

n

2x2
h

(
x2

rs2
n

))
+ n

{1

x
+

x

rs2
n

}
δ([x/rM ]) ,

where h(u) := (1 + u) ln(1 + u)− u.

The next result is an almost sure invariance principle. We need the following definition.

Definition 1. A nonnegative self adjoint operator Γ on a separable Hilbert space H will be

called an S(H)-operator if it has finite trace, i.e. for some (and therefore every) orthonormal

basis (el)l≥1 of H,
∑

l≥1 < Γel, el >< ∞.

Theorem 2. Assume that ‖X0‖H ≤ M almost surely for a M > 0. Assume that the two

following conditions hold ∑
n>0

E‖E(Xn|F0)‖H < ∞ , (2.6)

∑
n>0

sup
i≥j≥n

‖E(< Xi, Xj > |F0)− E(< Xi, Xj >)‖1 < ∞ . (2.7)

Then

1. The following control holds

∑
n>0

1

n
P
(

sup
k∈[1,n]

‖Sn‖H ≥ A
√

n ln(ln(n)))
)

< ∞ ,

for A = 8
√

2
(
E(‖X0‖2

H) +
∑

k>0 |E(< X0, Xk >)|)1/2
.

2. The operator Γ defined for any x and y in H by

< x, Γy >=
∞∑

k=0

E(< X0, x >< Xk, y >) +
∞∑

k=1

E(< X0, y >< Xk, x >) (2.8)

is in S(H).

4



3. Assume moreover that T is P-ergodic, and that, for any x, y ∈ H,
∑
n>0

sup
i≥j≥n

‖E(< Xi, x >< Xj, y > |F0)− E(< Xi, x >< Xj, y >)‖1 < ∞ . (2.9)

Then, enlarging Ω if necessary, there exists a sequence (Zi)i∈Z of iid H valued gaussian

random variables with mean 0H and covariance operator Γ such that

∥∥∥Sn −
n∑

i=1

Zi

∥∥∥
H

= o(
√

n ln(ln(n)))), almost surely .

Remark 1. If H = R and T is P-ergodic, we obtain the ASIP for bounded random variables

under the simple condition
∑
n>0

‖E(Xn|F0)‖1 < ∞ and
∑
n>0

sup
i≥j≥n

‖E(XiXj|F0)− E(XiXj)‖1 < ∞ .

This result is new, and is comparable to Gordin’s L1-criterion (1973) in the bounded case: the

central limit theorem holds as soon as
∑

n>0 ‖E(Xn|F0)‖1 < ∞.

3 ASIP: the general case

Before stating the results, we shall introduce some notations and definitions concerning the weak

dependence coefficients used in this section.

Definition 2. For any integrable random variable Y , define the “upper tail” quantile function

QY by QY (u) = inf {t ≥ 0 : P (|Y | > t) ≤ u}. Note that, on the set [0,P(|Y | > 0)], the func-

tion HY : x → ∫ x

0
QY (u)du is an absolutely continuous and increasing function with values in

[0,E|Y |]. Denote by GY the inverse of HY .

Definition 3. Let Λ1(H) be the set of functions from H to R such that |f(x)−f(y)| ≤ ‖x−y‖H.

For any σ-algebra F of A and any H-valued integrable random variable X, we consider the

coefficient θ(F , X) defined by

θ(F , X) = sup
f∈Λ1(H)

‖E(f(X)|F)− E(f(X))‖1 . (3.10)

We now define the coefficients γ(n), θ2(n) and λ2(n) of the sequence (Xi)i∈Z.

Definition 4. For any positive integer k, define

θ2(n) = sup
i≥j≥n

max{θ(F0, Xi + Xj), θ(F0, Xi −Xj)} and γ(n) = E(‖E(Xn|F0)‖H) . (3.11)

Let now

λ2(n) = θ2(n) ∨ γ(n) . (3.12)
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Our first result is a maximal inequality for partial sums.

Theorem 3. Let Q = Q‖X0‖H, H = H‖X0‖H and G = G‖X0‖H. Let

R(u) = (min{q ∈ N : λ2(q) ≤ H(u)} ∧ n)Q(u) and S(v) = R−1(v) = inf{u ∈ [0, 1] : R(u) ≤ v} .

For any x > 0, r ≥ 1, and sn > 0 with s2
n ≥ n

∑n−1
i=0

∫ γ(i)

0
Q ◦G(u)du, one has

P
(

sup
1≤k≤n

‖Sk‖H ≥ 4x
)

≤ 4 exp

(
−r2s2

n

2x2
h

(
x2

rs2
n

))
+ n

{2

x
+

24x

rs2
n

} ∫ S(x/r)

0

Q(u)du ,

where h(u) := (1 + u) ln(1 + u)− u.

