
On the optimality of McLeish’s conditions for the central
limit theorem
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Abstract

We construct a family of stationary ergodic sequences for which the central limit theorem (CLT)
does not hold. These examples show that McLeish’s conditions for the CLT are sharp in a precise
sense.

Résumé

Sur l’optimalité des conditions de McLeish pour le théorème limite central Nous
construisons une famille de suites strictement stationnaires et ergodiques pour lesquelles le théorème
limite central n’a pas lieu. Ces exemples montrent que les conditions de McLeish pour le théorème
limite central sont optimales en un sens précis.

1 Introduction

Let (Ω,A,P) be a probability space, and let T : Ω → Ω be a bijective, bi-measurable transformation
preserving the probability P. We assume here that the couple (T,P) is ergodic, meaning that anyA ∈ A
satisfying T (A) = A has probability 0 or 1. Let F0 be a σ-algebra of A satisfying F0 ⊆ T−1(F0). Let
X0 be a F0-measurable, square integrable and centered random variable, and define the stationary
sequence (Xi)i∈Z by Xi = X0 ◦ T i. Let then

Sn = X1 +X2 + · · ·+Xn , and for t ∈ [0, 1], Wn(t) = S[nt] + (nt− [nt])X[nt]+1 .

Note that Wn is a random variable in the space (C([0, 1]), ‖ · ‖∞) of continuous bounded functions
equipped with the uniform metric.

The following weak invariance principle (WIP) is essentially due to McLeish [10], Theorem 2.5.
The present form, which can be deduced from Hannan’s criterion [5][6], has been stated in [2].

Theorem 1.1 Assume that there exists a sequence (an)n≥0 of positive numbers such that

∑
n≥0

(
n∑

k=0

ak

)−1

<∞ and
∑
n≥0

an‖E(Xn|F0)‖22 <∞ . (1)

Then the series σ2 =
∑

k∈Z Cov(X0, Xk) converges absolutely and n−1E(S2
n) converges to σ2. More-

over the process n−1/2Wn converges in distribution in (C([0, 1]), ‖·‖∞) to σW , where W is a standard
Wiener process.

Remark 1 In [2], the ergodicity is not required, and Condition (1) is shown to be sufficient for the
conditional WIP (which implies the stable convergence in the sense of Rényi [12]). In [10] the non
adapted case is also considered (i.e. X0 is not supposed to be F0-measurable). The non-adapted version
of Theorem 1.1 is given in [3]. As quoted in [3], Condition (1) holds as soon as∑

n≥1

‖E(Xn|F0)‖2√
n

<∞ . (2)
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Note that the CLT for n−1/2Sn under (1) was already quoted in Annexe A.2 of my PhD thesis [1] (as
a consequence of Heyde’s criterion [7]). At that time, my advisor Emmanuel Rio asked me whether
the CLT could be true if

∑
n≥0 ‖E(Xn|F0)‖22 <∞ and n−1E(S2

n)→ σ2 . The answer is negative as I
pointed out in Annexe A.3 of my PhD thesis (this is mentioned in Proposition 7 of [2] without proof).

Recently, the question was asked again by Christophe Cuny at the conference “Des martingales aux
systèmes dynamiques” held in Marne-la-vallée (October 8-10, 2014). On this occasion, I showed him
the counterexample of my PhD thesis, and he convinced me to write a note on the subject, and to give
a more general statement. As we shall see in Corollary 2.4, the CLT is not true even if an = ln(n∨ e)
in the second term of (1). I would like to thank here Christophe Cuny for his suggestion.

To be complete, note that the condition
∑

n≥0 ‖E(Xn|F0)‖22 < ∞ is sufficient for the CLT when
Xn = f(Yn) is a function of a normal Markov chain, and F0 = σ(Yi, i ≤ 0): this can be deduced from
[4], as indicated to me by the referee. I would like to thank the referee, who also indicated to me
Lemma 2.1 below, and the references [8] and [13].

