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Abstract

We obtain new conditions for partial sums of an array with stationary rows to converge
to a mixture of infinitely divisible distributions with finite variance. More precisely, we
show that these conditions are necessary and sufficient to obtain conditional convergence.
If the underlying σ-algebras are nested, conditional convergence implies stable convergence
in the sense of Rényi. From this general result we derive new criteria expressed in terms of
conditional expectations, which can be checked for many processes such as m-conditionally
centered arrays or mixing arrays. When it is relevant, we establish the weak convergence
of partial sum processes to a mixture of Lévy processes in the space of cadlag functions
equipped with Skorohod’s topology. The cases of Wiener processes, Poisson processes and
Bernoulli distributed variables are studied in detail.
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1 Introduction

For any distribution function F of a finite measure and any real γ, denote by µ1
γ,F the probability

measure with characteristic function

φγ,F (z) = exp
(
izγ +

∫
(eizx − 1− izx)

1

x2
dF (x)

)
, (1.1)

and define for any positive real t the probability µt
γ,F = µ1

tγ,tF . The distribution µt
γ,F has mean

tγ and variance tF (∞) and satisfies the equation µt
γ,F ∗ µs

γ,F = µt+s
γ,F . One says that µ1

γ,F is an

infinitely divisible distribution with finite variance.

Suppose that for each n, (Xi,n)1≤i≤n are i.i.d. random variables such that E(X2
0,n) tends to

0 as n tends to infinity. From Theorem 2 of Chapter 4 in Gnedenko and Kolmogorov (1954), we
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Cedex, France. E-mail: Sana.Louhichi@math.u-psud.fr

1



know that Sn(t) = X1,n + · · ·+ X[nt],n converges in distribution to µt
γ,F if and only if nE(X0,n)

converges to γ, and limn→∞ nE(X2
0,n1IX0,n≤x) = F (x) for any continuity point x of F .

Brown and Eagleson (1971) extended this result to (non necessarily stationary) arrays whose

rows are martingale differences sequences. If Mi,n = σ(Xk,n, 1 ≤ k ≤ i) and E(Xk,n|Mk−1,n) =

0, the main condition for the convergence to µt
0,F is: for any continuity point x of F

[nt]∑

k=1

E(X2
k,n1IXk,n≤x|Mk−1,n) converges in probability to tF (x) . (1.2)

As noticed by Eagleson (1975), there is no reason why the function F appearing in (1.2) should

be nonrandom. In fact it is easy to build simple examples for which F is random (see the

example of Section 2.5), so that the limiting distribution is a mixture of infinitely divisible

distributions. If Xi,n = n−1/2Xi, the limit is a mixture of centered Gaussian distributions

(i.e. γ = 0 and F = λ1I[0,∞[, λ possibly random). In that case, Aldous and Eagleson (1978)

proved that Sn(t) converges stably in the sense of Rényi (1963) to a random variable with

characteristic function E(φ0,tF (z)). If Mi,n ⊆ Mi,n+1, Jeganathan (1982, part I) proved the

stable convergence to infinitely divisible distributions under Brown and Eagleson’s conditions.

Stable convergence is more precise than convergence in distribution and may be useful in several

contexts, especially in connection with randomly normalized or randomly indexed sums (see

Aldous and Eagleson (1978) and Chapters 2, 3 and 9 of Castaing et al. (2004)).

For arrays (Xi,n)i∈Z with stationary rows and Mi,n = σ(Xk,n, k ≤ i), Dedecker and Mer-

levède (2002) proposed necessary and sufficient conditions for Sn(t) to satisfy the conditional

central limit theorem, which implies stable convergence to a mixture of Gaussian distributions

provided that Mi,n ⊆Mi,n+1. The conditions may be written as:

lim sup
n→∞

‖E(Sn(t)|M0,n)‖1 = 0 and lim
t→0

lim sup
n→∞

∥∥∥∥E
(S2

n(t)

t
1ISn(t)≤x − λ1Ix≥0

∣∣∣M0,n

)∥∥∥∥
1

= 0 . (1.3)

where the second limit holds for some nonnegative random variable λ and any x 6= 0.

The natural question is now: what happens when limn→∞ ‖E(Sn(t) − γt|M0,n)‖1 = 0 for

some random variable γ, and we replace λ1I[0,∞[ by any (random) distribution function F

in (1.3)? Such conditions would be necessary and sufficient, since we can easily prove that

limt→0 lim supn→∞ ‖t−1
∫ x

−∞ y2µt
γ,F (dy)− F (x)‖1 = 0 for any continuity point of x → E(F (x)).

Two other questions are: can we obtain from (1.3) (with any F ) sufficient conditions in terms of

individual variables Xi,n for Sn(t) to converge to a mixture of infinitely divisible distributions?

Can we say something about the convergence of the process {Sn(t), t ∈ [0, 1]} in the space of

cadlag functions equipped with Skorokhod’s distance?

In Section 2, we shall give positive answers to these questions. We first show in Theorem 1

that the result of Dedecker and Merlevède (2002) remains valid when replacing 0 and λ1I[0,∞[

in (1.3) by any square integrable random variable γ and any random distribution function F

such that E(F (∞)) is finite, and we present the application of this result to stable convergence.