Remark 2. Since h(u) ≥ u ln(1 + u)/2, under the notations and assumptions of the above

theorem, we get that for any x > 0 and r ≥ 1,

P
(

sup
1≤k≤n

‖Sk‖H ≥ 4x
)

≤ 4

(
1 +

x2

rs2
n

)−r/4

+ n
{2

x
+

24x

rs2
n

} ∫ S(x/r)

0

Q(u)du . (3.13)

The next result is an almost sure invariance principle.

Theorem 4. Let Q = Q‖X0‖H and G = G‖X0‖H. If

∑

k>0

∫ λ2(k)

0

Q ◦G(u)du < ∞ , (3.14)

then ∑
n>0

1

n
P
(

sup
k∈[1,n]

‖Sk‖H ≥ A
√

n ln(ln(n)))
)

< ∞ , (3.15)

with A = 8
√

2
∑∞

i=0

∫ γ(i)

0
Q ◦G(u)du, and the operator Γ defined by (2.8) is in S(H).

Assume moreover that T is P-ergodic. Then, enlarging Ω if necessary, there exists a sequence

(Zi)i∈Z of iid H valued gaussian random variables with mean 0H and covariance operator Γ such

that ∥∥∥Sn −
n∑

i=1

Zi

∥∥∥
H

= o(
√

n ln(ln(n)))), almost surely . (3.16)

Remark 3. Using the same arguments as to prove Corollary 2(α) in Dedecker and Merlevède

(2003), we see that the condition (3.14) is true provided that (1.3) holds. This proves Corollary

1 given in the introduction.
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Remark 4. If H = R, then we have λ2(k) = θ2(k) in (3.12). Hence, if T is P-ergodic, we obtain

the ASIP under the simple condition

∑

k>0

∫ θ2(k)

0

Q ◦G(u)du < ∞ . (3.17)

This result is new and is weaker than Rio’s result (1995), since (1.4) implies (3.17). Note that the

coefficients θ2(k) can be easily controlled for many non strongly mixing sequences: see Section

4.2 below.

4 Applications

4.1 Cramer-von Mises statistics

Let Y0 be a real-valued random variable with distribution function F , and let µ be some prob-

ability measure on the real line. Let Yi = Y0 ◦ T i and Xi(t) = 1Yi≤t − F (t). On the space

H = L2(µ), the sequence (Xi)i∈Z is a strictly stationary sequence of bounded random variables,

so that the results of Theorem 2 apply. Hence, if T is P-ergodic, we obtain the ASIP in L2(µ)

for the empirical process

{n(Fn(t)− F (t)), t ∈ R} where n(Fn(t)− F (t)) =
n∑

i=1

Xi(t) =
n∑

i=1

(1Yi≤t − F (t)) .

In particular, we obtain the ASIP as soon as
∑

k>0 α2,Y (k) < ∞, where α2,Y is the coefficient

defined by (1.2). But Theorem 2 also applies to non strongly mixing sequences. More precisely,

define the random variables

bi(t) = E(1Yi≤t|F0)− F (t)

bi,j(s, t) = E((1Yi≤s − F (s))(1Yj≤t − F (t))|F0)− E((1Yi≤s − F (s))(1Yj≤t − F (t))) .

Clearly, the two conditions (2.6) and (2.7) will hold as soon as

∑
i>0

E
( ∫

(bi(t))
2µ(dt)

)1/2

< ∞ and
∑
n>0

sup
i≥j≥n

E
∣∣∣
∫

bi,j(t, t)µ(dt)
∣∣∣ < ∞ .

and the condition (2.9) holds as soon as

∑
n>0

sup
i≥j≥n

E
( ∫

(bi,j(s, t))
2µ(ds)µ(dt)

)1/2

< ∞ .
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As in Dedecker and Prieur (2007), define the coefficients β2(k) by:

β2(k) = max
{
E

(
sup
t∈R

|bk(t)|
)
, sup
i≥j≥k

E
(

sup
s,t∈R

|bi,j(s, t)|
)}

.

Clearly the three conditions (2.6), (2.7) and (2.9) of Theorem 4 hold as soon as

∑

k>0

β2(k) < ∞ , (4.18)

and consequently, the ASIP holds as soon as (4.18) is satisfied. Many examples of non strongly

mixing processes for which β2(n) can be computed are given in Dedecker and Prieur (2007).

As a consequence of the ASIP, we obtain the following almost sure result for Cramer-von

Mises statistics: if (4.18) holds, then

lim sup
n→∞

n

2 ln(ln(n))

∫
(Fn(t)− F (t))2µ(dt) = sup

‖x‖H≤1

< x, Γx > almost surely, (4.19)

where Γ is defined in (2.8). From Dedecker and Merlevède (2003) we also know that

n

∫
(Fn(t)− F (t))2µ(dt) converges in distribution to

∫
(G(t))2µ(dt) , (4.20)

where G is a gaussian random variable with values in L2(µ) and covariance operator Γ. Note

that the asymptotic results (4.19) and (4.20) cannot be directly used for testing goodness-of-fit

(even with the usual choice µ = dF ), because the law of the limiting distribution depends on

the covariance terms (E(< X0, x >< Xk, y >))k≥0 which appear in the definition of the operator

Γ. Starting from the limiting result (4.20), an interesting and non-trivial problem is then to find

a statistical procedure for testing goodness-of-fit, maybe by estimating some of the eigenvalues

of the operator Γ.