2 Main result and discussion

Let us start with a preliminary remark. For any sequence (ψn)n≥0 of positive numbers such that∑
n≥0(

∑n
k=0 ψk)−1 =∞, one can find a sequence (un)n≥0 of positive numbers such that

∑
n≥0

un =∞ and
∑
n≥0

ψn

( ∞∑
k=n

u2
k

)
<∞ . (3)

To see this, note that the second condition in (3) writes also
∑

n≥0 (
∑n

k=0 ψk)u2
n <∞, and that the

following lemma holds.

Lemma 2.1 Let (vn)n≥0 be a non-decreasing sequence of positive numbers. Then
∑

n≥0 v
−1
n = ∞

if and only if there exists a sequence (un)n≥0 of positive numbers such that
∑

n≥0 un = ∞ and∑
n≥0 vnu

2
n <∞.

Proof of Lemma 2.1. If such a (un)n≥0 exists, then, writing un = unv
1/2
n v

−1/2
n and applying

Cauchy-Schwarz’s inequality, we see that
∑

n≥0 v
−1
n = ∞. For the other implication, assume that∑

n≥0 v
−1
n = ∞ and let yn =

∑n
k=0 v

−1
k → ∞ and un = (ynvn)−1. Since (yn)n≥0 and (vn)n≥0 are

non-decreasing, one can see that un ≥ (ynvn+1)−1 ≥
∫ yn+1

yn
x−1dx and vn+1u

2
n+1 ≤

∫ yn+1

yn
x−2dx, and

the results follows.

We are now in position to state the main result of this note.

Theorem 2.2 Let (ψn)n≥0 be a sequence of positive numbers such that: ψn ≥ 1 for any nonnegative
integer n, and

∑
n≥0(

∑n
k=0 ψk)−1 =∞. For any sequence (un)n≥0 of positive numbers satisfying (3),

there exists a stationary ergodic sequence (Xi)i∈Z of square integrable and centered random variables,
such that

‖E(Xn|M0)‖22 ≤
∞∑

k=n

u2
k for M0 = σ(Xi, i ≤ 0), and lim

n→∞

1
n

E(S2
n) = 1 , (4)

but the sequence n−1/2Sn does not converge in distribution.

Remark 2 Note that, by (3) and the first part of (4),
∑

n≥0 ψn‖E(Xn|M0)‖22 <∞. Hence, Theorem
2.2 shows that the conditions of Theorem 1.1 on the sequence (an)n≥0 cannot be relaxed, if we assume
moreover that an ≥ 1 for any nonnegative integer n. Note that, by definition, M0 = σ(Xi, i ≤ 0) is
the smallest σ-algebra such that X0 is M0-measurable and M0 ⊆ T−1(M0).
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Remark 3 One can modify the statement of Theorem 2.2 as follows: there exists a stationary ergodic
sequence (Xi)i∈Z of square integrable and centered random variables, such that the first condition of
(4) holds, but the sequence n−1/2Sn is not stochastically bounded. It suffices to choose the sequence
αi = ui(1[0,1/2] − 1]1/2,1]) in the construction of Section 3.

We now give some examples of weights satisfying the assumptions of Theorem 1.1 or Theorem 2.2.

Definition 2.3 For x > 0, let `1(x) = ln(x ∨ e), and for any integer k ≥ 2, define `k by induction as
follows: for x > 0, `k(x) = `1 ◦ `k−1(x). For any positive integer k and any positive number a, define
then

L1,a(x) = (`1(x))a and for k > 1, Lk,a(x) =

(
k−1∏
i=1

`i(x)

)
(`k(x))a

.

The following corollary is a direct consequence of Theorem 1.1 and Theorem 2.2.

Corollary 2.4 For any positive integer k, the following statements hold:

1. If for some k ≥ 1 and a > 1,
∑

n≥0 Lk,a(n)‖E(Xn|F0)‖22 < ∞ , then Condition (1) is satisfied,
and the conclusion of Theorem 1.1 holds.