Next, we give in Section 2.1 sufficient conditions for (1.3) to hold for a large class of dependent
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arrays. The dependence conditions are expressed in terms of conditional expectations and may

be checked for many processes, such as m-conditionally centered arrays or nonuniform mixing

arrays. In some important cases, we show that our conditions are optimal (see Corollary

3). Furthermore, in the particular case of m-dependent Bernoulli-distributed arrays, we infer

from Hudson et al. (1989) and Kobus (1995) that the conditions we impose are necessary

and sufficient. In Section 2.2 we give sufficient conditions for the process {Sn(t), t ∈ [0, 1]}
to converge stably to a mixture of Lévy processes in the space of cadlag functions equipped

with Skorokhod’s distance. The additional condition we impose is related to the topoligical

stucture of that space, and may be shown to be necessary in some particular cases (see Remark

6). The cases of Wiener and Poisson processes are studied in detail in Sections 2.3 and 2.4

respectively. In Section 2.5 we give the application of our results to the important case of

Bernoulli-distributed random variables. In that case the limiting distribution is a mixture of

integer-valued compound Poisson distributions.

To prove Theorem 1 of Section 2, we adapt Lindeberg’s method with increasing blocks in

place of individual variables. The idea is to split Sn(1) into p blocks distributed as Sn(1/p) and

to replace them by blocks of i.i.d variables with law µ
1/n
γ,F . To go back to individual variables,

we use a second adaptation of Lindeberg’s method (see the proof of Lemma 3) and a maximal

inequality established in Dedecker and Rio (2000). The latter is used once again to prove the

tightness of {Sn(t), t ∈ [0, 1]} in the space of cadlag functions (see the proof of Lemma 5).

2 Convergence to infinitely divisible distributions

Let (Ω,A,P) be a probability space, and T : Ω 7→ Ω be a bijective bimeasurable transformation

preserving P. An element A is said to be invariant if T (A) = A. Let I be the σ-algebra of all

invariant sets. The probability P is ergodic if each element of I has measure 0 or 1.

We say that a function F from R × Ω to R+ is a M-measurable distribution function if

for every ω the function F (., ω) is a distribution function of a finite measure, and for any x in

R ∪ {∞} the random variable F (x) is M-measurable with E(F (∞)) < ∞.

LetH be the space of continuous real functions ϕ such that x → |(1+x2)−1ϕ(x)| is bounded.

Given a M-measurable random variable γ and a M-measurable distribution function F , we

introduce for each ω the probability measure µt
γ(ω),F (.,ω) defined via (1.1). Since E(F (∞)) is

finite, the random measure µt
γ,F maps H into L1(M).

Theorem 1 For each positive integer n, let M0,n be a σ-algebra of A satisfying M0,n ⊆
T−1(M0,n). Define the nondecreasing filtration (Mi,n)i∈Z by Mi,n = T−i(M0,n) and Mi,inf =

σ (
⋃∞

n=1

⋂∞
k=nMi,k). Let X0,n be a M0,n-measurable and square integrable random variable.

Define (Xi,n)i∈Z by Xi,n = X0,n ◦ T i, and let Sn(t) = X1,n + · · ·+ X[nt],n, for t in [0, 1]. Suppose

that E(X2
0,n) tends to zero as n tends infinity. The following statements are equivalent:

S1 There exists an M0,inf-measurable square integrable random variable γ and an M0,inf-

measurable distribution function F , such that for any ϕ in H, any t in [0, 1] and any
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positive integer k,

S1(ϕ) lim
n→∞

∥∥∥E
(
ϕ(Sn(t))− µt

γ,F (ϕ)
∣∣∣Mk,n

)∥∥∥
1

= 0 .

S2 (a) There exists an M0,inf-measurable square integrable random variable γ such that

lim
t→0

lim sup
n→∞

∥∥∥E
(Sn(t)

t
− γ

∣∣∣M0,n

)∥∥∥
1

= 0 .

(b) There exists aM0,inf-measurable distribution function F such that, for any continuity

point x (including +∞) of the function x → E(F (x)),

lim
t→0

lim sup
n→∞

∥∥∥E
(S2

n(t)

t
1ISn(t)≤x − F (x)

∣∣∣M0,n

)∥∥∥
1

= 0 . (2.1)

Moreover, γ = γ ◦ T almost surely, and F = F ◦ T almost surely.

Remark 1. Let Zn(t) be such that limt→0 lim supn→∞ t−1‖Zn(t)‖2
2 = 0. It is easy to see

that S2(b) holds if and only if, for any continuity point x (including +∞) of the function

x → E(F (x)), (2.1) holds with Sn(t)− Zn(t) instead of Sn(t). We shall use this simple remark

in Section 2.1, with Zn(t) = [nt]E(X0,n) or Zn(t) = [nt]E(X0,n|I).

Let us look to the case where F = λ1I[a,∞[. If a = 0, µt
γ,F is the normal distribution

N (tγ, tλ). If λ = 0, µt
γ,F is the unit mass at tγ. For any (a, λ) in R∗ × R∗+, µt

γ,F is the law

of a(X(a, tλ) − tλ/a2) + tγ, X(a, λ) having Poisson distribution P(λ/a2). As an immediate

consequence of Theorem 1, we obtain the following corollary:

Corollary 1 Let Xi,n, Mi,n, Sn(t) be as in Theorem 1. The statements P1, P2 are equivalent:

P1 There exist a M0,inf-measurable random variable a, a M0,inf-measurable square integrable

random variable γ and a nonnegative M0,inf-measurable random variable λ such that, S1

holds for the couple (γ, F = λ1I[a,∞[).