4.2 τ-dependent sequences

Let Y0 be a random variable with values in a separable Banach space (B, | · |B), such that

E(|Y0|B) < ∞. Let Yi = Y0 ◦ T i. For any α ∈]0, 1], let Λ1(B, α) be the set of functions f from B
to R such that

|f(x)− f(y)| ≤ |x− y|αB .

Let Λ1(B2, α) be the set of functions f from B2 to R such that

|f(x1, y1)− f(x2, y2)| ≤ 1

2
|x1 − y1|αB +

1

2
|x2 − y2|αB .
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Define the dependence coefficients τ1,α and τ2,α of the sequence (Yi)i∈Z by

τ1,α(k) =
∥∥∥ sup

f∈Λ1(B,α)

∣∣∣E(f(Yk)|F0)− E(f(Yk))
∣∣∣
∥∥∥

1
,

τ2,α(k) = max
{

τ1,α(k), sup
i>j≥k

∥∥∥ sup
f∈Λ1(B2,α)

∣∣∣E(f(Yi, Yj)|F0)− E(f(Yi, Yj))
∣∣∣
∥∥∥

1

}
.

Starting from Theorem 4 one can prove the two following corollaries. Let c be any concave

function from R+ to R+, with c(0) = 0. Let Lc be the set of functions f from B to H such that

‖f(x)− f(y)‖H ≤ Kc(|x− y|B), for some positive K.

If c(x) = xα for some α ∈]0, 1], then Lc is exactly the set Hα of α-Hölder functions from B to H.

Corollary 2. Let f ∈ Hα, and let Xk = f(Yk) − E(f(Yk)). Assume that X0 is in L2(H), and

let Q = Q‖X0‖H, and G = G‖X0‖H. If

∑

k>0

∫ τ2,α(k)

0

Q ◦G(u)du < ∞,

then the conclusion of Theorem 4 holds.

Corollary 3. Let f ∈ Lc, and let Xk = f(Yk)−E(f(Yk)). Assume that X0 is in L2(H), and let

Q = Q‖X0‖H, and G = G‖X0‖H. If

∑

k>0

∫ c(τ2,1(k))

0

Q ◦G(u)du < ∞,

then the conclusion of Theorem 4 holds.

Note that Corollary 3 improves on Theorem 3 in Dedecker and Merlevède (2006). Many

examples of stationary processes for which the coefficient τ2,1 can be easily computed may be

found in Dedecker and Merlevède (2006, Section 3).

Let us give another example here.

4.2.1 H-valued Markov chains for randomly forced PDE’s

We consider the class of H-valued auto-regressive process described in Section 3 of the paper by

Masmoudi and Young (2002):

Zn+1 = S(Zn) + ηn , (4.21)

where (ηi)i∈Z is a sequence of iid H-valued random variables with marginal distribution ν and

independent of Z0, and S : H 7→ H. The map S and the measure ν are assumed to satisfy
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the assumptions (P1) − (P4) page 466 and (C) page 467 in Masmoudi and Young (2002).

Under these assumptions there is an unique invariant probability measure µ, which is compactly

supported.

Let then (Yi)i≥0 be the stationary solution of (4.21). The chain (Yi)i≥0 is τ2,1-dependent with

an exponential decay of the coefficients. More precisely, following the proof of Theorem A(2)

given pages 470-471 in Masmoudi and Young, one can see that if f ∈ Λ1(H2, 1) and x ∈ supp(µ),

there exist C > 0 and ρ < 1 such that

for any i, j ≥ n,
∣∣∣E(f(Yi, Yj)|Y0 = x)−

∫
E(f(Yi, Yj)|Y0 = x)µ(dx)

∣∣∣ ≤ Cρn ,

which implies that τ2,1(n) ≤ Cρn.

Applying Corollary 3, we infer that the ASIP holds for Xk = f(Yk) − E(f(Yk)) as soon as

f ∈ Lc, with
∑

k>0 c(ρk) < ∞. This last condition on c is equivalent to
∫ 1

0
t−1c(t)dt < ∞, and

is satisfied as soon as c(t) ≤ D| ln(t)|−γ for some D > 0 and γ > 1. In particular, it holds for

any Hölder function f from H to H.