2. For any k ≥ 1, there exists a stationary ergodic sequence (Xi)i∈Z of square integrable and
centered random variables, such that

∑
n≥0 Lk,1(n)‖E(Xn|M0)‖22 < ∞ for M0 = σ(Xi, i ≤ 0)

and n−1E(S2
n)→ 1, but the sequence n−1/2Sn does not converge in distribution.

Let us mention that the counterexample given in Theorem 2.2 is different from the counterexample
of Peligrad and Utev [11]. In Theorem 1.2 of their paper, they show that, for any sequence cn → 0,
there exists a stationary ergodic sequence (Xi)i∈Z of square integrable and centered random variables
(in their example Xi = g(Yi) where Yi is a countable Markov chain and F0 = σ(Yi, i ≤ 0)) such that

∞∑
n=1

cn
‖E(Sn|F0)‖2

n3/2
<∞ , (5)

but n−1/2Sn is not stochastically bounded. This proves that the condition of Maxwell and Woodroofe
[9] (Condition (5) with cn ≡ 1) for the CLT and the WIP (see again [11] for the WIP) is sharp (note
that (2) also implies Maxwell-Woodroofe’s condition). The counterexample of Peligrad and Utev is
different from ours because firstly we deal with the quantity ‖E(Xn|F0)‖2 instead of ‖E(Sn|F0)‖2,
and secondly in our case n−1E(S2

n)→ 1 which implies the stochastic boundedness of n−1/2Sn.
In the paper [13], there is an example of a stationary ergodic sequence such that ‖E(Sn|F0)‖2 =

o(
√
n/ ln(n)) and the CLT fails, but again the variance does not grow linearly. In [8] there is an

example for which ‖E(Sn|F0)‖2 = o(
√
n/ ln(n)) and n−1E(S2

n)→ 1 and the CLT fails.
In Remark 2 of [8] the authors ask the following question: does ‖E(Sn|F0)‖2 = o(

√
n/ ln(n)) and

n−1E(S2
n) → 1 imply the CLT? Thanks to Theorem 2.2 we are able to give a negative answer to

this question: it suffices to take ψn ≡ 1 and un = (nL2,1(n))−1, which implies that ‖E(Xn|F0)‖2 =
o(n−1/2/ ln(n)). Note that this also proves that condition (2) is sharp.

3 The counterexamples

For i ∈ Z, let Fi = T−i(F0), F−∞ = ∩i∈ZFi, and for i, k ∈ Z, let Pi(Xk) = E(Xk|Fi)− E(Xk|Fi−1).
Clearly, if E(X0|F−∞) = 0 almost surely, then E(Xk|F0) =

∑
i≤0 Pi(Xk). The random variables

Pi(Xk), Pj(Xk) being orthogonal if i 6= j, Pythagoras’s theorem and the stationarity imply that

‖E(Xn|F0)‖22 =
∞∑

k=n

‖P0(Xi)‖22 . (6)
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The construction of the sequences (Xi)i∈Z is based on the following lemmas (proofs in Section 4).

Lemma 3.1 Let Tp,n =
∑p+n

i=p Pp(Xi). If
∑

n≥0 ‖E(Xn|F0)‖22 <∞, then

lim
n→∞

‖E(Sn|F0)‖2√
n

= 0 and lim
n→∞

1√
n

∥∥∥∥∥Sn −
n∑

p=1

Tp,n

∥∥∥∥∥
2

= 0 . (7)

Lemma 3.2 Let (H, ‖ · ‖H) be an infinite dimensional Hilbert space. Let (un)n≥0 be a sequence of
positive numbers such that

∑
n≥0 un =∞ and un → 0. There exists an increasing sequence of positive

integers (ti)i≥0 such that: for any orthonormal family (ei)i≥0 in H, there exists a sequence (hi)i≥0

satisfying
hti = ei, ‖hj − hj−1‖2H ≤ u2

j for any j ≥ 1, (8)

and for ti < j < ti+1, hj = bjei + cjei+1 with b2j + c2j = 1.