P2 Condition S2(a) holds and

S2(b1) There exist a M0,inf-measurable random variable a such that

lim
t→0

lim sup
n→∞

E
(S2

n(t)

t
(1 ∧ |Sn(t)− a|)

)
= 0 .

S2(b2) There exist a nonnegative M0,inf-measurable random variable λ such that (2.1) holds

for x = ∞ and F (∞) = λ.

It is clear that S2 imply much more than convergence in distribution. Arguing as in Corol-

lary 1 in Dedecker and Merlevède (2002), one can prove that, for any bounded σ(∪i≥1Mi,inf)-

measurable variable Z and any ϕ in H, the sequence E(Zϕ(Sn(t)) converges to E(Zµt
F (ϕ)). In

particular, the following corollary holds:

4



Corollary 2 Let Xi,n, Mi,n and Sn(t) be as in Theorem 1. Suppose that the sequence of σ-

algebras (M0,n)n≥1 is nondecreasing. If Condition S2 is satisfied, then, for any ϕ in H, the

sequence ϕ(Sn(t)) converges weakly in L1 to µt
F (ϕ).

Remark 2. Corollary 2 implies that, if the sequence (M0,n)n≥1 is nondecreasing, then Sn(t)

converges stably to a random variable Yt whose conditional distribution with respect to I is µt
F .

We refer to Aldous and Eagleson (1978) and to Chapters 2, 3 and 9 of the book by Castaing

et al (2004) for a complete exposition of the concept of stability (introduced by Rényi (1963))

and its connection to weak L1-convergence. Note that stable convergence is a useful tool to

establish weak convergence of joint distributions as well as randomly indexed sums (see again

Aldous and Eagleson (1978) and the references therein, or the book by Hall and Heyde (1980)).

Note also that the condition on (M0,n)n≥1 is exactly the “nesting condition” (3.21) in Theorem

3.2 of Hall and Heyde (1980), which is known to be related to the stable convergence (see

the discussion on page 59 of the latter). If furthermore F is constant, then the convergence

is mixing. If P is ergodic, this result is a consequence of Theorem 4 in Eagleson (1976a) (see

Application 4.2 therein). For a review of mixing results see Csörgő and Fischler (1973).

2.1 Sufficient conditions

In this section, we give sufficient conditions in terms of the individual variables Xi,n for Property

S1 to hold. In the sequel, B is either the σ-field I of all invariant sets or the trivial σ-field

{∅, Ω}. We then define the array with stationary rows X ′
i,n = Xi,n − E(Xi,n|B). The kind of

dependence we consider is described in the two following definitions.

Definition 1. Let (Xi,n) and Mi,n be as in Theorem 1, and define for any positive integer N

R1(N,X) = lim
t→0

lim sup
n→∞

sup
N≤m≤[nt]

n
∥∥∥X ′

0,n

m∑

k=N

E(X ′
k,n|M0,n)

∥∥∥
1
, (2.2)

and N1(X) = inf{N > 0 : R1(N) = 0} (N1(X) may be infinite). We say that (Xi,n) satisfies

the weak-dependence condition WD if S2(a) holds and R1(N, X) tends to zero as N tends

to infinity. If N1(X) is finite, we say that the array (X ′
i,n) is asymptotically (N1(X) − 1)-

conditionally centered (as usual, it is m-condionally centered if E(X ′
m+1,n|M0,n) = 0).

In addition to the weak dependence condition WD, we need to control some residual terms.

Definition 2. Let (Xi,n) be as in Theorem 1. For any (k, n) in (N×Z), define S ′k,n by: S ′k,n = 0

if k ≤ 0 and S ′k,n = X ′
1,n + · · ·+ X ′

k,n otherwise. For any positive integer N define

R2(N,X) = lim sup
t→0

lim sup
n→∞

1

t
E

( [nt]∑

k=1

(
X ′2

k,n + 2|X ′
k,n(S ′k−1,n − S ′k−N,n)|) (1 ∧ |S ′k−N |)

)
, (2.3)

and N2(X) = inf{N > 0 : R2(N) = 0} (N2(X) may be infinite). We say that the array (Xi,n)

is EQ if nE(X ′2
0,n) is bounded and R2(N, X) tends to zero as N tends to infinity.
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We now give sufficient conditions in terms of finite blocks X ′
k−N,n + · · ·+X ′

k,n for S1 to hold.

We say that a function F from R× Ω is a M-measurable BV function if it can be written as

the difference of two M-measurable distribution functions. We say that a sequence of random

BV functions FN converges weakly to a random BV function F if for any continuous bounded

function f , limN→∞ ‖
∫

fdFN −
∫

fdF‖1 = 0.