Such H-valued auto-regressive processes appear when studying a class of dissipative partial

differential equations (PDE’s) perturbed by a random kick-force. More precisely, let St be the

resolving operator (or semigroup) of a PDE with initial condition u0, that is St(u(0)) = u(t),

where u is a solution of the (non random) PDE with initial condition u(0). The Markov chain

is defined by Zk+1 = S1(Zk) + ηk, where ηk is a random kick force, that is an iid sequences of

H-valued random variable of the form
∑∞

j=1 bjξj,kej, where
∑

j>0 b2
j < ∞ and ξj,k is a real-valued

random variable with a compactly supported density. In particular the resolving operators S1 of

the Navier-Stokes or Ginzburg-Landau equations are shown to satisfy the conditions (P1)−(P3)

mentioned above (the condition (P4) is a condition on the distribution of η0).

Note that exponential mixing for lipschitz functions of such Markov chains was proved in-

dependently by Kuskin, Piatniski and Shirikyan (2002), with applications to dissipative PDE’s

perturbed by a random kick-force. See also the paper by Shirikyan (2006) for the law of large

numbers and the central limit theorem in the non-stationary case (i.e. starting from an arbitrary

point Z0 = z in H). In this paper (Shirikyan (2006)), it is also proved that such Markov chains

are in general not strongly mixing (see the example 1.3 page 224-225).

5 Proofs

5.1 Proof of Theorem 3

Let M > 0. For i ≥ 0 define the variables

X ′
i = Xi1I‖Xi‖H≤M and X ′′

i = Xi1I‖Xi‖H>M .
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Let S ′n =
∑n

i=1 X ′
i and S ′′n =

∑n
i=1 X ′′

i . Let q be a positive integer and for 1 ≤ i ≤ [n/q], define

the random variables U ′
i = S ′iq−S ′iq−q and U ′′

i = S ′′iq−S ′′iq−q. With these notations, the following

decomposition is valid

max
1≤k≤n

‖Sk‖H ≤ max
1≤j≤[n/q]

‖
j∑

i=1

U ′
i‖H + qM +

n∑

k=1

‖X ′′
k‖H . (5.1)

Setting now for all i ≥ 1, FU
i = σ(Xj, j ≤ iq), we define a sequence (Ũi)i≥1 as follows: for all

i ≥ 1, Ũ2i−1 = U ′
2i−1 − E(U ′

2i−1|FU
2(i−1)−1) and Ũ2i = U ′

2i − E(U ′
2i|FU

2(i−1)) . Notice that (Ũi)i≥1 is

a sequence of martingale differences with respect to (FU
i ). Substituting the variables Ũi to the

initial variables, in the inequality (5.1), we derive the following upper bound

max
1≤k≤n

‖Sk‖H ≤ qM + max
2≤2j≤[n/q]

∥∥∥
j∑

i=1

Ũ2i

∥∥∥
H

+ max
1≤2j−1≤[n/q]

∥∥∥
j∑

i=1

Ũ2i−1

∥∥∥
H

+

[n/q]∑
i=1

‖U ′
i − Ũi‖H +

n∑

k=1

‖X ′′
k‖H . (5.2)

Since ‖U ′
i‖H ≤ qM almost surely, it follows that ‖Ũi‖H ≤ 2qM almost surely. Then applying

Lemma 1 of the appendix with y = 2s2
n, we derive that

P
(

max
2≤2j≤[n/q]

∥∥∥
j∑

i=1

Ũ2i

∥∥∥
H
≥ x

)
≤ 2 exp

(
− s2

n

2(qM)2
h

(
xqM

s2
n

) )

+P
( [[n/q]/2]∑

i=1

E(‖Ũ2i‖2
H|FU

2(i−1)) ≥ 2s2
n

)
. (5.3)

Now notice that

E(‖Ũ2i‖2
H|FU

2(i−1)) = E(‖U ′
2i‖2

H|FU
2(i−1))− ‖E(U ′

2i|FU
2(i−1))‖2

H

≤ E(‖U ′
2i‖2

H|FU
2(i−1))

≤
2iq∑

k=(2i−1)q+1

2iq∑

j=(2i−1)q+1

E(< X ′
j, X

′
k > |F2(i−1)q) ,

and that by Inequality (3.33) in Dedecker and Merlevède (2003), we have that

[[n/q]/2]∑
i=1

2iq∑

k=(2i−1)q+1

(
E(< X ′

k, Xk >) + 2
k−1∑

j=(2i−1)q+1

E(< X ′
j, Xk >)

)
≤ n

q−1∑
i=0

∫ γ(i)

0

Q ◦G(u)du

≤ s2
n .