Let us now construct the sequence (Xi)i∈Z of Theorem 2.2. Let λ be the Lebesgue measure
over [0, 1], and let B be the σ-algebra of Borel sets of [0, 1]. We denote by X the probability space
X = ([0, 1],B, λ). Let (ψn)n≥0 and (un)n≥0 be two sequences as in Theorem 2.2. Let (αi)i≥0 be a
sequence of functions in H = L2(X ) (to be chosen latter) such that

λ(αi) = 0 ,

∥∥∥∥∥
n∑

i=0

αi

∥∥∥∥∥
2

2

= 1 and ‖αi‖22 ≤ u2
i . (9)

We consider the space Ω = X⊗Z and the probabilty P = λ⊗Z. The transformation T is the shift
on Ω defined by (T (ω))i = ωi+1. Clearly P is invariant by T and the couple (T,P) is ergodic.

Starting from the sequence (αi)i≥0 and from the projections πj(ω) = ωj , we define the sequence
(Ai)i≥0 of functions of L2(P) by: Ai = αi ◦ π0. The sequence (Xi)i∈Z is then defined by:

X0 =
∞∑

j=0

Aj ◦ T−j =
∞∑

j=0

αj ◦ π−j and Xi = X0 ◦ T i =
∞∑

j=0

Aj ◦ T i−j . (10)

Note that these series are well defined in L2(P) because (Aj ◦ T i−j)j≥0 is a sequence of independent
random variables and

∑
j≥0 ‖Aj ◦ T i−j‖22 =

∑
j≥0 ‖αj‖22 ≤

∑
j≥0 u

2
j <∞.

Let Fi = σ(πj , j ≤ i). Clearly, X0 is F0-measurable and F−∞ is P-trivial by the 0 − 1 law.
With the notations of the beginning of this section, we have P0(Xi) = Ai for any positive integer i.
Hence, it follows from (6) and (9) that ‖E(Xn|F0)‖22 ≤

∑
k≥n u

2
k. Note that this is also true with

the σ-algebra M0 = σ(Xi, i ≤ 0), and the first condition of (4) is satisfied. On the other hand
Tp,n =

∑p+n
i=p Pp(Xi) =

∑n
i=0Ai ◦ T p. Hence, the sequence (Tp,n)1≤p≤n is i.i.d. and∥∥∥∥∥ 1√

n

n∑
p=1

Tp,n

∥∥∥∥∥
2

2

= ‖T0,n‖22 =

∥∥∥∥∥
n∑

i=0

αi

∥∥∥∥∥
2

2

= 1 , (11)

where the last equality follows from (9). Applying Lemma 3.1, we infer that limn→∞ n−1E(S2
n) = 1,

and (4) is fully satisfied.
It remains to choose αi in such a way that n−1/2Sn does not converge in distribution. To do this,

we use Lemma 3.2 with an appropriate orthonormal family (ei)i≥0 of L2(X ). Let first

fn =
√

2n(1[0,2−n−1[−1[2−n−1,2−n[) and gn =
2n−1∑
k=0

(1[2k/2n+1,(2k+1)/2n+1[−1[(2k+1)/2n+1,(2k+2)/2n+1[) .
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Let (ti)i≥0 be the sequence of Lemma 3.2, and define e2i = ft2i
and e2i+1 = gt2i+1 . Now, we put

α0 = h0 and for i > 0, αi = hi− hi−1, where (hi)i≥0 is the sequence of Lemma 3.2. Applying Lemma
3.2, we see that (αi)i≥0 satisfies (9). By construction

∑t2n

i=0 αi = ft2n and
∑t2n+1

i=0 αi = gt2n+1 .
Let us check that the two sequences t−1/2

2n St2n
and t

−1/2
2n+1St2n+1 converge in distribution to two

distinct laws. By Lemma 3.1 it is equivalent to consider the two sequences t−1/2
2n

∑t2n

p=1 Tp,t2n
and

t
−1/2
2n+1

∑t2n+1
p=1 Tp,t2n+1 . Now

E

(
exp

(
ix√
t2n

t2n∑
p=1

Tp,t2n

))
=
(
λ

(
exp

(
ixft2n√
t2n

)))t2n

=

(
1− 1

2t2n

(
1− cos

(
x

√
2t2n

t2n

)))t2n

.