Proposition 1 Take Xi,n, Mi,n and Sn(t) as in Theorem 1. Assume that (Xi,n) is WD and

EQ and set N0(X) = N1(X)∨N2(X). For any N and any f , let VN,n(k) =
∑k−1

i=k−N+1 X ′
i,n and

∆f(N, n, k) = f(VN,n(k)+X ′
k,n)−f(VN,n(k)). Let fx(y) = y21Iy≤x and consider the assumption:

A(N) There exists a M0,inf-measurable BV function FN , such that, for any continuity point x

(including +∞) of x → E(FN(x)),

lim
t→0

lim sup
n→∞

∥∥∥∥∥∥
E

(1

t

[nt]∑

k=1

∆fx(N,n, k)− FN(x)
∣∣∣M0,n

)
∥∥∥∥∥∥

1

= 0 .

Assume that there exists a nondecreasing sequence of integers (Ni)i∈N∗ converging to N0(X)

such that A(Ni) holds for any i in N∗. Then FNi
converges weakly to a M0,inf-measurable

distribution function F , and S1 holds for F . In particular, if N0(X) is finite, S1 holds for FN0.

If N0(X) = 1 (recall that N0(X) = N1(X) ∨N2(X)), we have the more precise result:

Corollary 3 Let Xi,n, Mi,n and Sn(t) be as in Theorem 1. Assume that (Xi,n) is WD and

EQ with N0(X) = 1. Then S1 holds for a couple (γ, F ) if and only if: for any continuity point

x (including +∞) of the function x → E(F (x)),

lim
t→0

lim sup
n→∞

∥∥∥∥∥∥
E

(1

t

[nt]∑

k=1

X ′2
k,n1IX′

k,n≤x − F (x)
∣∣∣M0,n

)
∥∥∥∥∥∥

1

= 0 . (2.4)

In particular, the following result holds: let B = {∅, Ω}, assume that (Xi,n) has i.i.d. rows,

that nE(X0,n) tends to γ, and that nE(X ′2
0,n) is bounded. Then S1 holds with respect to M0,n =

σ(Xi,n, i ≤ 0) if and only if there exists a distribution function F such that, for any continuity

point x (including +∞) of the function F , the sequence nE(X ′2
0,n1IX′

0,n≤x) converges to F (x).

Remark 3. Corollary 3 applies to arrays of martingales differences (with B = {∅, Ω}, X ′
i,n =

Xi,n and γ = 0) for which N2(X) = 1. If S ′n(t) = sup0≤s≤t |S ′n(s)|, define

R3(N, X) = lim sup
t→0

lim sup
n→∞

1

t
E

(
(1 ∧ S ′n(t))

( [nt]∑
i=1

E(X ′2
i,n|Mi−N,n)

))
,

and N3(X) = inf{N ≥ 0 : R3(N) = 0} (N3(X) may be infinite). We shall see in Proposition

3 that N2(X) = 1 as soon as N3(X) = 1. From Proposition 8 of Section 2.2, it is easy to see

that both (2.4) holds and N3(X) = 1 as soon as, for any continuity point of x → E(F (x)),

lim
t→0

lim sup
n→∞

∥∥∥1

t

[nt]∑

k=1

E(X2
k,n1IXk,n≤x|Mk−1,n)− F (x)

∥∥∥
1

= 0 . (2.5)
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For arrays of martingale differences, (2.5) is close to Condition (3’) of Theorem 2 in Eagleson

(1975). Note that, in Condition (3’), the array needs not be stationary, and the convergence to

F holds for t = 1 and almost surely (in fact, it needs only hold in probability, see Jeganathan

(1982) part I). Here, assuming the stationarity and the slightly different Condition (2.5), we

also obtain the convergence to a Lévy Process in the space of cadlag functions equipped with

the Skorohod’s topology (see Section 2.2). In the stationary case, this result is close to that

given in Remark 1 of Jeganathan (1983). To conclude this remark, note that Jeganathan (1982

part II, 1983) also give sufficient conditions involving the conditional probabilities of Xi,n given

Mi−1,n for the convergence to any infinitely divisible distributions and any Lévy processes.

Finally, we give sufficient conditions for stationary arrays of nonuniformly φ and ρ-mixing

variables to be WD and EQ and for S1 to hold. Let us recall the definition of the φ-mixing

coefficients: for two σ-algebras U and V of A, set φ(U ,V) = sup{‖P(V |U)− P(V )‖∞, V ∈ V}.
If L2(U) is the space of all square integrable and U -measurable random variables, the ρ-mixing

coefficient is defined by ρ(U ,V) = sup{|Cov(X, Y )|/
√

Var(X)Var(Y ), X ∈ L2(U), Y ∈ L2(V)}.
We define the φ-mixing coefficients of the array (Xi,n)i,n by

φ∞,N(k, n) = sup{φ(M0,n, σ(Xi1,n, . . . , XiN ,n)), 0 ≤ k ≤ i1 ≤ · · · ≤ iN} , (2.6)

and ρ∞,N is defined in the same way. We call these coefficients nonuniform, because they control

the dependence between M0,n and any N -tuple (Xi1,n, . . . XiN ,n), while the uniform φ∞,∞ and

ρ∞,∞-mixing coefficients control the dependence between the past and the whole future.