11



Hence
[[n/q]/2]∑

i=1

E(‖Ũ2i‖2
H|FU

2(i−1)) ≤ s2
n +

[[n/q]/2]∑
i=1

A1,i +

[[n/q]/2]∑
i=1

A2,i ,

where

A1,i =

2iq∑

k=(2i−1)q+1

2iq∑

j=(2i−1)q+1

(
E(< X ′

j, X
′
k > |F2(i−1)q)− E(< X ′

j, X
′
k >)

)

A2,i =
∣∣∣

2iq∑

k=(2i−1)q+1

(
E(< X ′

k, X
′
k −Xk >) + 2

k−1∑

j=(2i−1)q+1

E(< X ′
j, X

′
k −Xk >)

)∣∣∣ .

Applying Markov inequality, and noting that

∣∣∣E
(

< X ′
j, X

′
k −Xk >

)∣∣∣ ≤ ME(‖X0‖H1I‖X0‖H>M) ,

we infer that

P
( [[n/q]/2]∑

i=1

E(‖Ũ2i‖2
H|FU

2(i−1)) ≥ 2s2
n

)
≤ nq

2s2
n

sup
j≥k≥q

‖E(< X ′
j, X

′
k > |F0)− E(< X ′

j, X
′
k >)‖1

+
nq

2s2
n

ME(‖X0‖H1I‖X0‖H>M) .

Notice now that for any x ∈ H and y ∈ H,

4 < x, y >= ‖x + y‖2
H − ‖x− y‖2

H .

Also for any x ∈ H and y ∈ H,

∣∣∣‖x1I‖x‖H≤M + y1I‖y‖H≤M‖2
H − ‖x + y‖2

H1I‖x+y‖H≤2M

∣∣∣
≤ ‖y‖21I‖y‖H≤M1I‖x‖H>M + ‖x‖21I‖x‖H≤M1I‖y‖H>M + ‖x + y‖21I‖x+y‖H≤2M1I‖x‖H>M

+‖x + y‖21I‖x+y‖H≤2M1I‖y‖H>M + ‖x + y‖21I‖x+y‖H≤2M1I‖x‖H>M1I‖y‖H>M

≤ 5M21I‖x‖H>M + 9M21I‖y‖H>M . (5.4)

In addition setting for any real u ≥ 0 and any T > 0, gT (u) = u2 ∧ T 2, we have

∣∣∣‖x + y‖2
H1I‖x+y‖H≤2M − g2M

(‖x + y‖H
)∣∣∣ ≤ 4M21I‖x+y‖H>2M .

Using these inequalities and the stationarity of (Xi)i∈Z, it follows that

sup
j≥k≥q

‖4 < X ′
j, X

′
k > −g2M

(‖Xj + Xk‖H
)

+ g2M

(‖Xj −Xk‖H
)‖1 ≤ 44×ME(‖X0‖H1I‖X0‖H>M) .

12



Hence

P
( [[n/q]/2]∑

i=1

E(‖Ũ2i‖2
H|FU

2(i−1)) ≥ 2s2
n

)
≤ 23nq

2s2
n

ME(‖X0‖H1I‖X0‖H>M)

+
nq

8s2
n

sup
j≥k≥q

‖E(
g2M(‖Xj + Xk‖H)|F0

)− E(
g2M(‖Xj + Xk‖H)

)‖1

+
nq

8s2
n

sup
j≥k≥q

‖E(
g2M(‖Xj −Xk‖H)|F0

)− E(
g2M(‖Xj −Xk‖H)

)‖1.

Since g2M is 2M -Lipschitz, it follows that

sup
j≥k≥q

‖E(
g2M(‖Xj + Xk‖H)|F0

)− E(
g2M(‖Xj + Xk‖H)

)‖1 ≤ 2Mθ2(q) ,

and the same holds true with ‖Xj + Xk‖H in place of ‖Xj −Xk‖H. Consequently

P
( [[n/q]/2]∑

i=1

E(‖Ũ2i‖2
H|FU

2(i−1)) ≥ 2s2
n

)
≤ nq

2s2
n

Mθ2(q) +
23nq

2s2
n

ME(‖X0‖H1I‖X0‖H>M) . (5.5)

Now by using Markov’s inequality, we get that

P
( [n/q]∑

i=3

‖U ′
i − Ũi‖H +

n∑

k=1

‖X ′′
k‖H ≥ x

)
≤ 1

x

( [n/q]∑
i=1

E‖E(U ′
i |M(i−2)q)‖H +

n∑

k=1

E‖X ′′
k‖H

)
.

Since for every i ≥ 1, U ′
i = Ui − U ′′

i , we get that

E‖E(U ′
i |M(i−2)q)‖H ≤ E‖E(Ui|M(i−2)q)‖H + E‖U ′′

i ‖H .