Consequently limn→∞ E(exp(ixt−1/2
2n St2n

)) = 1, proving that the sequence t
−1/2
2n St2n

converges in
distribution to the Dirac mass at 0. On the other hand, the random variables (Ti,t2n+1)1≤i≤t2n+1 are
independent centered Rademacher random variables, so that t−1/2

2n+1

∑t2n+1
p=1 Tp,t2n+1 and t

−1/2
2n+1St2n+1

converges in distribution to a standard normal. As a conclusion, the sequence n−1/2Sn does not
converge in distribution.

4 Proofs of Lemmas 3.1 and 3.2

Proof of Lemma 3.1. We begin with the first part of (7). Since for any positive integer m, the
sequence n−1/2‖E(Sm|F0)‖2 converges to 0 as n tends to infinity, it suffices to prove that

lim
m→∞

sup
n>m

1√
n
‖E(Sn − Sm|F0)‖2 = 0 . (12)

Now ‖E(Sn − Sm|F0)‖22 =
∑n

i=m

∑n
j=m E (E(Xi|F0)E(Xj |F0)) ≤ 2n

∑n
i=m ‖E(Xi|F0)‖22, where the

last bound holds because |E (E(Xi|F0)E(Xj |F0)) | ≤ ‖E(Xi|F0)‖2‖E(Xj |F0)‖2 ≤ ‖E(Xi|F0)‖22 as soon
as j ≥ i. Hence, (12) follows easily from the fact that

∑
n≥0 ‖E(Xn|F0)‖22 <∞.

We now prove the second part of (7). Let Sp,n =
∑n

i=p Pp(Xi). By orthogonality and stationarity,
one successively derives

1
n

∥∥∥∥∥Sn − E(Sn|F0)−
n∑

p=1

Tp,n

∥∥∥∥∥
2

2

=
1
n

∥∥∥∥∥
n∑

p=1

Sp,n −
n∑

p=1

Tp,n

∥∥∥∥∥
2

2

=
1
n

n∑
p=1

∥∥∥∥∥
p+n∑

i=n+1

Pp(Xi)

∥∥∥∥∥
2

2

=
1
n

n∑
p=1

∥∥∥∥∥∥
n∑

i=n+1−p

P0(Xi)

∥∥∥∥∥∥
2

2

=
1
n

n∑
p=1

∥∥∥∥∥∥
n∑

i=p

P0(Xi)

∥∥∥∥∥∥
2

2

. (13)

Let βp =
∑∞

i=p i‖P0(Xi)‖22 (which is finite because of (6) and the fact that
∑

n≥0 ‖E(Xn|F0)‖22 <∞).
Using Cauchy-Schwarz’s inequality in `2, we get

1
n

n∑
p=1

∥∥∥∥∥∥
n∑

i=p

P0(Xi)

∥∥∥∥∥∥
2

2

≤ 1
n

n∑
p=1

βp

 n∑
i=p

1
i

 =
1
n

n∑
i=1

(
1
i

i∑
p=1

βp

)
,

and the last term converges to zero as n → ∞, by using Cesàro’s lemma and the fact that βn → 0.
Together with (13) and the first part of (7), this completes the proof of the second part of (7).
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Proof of Lemma 3.2. Let (un)n≥0 be as in Lemma 3.2 (without loss of generality, assume that
un < π/2 for any positive integer n). Define then the increasing sequence (ti)i≥0 by induction :

t0 = 0, and ti+1 is the unique n > ti + 1 such that
n−1∑

k=ti+1

uk <
π

2
≤

n∑
k=ti+1

uk .

The function hj is then defined by hti = ei and, for ti < j < ti+1,

hj = cos

(
j∑

k=ti+1

uk

)
ei + sin

(
j∑

k=ti+1

uk

)
ei+1 .

By construction 〈hj , hj−1〉 ≥ cos(uj). Hence ‖hj − hj−1‖2H ≤ 2(1− cos(uj)) ≤ u2
j .
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