Corollary 4 Let Xi,n, Mi,n and Sn(t) be as in Theorem 1. Assume that nE(X0,n) converges

to γ and let B = {∅, Ω}, so that X ′
i,n = Xi,n − E(Xi,n). For any two conjugate exponents p ≤ q

and any positive integer N , consider the conditions

Cφ(p,N) (a) : sup
n>0

n‖X ′
0,n‖p‖X ′

0,n‖q < ∞ and (b) : lim
m→∞

lim sup
n→∞

n∑

k=m

φ
1/p
∞,N(k, n) = 0.

Cρ(N) (a) : sup
n>0

nE(X ′2
0,n) < ∞ and (b) : lim

m→∞
lim sup

n→∞

n∑

k=m

ρ∞,N(k, n) = 0 .

C0 lim
K→∞

lim sup
n→∞

nE(X ′2
0,n1I|X′

0,n|≥K) = 0.

1. If C0 and Cφ(p, 1) (resp. Cρ(1)) hold then (Xi,n) is WD and EQ.

2. Consider the condition B(N): There exists a BV function FN such that, for any continuity

point x (including +∞) of the function FN ,

lim
n→∞

nE(S ′2N,n1IS′N,n≤x)− nE(S ′2N−1,n1IS′N−1,n≤x) = FN(x) .

If Cφ(p,N) (resp. Cρ(N)) holds for any finite integer N ≤ N0(X), then S1 holds as soon

as B(Ni) holds for a sequence (Ni)i∈N∗ converging to N0(X).

Remark 4. If E(X0,n) tends to γ, nE(X ′2
0,n) is bounded and (Xi,n) is m-dependent, then it is

WD and EQ with N0(X) ≤ m + 1. Hence S1 holds for (γ, F ) as soon as B(N0) holds for F .
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2.2 Convergence to Lévy processes

Let D([0, 1]) be the space of caldlag functions equipped with the Skorohod distance d. Let C(D)

be the space of continuous bounded functions from (D([0, 1]), d) to R. Let πt be the projection

from D([0, 1]) to R defined by: πt(x) = x(t). For any real number γ and any distribution

function F such that F (∞) is finite, define the Lévy distribution µγ,F as the unique measure on

D([0, 1]) such that: for any t in [0, 1], πt has law µt
γ,F and for any k-tuple t0 = 0 ≤ t1 ≤ · · · tk ≤ 1,

the variables (πti − πti−1
)1≤i≤k are independent. Take Xi,n, Mi,n and Sn(t) as in Theorem 1.

We say that {Sn(t), t ∈ [0, 1]} converges conditionally to a mixture of Lévy processes if:

LP There exists an M0,inf-measurable random variable γ and an M0,inf-measurable distrib-

ution function F , such that for any ϕ in C(D) and any positive integer k,

lim
n→∞

∥∥∥E
(
ϕ(Sn)− µF (ϕ)

∣∣∣Mk,n

)∥∥∥
1

= 0 .

Remark 5. Assume that the sequence (M0,n)n≥1 is nondecreasing. As for Corollary 2 (with

the same proof), Property LP implies that, for any ϕ in C(D), ϕ(Sn) converges weakly in L1 to

µF (ϕ). As a consequence, we obtain that limn→∞ P((Sn ∈ A)∩B) = P(µF (A)∩B), for any set

A with boundary ∂A satisfying E(µF (∂A)) = 0. According to Rényi’s definition (extended to

separable metric spaces), this means exactly that {Sn(t), t ∈ [0, 1]} converges stably in D([0, 1]).

More precisely, following Aldous and Eagleson (1978), we see that {Sn(t), t ∈ [0, 1]} converges

stably to a random variable Y whose conditional distribution given I is µF .

Convergence in the Skorohod topology is somewhat restrictive. To obtain the relative com-

pactness of the law of {Sn(t), t ∈ [0, 1]} we impose a more restrictive condition than EQ.

Definition 3 Let (Xi,n) be as in Theorem 1. Recall that B is either I or {∅, Ω}, and that X ′
i,n =

Xi,n−E(Xi,n|B) and S ′k,n = X ′
1,n+· · ·+X ′

k,n. Define S ′k,n = max{|S ′1,n|, . . . , |S ′k,n|}. We say that

(Xi,n) is 1-EQ if nE(X ′2
0,n) is bounded and limt→0 lim supn→∞ t−1E(

∑[nt]
k=1 X ′2

k,n(1∧S ′k−1,n)) = 0.

Note that if (Xi,n) is 1-EQ, then it is EQ with N2(X) = 1.

The following Proposition provides sufficient conditions for Property LP to hold.

Proposition 2 Let Xi,n, Mi,n and Sn(t) be as in Theorem 1. Assume that (Xi,n) is WD and

1-EQ. If S1 holds for some couple (γ, F ), then LP holds for the same couple (γ, F ).

The following Proposition gives a suficient condition for property 1-EQ. Recall that R3(N) and

N3(X) have been defined in Remark 3.

Proposition 3 Let Xi,n, Mi,n, Sn(t) be as in Theorem 1. Assume that (Xi,n) is WD and

that nE(X ′2
0,n) is bounded. Let L1(N) : for any 1 ≤ i < N, limn→∞ nE(X ′2

i,n(1 ∧ |X ′
0,n|)) = 0. If

R3(N) tends to 0 as N tends to infinity and L1(N3) holds, then (Xi,n) is 1-EQ.