Consequently, by stationarity,

P
( [n/q]∑

i=3

‖U ′
i − Ũi‖H +

n∑

k=1

‖X ′′
k‖H ≥ x

)
≤ n

x

(
γ(q) + E(‖X0‖H1I‖X0‖H>M)

)
. (5.6)

Starting from (5.2), if q and M are chosen in such a way that qM ≤ x/r ≤ x, we derive from

(5.3), (5.5) and (5.6) that

P
(

max
1≤k≤n

‖Sk‖H ≥ 4x
)

≤ 4 exp

(
−r2s2

n

2x2
h

(
x2

rs2
n

))
+

nx

rs2
n

θ2(q) +
n

x
γ(q)

+
(n

x
+

23nx

rs2
n

)
E(‖X0‖H1I‖X0‖H>M) . (5.7)

Now choose v = S(x/r), q = min{q ∈ N : λ2(q) ≤
∫ v

0
Q(u)du := H(v)} ∧ n and M = Q(v).

Since R is right continuous, we get that

qM = R(v) = R(S(x/r)) ≤ x/r ≤ x .

13



Note also that

E(‖X0‖H1I‖X0‖H>M) ≤
∫ v

0

Q(u)du . (5.8)

If q < n then the choice of q implies that λ2(q) ≤
∫ v

0
Q(u)du. It follows that the inequality is

established by also taking into account (5.8) in (5.7). Now if q = n we may have λ2(q) > v.

However since max1≤k≤n |Sk| ≤ qM +
∑n

k=1 |X ′′
k | and qM ≤ x we have

P
(

max
1≤k≤n

‖Sk‖H ≥ 4x
) ≤ n

x
E

(‖X0‖H1I‖X0‖H>M

)
,

which implies the desired inequality by using (5.8).

5.2 Proof of Theorem 1

We only sketch the proof since it follows closely that of Theorem 3. We keep the same notations

as in the proof of Theorem 3. Since ‖X0‖H ≤ M , we have X ′
i = Xi and X ′′

i = 0.

We start from the decomposition (5.1), and we still have the upper bound (5.3). Taking

s2
n ≥ n

∑n−1
i=0 |E(< X0, Xi >)|, we obtain the upper bound

P
( [[n/q]/2]∑

i=1

E(‖Ũ2i‖2
H|FU

2(i−1)) ≥ 2s2
n

)
≤ nq

2s2
n

Mδ(q) , (5.9)

where δ(n) has been defined in Theorem 1. Since Ui = U ′
i , instead of (5.6), we have

P
( [n/q]∑

i=3

‖Ui − Ũi‖H ≥ x
)
≤ n

x
δ(q) . (5.10)

From (5.3), (5.9) and (5.10), we obtain

P
(

max
1≤k≤n

‖Sk‖H ≥ 4x
)
≤ 4 exp

(
− s2

n

2(qM)2
h

(
xqM

s2
n

))
+

{nqM

s2
n

+
n

x

}
δ(q) . (5.11)

Taking q = [x/rM ], the result follows.

5.3 Proof of Theorem 4

Let us first prove the inequality (3.15) with A = 8
√

2
( ∑∞

i=0

∫ γ(i)

0
Q ◦G(u)du

)1/2
. We follow the

proof of Theorem 6.4 page 89 in Rio (2000), and we use the same notations: Lx = ln(x∨ e) and

LLx = ln(ln(x ∨ e) ∨ e). We apply Inequality (3.13) with

r = rn = 4LLn, x = xn = (A
√

nLLn)/4 and sn = xn/
√

2rn .

14



We obtain

∑
n>0

1

n
P
(

sup
1≤k≤n

|Sk| ≥ A
√

nLLn
)
≤ 4

∑
n>0

1

n3LLn
+ 50

∑
n>0

1

xn

∫ S(xn/rn)

0

Q(u)du .

Clearly the first series on right hand converges. From the end of the proof of Theorem 6.4 in Rio

(2000), we see that the second series on the right hand side converges as soon as (3.14) holds.

This completes the proof of (3.15).

To prove the almost sure invariance principle, we first prove that

there exists a mean zero gaussian measure ν with covariance function Γ , (5.12)

and that

the sequence {Sn/
√

nLLn , n ≥ 1} is almost surely relatively compact in H. (5.13)

According to Corollary 2(β) in Dedecker and Merlevède (2003), the condition

∑

k>0

∫ γ(k)

0

Q ◦G(u)du < ∞ , (5.14)

(which is clearly weaker than (3.14)) implies that the sequence n−1/2Sn converges in distribution

to N (0, Γ) where the operator Γ ∈ S(H) is defined by (2.8). This proves (5.12).

We turn now to the proof of (5.13). With this aim, we argue as page 698 in Dehling and

Philipp (1982, proof of their Theorem 1), with the help of (3.15). Let {ei, i ≥ 1} be a complete

orthonormal basis for H. We write for each k ∈ Z

Xk =
∑
i≥1

< Xk, ei > ei and PN(Xk) =
N∑

i=1

< Xk, ei > ei .

Applying (3.15) to the sequence {Xk − PN(Xk), k ∈ Z}, we get that with probability one

lim sup
n→∞

‖∑n
k=1(Xk − PN(Xk))‖H√

nLLn
≤ AN , (5.15)

where

AN = 8
√

2
( ∞∑

i=0

∫ γN (i)

0

QN ◦GN(u)du
)1/2

,

with QN = Q||(I−PN )(X0)||H , HN(x) =
∫ x

0
QN(u)du, GN = H−1

N , γN(i) = E||E((I −PN)(Xi)|F0||H.

Note that γN(i) ≤ γ(i), QN ≤ Q, and GN ≥ G. Hence, since QN is non increasing,

AN ≤ 8
√

2
( ∞∑

i=0

∫ γ(i)

0

QN ◦G(u)du
)1/2

.
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Since for any u ∈ [0, 1], QN(u) ≤ Q(u) and limN→∞ QN = 0, we get by using (3.14) and the

Lebesgue dominated convergence theorem that for each ρ > 0 there is an integer N0(ρ) such

that for all N ≥ N0(ρ), we have AN ≤ ρ. Hence with probability one,

lim sup
n→∞

‖∑n
k=1(Xk − PN(Xk))‖H√

nLLn
≤ ρ . (5.16)

Now applying again (3.15), we get that the sequence

{∑n
k=1 PN0(ρ)(Xk)√

nLLn
, n ≥ 1

}

is with probability one relatively compact. This fact combining with (5.16) establishes (5.13).

To finish the proof of Theorem 4, we shall use a variant of Theorem 3.2 in Berger (1990).

In this theorem, it is proved that if (Xk,Fk) has the weak M2 property then (5.12) and (5.13)

together are equivalent to the almost sure invariance principle (3.16). In the context of Hilbert

spaces the weak M2 property means exactly that: for any x ∈ H

< X0, x >= d0(x) + Z0(x)− Z0(x) ◦ T , (5.17)

where E(Z2
0(x)) < ∞, E(d2

0(x)) < ∞, d0(x) is F0-measurable, and E(d0(x)|F−1) = 0. Since

Z0(x) is in L2, then
Z0(x) ◦ T n

√
n

converges to 0 almost surely,

and the almost sure limit behavior of < Sn, x > /
√

n ln(ln(n)) can be deduced from the almost

sure limit behavior of Mn(x)/
√

n ln(ln(n)), where Mn(x) is the martingale defined by Mn(x) =∑n
i=1 d0(x) ◦ T i.

In fact, Berger’s proof works perfectly if instead of the weak M2 property we have the following

decomposition: for any x ∈ H

(5.17) holds with E(d2
0(x)) < ∞, d0(x) is F0-measurable and E(d0(x)|F−1) = 0, (5.18)

and Z0(x) ◦ T n is such that

Z0(x) ◦ T n

√
nLLn

converges to 0 almost surely. (5.19)

Hence, the proof of the almost sure invariance principle will be complete if we can prove

(5.18) and (5.19).

We first prove (5.18). In 1973, Gordin (see also Esseen and Janson (1985)) proved that, if T

is ergodic and ∑

k≥1

‖E(< Xk, x > |F0)‖1 < ∞ , (5.20)
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and

lim sup
n→∞

1√
n
E

(∣∣∣
n∑

k=1

< Xk, x >
∣∣∣
)

< ∞ , (5.21)

then (5.18) holds with E(d2
0(x)) < ∞ and E(|Z0(x)|) < ∞. Now

‖E(< Xk, x > |F0)‖1 ≤ E(‖E(Xk|F0)‖H) = γ(k) .

Hence (5.20) holds as soon as
∑

k>0 γ(k) < ∞, which is true under (3.14). Now clearly (5.21)

holds as soon as
∑∞

k=0 |Cov(< X0, x >, < Xk, x >)| < ∞. But this again follows from (3.14)

by applying inequality (3.33) in Dedecker and Merlevède (2003). This completes the proof of

(5.18).

It remains to prove (5.19). According to the lemma page 428 in Volnỳ and Samek (2000),

we have either (5.19) or

P
(

lim sup
n→∞

|Z0(x) ◦ T n|√
nLLn

= ∞
)

= 1 . (5.22)

From (5.18), we have that

< Sn, x >= Mn(x) + Z0(x) ◦ T − Z0(x) ◦ T n+1 . (5.23)

Using the decomposition (5.23), the fact that Mn(x) satisfies the law of the iterated logarithm

and that Sn satisfies (3.15), it is clear that (5.22) cannot hold, which then proves (5.19). The

proof of (3.16) is complete.

5.4 Proof of Theorem 2

We only sketch the proof since it follows closely that of Theorem 4. We keep the same notations

as in the proof of Theorem 4.