Remark 6. A simple bound for R3(N) is given in item 2 of Proposition 8. If nE(X ′2
0,n) is

bounded, Condition L1 is equivalent to the Lindeberg-type condition: for any positive ε and
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any 1 ≤ i < N , nE(X ′2
i,n1I|X′

0,n|>ε) converges to zero. If C0 holds, Condition L1 is equivalent

to: L′1(N) For any positive ε and any 1 ≤ i < N, limn→∞ nP(|X ′
i,n| > ε, |X ′

0,n| > ε) = 0. For

stationary φ-mixing processes, Samur (1987) proved that L′1(∞) is necessary for the weak

convergence of {Sn(t), t ∈ [0, 1]} to a Lévy measure on D([0, 1]) (see also Corollary 5.9 in

Kobus (1995) for a more precise result in the case of stable limits).

Remark 7. The classical Lindeberg’s condition is L0 : limn→∞ nE(X ′2
0,n(1 ∧ |X ′

0,n|)) = 0. If

L0 holds, then L1 holds for any positive integer i and moreover R3(0) = 0 (see the proof of

Proposition 8 in Dedecker and Merlevède (2002)). We shall see in the next section that, if

R3(0) = 0, then the limiting process is necessarily a mixture of Gaussian processes.

It follows from Proposition 2 that for WD and 1-EQ arrays, conditional convergence to

Lévy processes with law µγ,F follows from conditional convergence to µt
γ,F for any t in [0, 1].

In particular, the conclusion of Proposition 1 remains valid if we replace S1 by LP. Note that,

since for such arrays N2(X) = 1, we have that N0(X) = N1(X). The class of WD-arrays for

which N1(X) = 1 is much larger than martingale differences arrays. A first example is given

by Kernel density estimators (see Dedecker and Merlevède (2002), Section 8). The following

Proposition provides useful conditions ensuring that N1(X) = 1.

Proposition 4 Let Xi,n, and Mi,n be as in Theorem 1. Assume that (Xi,n) is WD and that

nE(X ′2
0,n) is bounded. Consider the condition C1 : limε→0 lim supn→∞ nE(X ′2

0,n1I|X′
0,n| ≤ ε) = 0.

If C1 holds and L1(N) holds for some N in N∗ such that R1(N,X) = 0, then N1(X) = 1.

Remark 8. If nE(X ′2
0,n1IX′

0,n≤x) converges to F (x), Condition C1 means that F is continuous

at zero. For such a F , one says that the Lévy distribution µt
γ,F is purely non-Gaussian.

2.3 Convergence to Wiener processes

Let (γ, a, λ) be three M0,inf-measurable random variables as in Corollary 1. We say that

P1(γ, a, λ) holds if P1 is realized for the parameter (γ, a, λ).

Definition 4. Let Xi,n be as in Theorem 1. We say that the array (Xi,n) is 0-EQ if nE(X
′2
0,n)

is bounded and R3(0) = 0. Note that if (Xi,n) is 0-EQ, then it is 1-EQ.

The next Proposition shows that if (Xi,n) is WD and 0-EQ, then the limiting distribution

is necessarily a mixture of Gaussian distributions (i.e. P1(γ, 0, λ) holds). From Proposition 2,

this implies the functional property LP for γ and the distribution function F = λ1I[0,∞[.

Proposition 5 Take Xi,n, Mi,n and Sn(t) as in Theorem 1. Assume that (Xi,n) is WD and

0-EQ. Then S2(b1) holds with a = 0 and P1(γ, 0, λ) holds if and only if S2(b2) holds. Moreover

1. Setting UN,n(k) =
(
VN,n(k) + X ′

k,n

)2 − (
VN,n(k)

)2
, Condition S2(b2) is equivalent to

lim inf
N→N1(X)

lim sup
t→0

lim sup
n→∞

∥∥∥E
(1

t

[nt]∑

k=1

UN,n(k)− λ
∣∣∣M0,n

)∥∥∥
1

= 0 . (2.7)
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2. Assume that there exists a nondecreasing sequence (Ni)i∈N∗ converging to N1(X), and a

sequence λNi
of M0,inf-measurable random variables such that, for any i in N∗,

lim
t→0

lim sup
n→∞

∥∥∥E
(1

t

[nt]∑

k=1

(
X ′2

k,n + 2

Ni−1∑
j=1

X ′
k,nX

′
k−j,n

)
− λNi

∣∣∣M0,n

)∥∥∥
1

= 0 . (2.8)

Then λNi
converges in L1 to some nonnegative variable λ, and S2(b2) holds for this λ.

Note that if Xi,n = n−1/2Xi for some centered square integrable random variable Xi, and

Mi,n = Mi, then condition WD with B = {∅, Ω} is equivalent to:

the sequence X0

n∑

k=1

E(Xk|M0) converges in L1 , (2.9)

and Condition (2.9) also implies S2(b2). Applying the L1-ergodic theorem to the sequence

(X2
i,n), we see that (Xi,n) is 0-EQ. From Proposition 5, we obtain the following conditional

invariance principle, which was first proved in Dedecker and Merlevède (2002):

Corollary 5 Let the random variables Xi,n and the σ-algebras Mi,n of Theorem 1 be such

that Xi,n = n−1/2Xi for some centered square-integrable random variable Xi, and Mi,n = Mi.

If (2.9) holds then the Donsker process {Sn(t), t ∈ [0, 1]} satisfies LP for γ = 0 and some

distribution function F = λ1I[0,∞[. More precisely, for any ϕ in C(D) and any positive integer k

lim
n→∞

∥∥∥E
(
ϕ(Sn)−

∫
ϕ(x

√
λ)W (dx)

∣∣∣Mk

)∥∥∥
1

= 0

where W is the standard Wiener distribution and λ = E(X2
0 |I) + 2

∑
k>0 E(X0Xk|I).

2.4 Convergence to Poisson processes

In Proposition 6 below, we give sufficient conditions on a WD and 1-EQ array for P1(γ, a, λ)

to hold. Via Proposition 2, this implies the functional property LP for γ and F = λ1I[a,∞[.

Recall that the quantities R1(N, X) and N1(X) have been defined in Definition 1.

Proposition 6 Let Xi,n, Mi,n and Sn(t) be as in Theorem 1. Assume that (Xi,n) is WD with

N1(X) = 1 and 1-EQ. Then P1(γ, a, λ) holds if and only if Conditions C2 and C3 hold

C2 : lim
n→∞

nE(X ′2
0,n(1∧|a−X ′

0,n|)) = 0 and C3 : lim
t→0

lim sup
n→∞

∥∥∥E
(1

t

[nt]∑
i=1

X ′2
i,n−λ

∣∣∣M0,n

)∥∥∥
1

= 0.

If P(a = 0) = 0, Condition C2 implies Condition C1 of Proposition 4. Combining Proposi-

tions 4 and 6, we obtain the following Corollary:

Corollary 6 Let Xi,n, Mi,n and Sn(t) be as in Theorem 1. Assume that (Xi,n) is WD and

that nE(X ′2
0,n) is bounded. If L1(N) is satisfied for some N in N such that R1(N, X) = 0 and

C2 holds for some a such that P(a = 0) = 0, then N1(X) = 1. If furthermore R3(N) = 0, then

P1(γ, a, λ) holds if and only if C3 holds.
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Remark 9. We shall see in Section 3.3 that both R3(N) = 0 for N in N∗ and C3 holds as soon

as C4(N) : limP→N lim supt→0 lim supn→∞ ‖t−1
∑[nt]

k=1 E(X ′2
k,n|Mk−P,n)− λ‖1 = 0.

The first application of Corollary 6 is to m-conditionally centered arrays.

Corollary 7 Let Xi,n, Mi,n, Sn(t) be as in Theorem 1. Assume that (X ′
i,n) is m-conditionally

centered and that‖nE(X0,n|B)− γ‖1 tends to zero. Then P1(γ, a, λ) holds for some a such that

P(a = 0) = 0 as soon as C2 holds, and L1(N), C4(N) are satisfied for N = m + 1. Assume

furthermore that (Xi,n)i,n is m-dependent and take M0,n = σ(Xi,n, i ≤ 0) and B = {∅, Ω}.
Condition C4 reduces to: the sequence nE(X ′2

0,n) converges to λ.

Remark 10. Eagleson (1976b) gave a criterion for (non necessarily stationary) martingale

differences arrays (i.e. m = 0). In the stationary case, his result is the same as ours (with

B = {∅, Ω} and γ = 0), except that he only requires convergence in probability for t = 1 in

C4(1). Here, on the one hand, we need to impose L1-convergence in C4 to obtain the conditional

version of the Poisson convergence. On the other hand, the fact that it holds for any t implies

the convergence of the process {Sn(t), t ∈ [0, 1]} to a Poisson process. Note also that if (Xi,n)i,n

is a m-dependent array of Bernoulli random variables, then the conditions of Corollary 7 are

optimal (see Theorem 2 of Hudson et al.(1989)). Therefore Corollary 7 seems to be a reasonable

extension of both martingale and m-dependent cases.

Corollary 6 contains more information than Corollary 7. As a consequence of Corollaries 4

and 6, we obtain sufficient conditions for stationary arrays of nonuniformly mixing variables.

Corollary 8 Let Xi,n, Mi,n and Sn(t) be as in Theorem 1 and let B = {∅, Ω}. Assume that

nE(X0,n) converges to γ and that Condition Cφ(p, 1) (resp. Cρ(1)) holds. If furthermore L1(∞)

is satisfied and C2 holds for some a such that P(a = 0) = 0, then N1(X) = 1 and P1(γ, a, λ)

holds as soon as nE(X ′2
0,n) converges to λ as n tends to infinity.