To prove item 1, we take the same values for xn, rn and sn as in the proof of Theorem 4. We

obtain that
∑
n>0

1

n
P
(

sup
1≤k≤n

|Sk| ≥ A
√

nLLn
)
≤ 4

∑
n>0

1

n3LLn
+ 12

∑
n>0

1

A
√

nLLn
δ([A

√
n/16M

√
LLn]) ,

and the second series on right hand is finite as soon as
∑

k>0 δ(k) < ∞, which is equivalent to

(2.6) and (2.7).

Item 2 follows by noting that, in the bounded case, (5.14) holds as soon as (2.6) holds.

To prove Item 3, we first prove (5.16). Note first that (2.7) and (2.9) together imply that

that, for any positive integer N ,
∑
n>0

sup
i≥j≥n

‖E(< Xi − PN(Xi), Xj − PN(Xj) > |F0)−E(< Xi − PN(Xi), Xj − PN(Xj) >)‖1 < ∞ .

(5.24)
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This means that item 1 hold for the sequence (Xi − PN(Xi))i∈Z, so that (5.15) holds with

AN = 8
√

2
(
E(‖X0 − PN(X0)‖2

H) +
∑

k>0

|E(< X0 − PN(X0), Xk − PN(Xk) >)|
)1/2

≤ 8
√

2
(
M

∑

k≥0

E(‖E(Xk − PN(Xk)|F0)‖H)
)1/2

.

Since E(‖E(Xk − PN(Xk)|F0)‖H) ≤ E(‖E(Xk|F0)‖H) and since (2.6) holds, it follows from the

dominated convergence theorem that AN tends to zero as N tends to infinity, so that (5.16) is

satisfied.

Starting from (5.16), the end of the proof of Theorem 2 is the same as that of Theorem 4.

5.5 Proof of Corollaries 2 and 3

Let Xk = f(Yk) − E(f(Yk)). In both cases, we have to check (3.14). Applying the coupling

result given in Dedecker and Merlevède (2006, Lemma 1) (see also Proposition 4 in Rüschendorf

(1985)), we infer that there exists Ȳn distributed as Yn and independent of F0 such that

E(|Yn − Ȳn|αB) = τ1,α(n) ≤ τ2,α(n) .

In the same way, for n ≤ i < j there exists (Y ∗
i , Y ∗

j ) distributed as (Yi, Yj) and independent of

F0 such that

1

2
E(|Yi − Y ∗

i |αB + |Yj − Y ∗
j |αB) =

∥∥∥ sup
f∈Λ1(B2,α)

∣∣∣E(f(Yi, Yj)|F0)− E(f(Yi, Yj))
∣∣∣
∥∥∥

1
≤ τ2,α(i) ≤ τ2,α(n) .

Clearly

γ(n) = E(‖E(f(Yn)|F0)− E(f(Yn))‖H) ≤ E(‖f(Yn)− f(Ȳn)‖H) .

Consequently, if f ∈ Hα, one has γ(n) ≤ KE(|Yn− Ȳn|αB) = Kτ1,α(n). Now, if α = 1 and f ∈ Lc,

one has

γ(n) ≤ KE(c(|Yn − Ȳn|B)) ≤ Kc(E(|Yn − Ȳn|B)) = Kc(τ1,1(n)) .

In the same way, if g is in Λ1(H),

‖E(g(Xi + Xj)|F0)− E(g(Xi + Xj))‖1 ≤ E(‖f(Yi)− f(Y ∗
i )‖H + ‖f(Yj)− f(Y ∗

j )‖H) .

Hence, if f ∈ Hα and n ≤ i < j,

‖E(g(Xi + Xj)|F0)− E(g(Xi + Xj))‖1 ≤ 2τ2,α(n) ,

and if α = 1 and f ∈ Lc,

‖E(g(Xi + Xj)|F0)− E(g(Xi + Xj))‖1 ≤ 2Kc(τ2,1(n)) .
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Note that the same inequalities hold with Xi −Xj instead of Xi + Xj.

As a consequence, we obtain that:

1. If f ∈ Hα, then λ2(n) ≤ 2Kτ2,α(n).

2. If f ∈ Lc, then λ2(n) ≤ 2Kc(τ2,1(n)).

Corollary 2 follows from item 1, and Corollary 3 follows from item 2.

6 Appendix

In this section, we recall the following consequence of Theorem 3.4 given in Pinelis (1994).

Lemma 1. Let (H, ‖ · ‖H) be a real separable Hilbert space. Let {dj,Fj}j≥1 be a sequence of

H-valued martingale differences with ‖dj‖H ≤ c. Set Mj =
∑j

i=1 di. Then for all x, y > 0,

P

(
sup

1≤j≤n
‖Mj‖H ≥ x,

n∑
j=1

E(‖dj‖2
H|Fj−1) ≤ y

)
≤ 2 exp

(
− y

c2
h
(xc

y

))
,

where h(u) := (1 + u) ln(1 + u)− u.
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