2.5 The case of Bernoulli distributed variables

Let (Xi,n) be an array of Bernoulli distributed variables with parameter pn such that npn is

bounded. We are interested in the process Sn(t) = X1,n + · · ·+ X[nt],n. An interesting example

is X0,n = 1IX0>un for some numerical sequence un (see Hsing et al. (1988) for the importance

of the exceedance process Sn(t) in extreme value theory). If for each n the sequence (Xi,n)

is i.i.d, it is well known that Sn(1) converges in distribution if and only if npn converges to

a nonnegative number λ and that the limiting distribution is Poisson with parameter λ. For

m-dependent sequences, necessary and sufficients conditions for the convergence of Sn(1) are

given in Hudson et al. (1989). Using our notations, these conditions are equivalent to B(m+1)

of Corollary 4 : there is a distribution function Fm+1 such that

lim
n→∞

nE(S2
m+1,n(1)1ISm+1,n(1)≤x)− nE(S2

m,n(1)1ISm,n(1)≤x) = Fm+1(x) . (2.10)

Since Xi,n is either 0 or 1, it is clear that Fm+1 is piecewise constant with jumps at points

1, . . . , m + 1. In fact the limiting distribution is integer-valued coumpound Poisson. More
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precisely it is the law of the sum V1 + · · ·+ VN where N is Poisson distributed with parameter

λ =
∑m+1

i=1 (Fm+1(i)−Fm+1(i− 1))/i2 and is independent of the sequence (Vk)k≥1 which is i.i.d.

with marginal distribution P(V1 = i) = (Fm+1(i) − Fm+1(i − 1))/(λi2). See Theorem 1.1 in

Kobus (1995) for more details on this important question.

Now, let Xi,n and Mi,n be as in Theorem 1. From Theorem 1, Property S1 holds if and only

if S2 holds. Hence the distribution function F in S2(b) is piecewise constant with jumps at

integer points, and the limiting distribution of Sn(t) is a mixture of integer-valued coumpound

Poisson distributions. If (Xi,n) is WD and EQ, then S1 holds as soon as A(Ni) of Proposition

1 holds with Ni converging to N0. For instance, suppose that Cφ(1, N) (resp. Cρ(N)) holds for

any N ≤ N0. In that case S1 holds as soon as nE(X0,n) converges to γ and Condition B(Ni)

of Corollary 4 holds for a sequence Ni converging to N0. Both γ and the distribution function

F are nonrandom and the limiting distribution of Sn(t) is integer-valued coumpound Poisson.

This extends the result of Hudson et al. (1989), since (2.10) is exactly B(m+1). Note also that

if S2 holds, we can establish the convergence of (Sn(t1), . . . , Sn(tk)) for any k-tuple (t1, . . . , tk)

(cf. Dedecker and Merlevède (2002), Section 4). Therefore, there is convergence for the point

process Sn(A) =
∑

i∈nA Xi,n indexed by subsets of [0, 1] (see Kallenberg (1975) Theorem 4.2).

To be complete, let us give a simple example of an array of Bernoulli random variables for

which γ and F are random. Let (Zi,n) be an i.i.d. array of Bernoulli-distributed variables with

parameter α/n and ε be a Bernoulli-distributed variable with parameter 1/2 independent of

(Zi,n). Set Mi,n = σ(ε, Zk,n, k ≤ i). Then Xi,n = εZi,n is Bernoulli-distributed with parameter

α/2n and E(Xi+1,n|Mi,n) = εα/n. X ′
i,n = Xi,n − εα/n is a martingale difference array, so that

(Xi,n) is WD with N1(X) = 1 and γ = αε. Furthermore, it is clearly EQ with N2(X) = 1.

Consequently, N0(X) = 1 and Corollary 3 applies: S1 holds if and only if (2.4) holds. Now,

(2.4) is satisfied with F = αε1I[1,∞[, and Sn(t) converges in distribution to a variable whose

conditional distribution with respect to ε is Poisson with parameter tαε. From Proposition 6

{Sn(t), t ∈ [0, 1]} converges in distribution to a mixture of Poisson processes in D([0, 1]).

3 Proofs

In the two following sections, we prove Theorem 1. The fact that γ and F are invariant by T

can be proved as in Section 3.2 in Dedecker and Merlevède (2002).

3.1 S1 implies S2

Since µγ,F has mean γ, it is clear that S1 implies S2(a). We now prove that S1 implies S2(b).

Lemma 1 Let Cb be the set of continuous bounded functions and F = {x → x2g(x), g ∈ Cb}.
Let ν(dx) = x−2dF (x). For any f in F , we have limt→0 ‖t−1µt

γ,F (f)− ν(f)‖1 = 0 .
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The proof of this Lemma will be done at the end of this section. Let fx(y) = y21Iy≤x, and define

fx,ε+(y) = fx+ε(y) + ε−1y2(x− y)1Ix≤y≤x+ε and fx,ε−(y) = fx−ε,ε+ . We have the inequality

∥∥∥E
(1

t
fx(Sn(t))−F (x)

∣∣∣M0,n

)∥∥∥
1
≤

∥∥∥E
(1

t
fx,ε+(Sn(t))−ν(fx,ε+)|M0,n

)∥∥∥
1
+

∥∥∥ν(fx,ε+)−ν(fx,ε−)
∥∥∥

1

+
1

t

∥∥∥E
(
fx,ε+(Sn(t))− fx,ε−(Sn(t))

∣∣∣M0,n

)∥∥∥
1
. (3.1)

Note first that, setting G(x) = E(F (x)), limε→0 ‖ν(fx,ε+) − ν(fx,ε−)‖1 = G(x) − G(x−) , and

since x is a continuity point of G, the latter is zero. Next, we infer from S1 that

lim sup
n→∞

∥∥∥E
(1

t
fx,ε+(Sn(t))− ν(fx,ε+)

∣∣∣M0,n

)∥∥∥
1
≤

∥∥∥1

t
µt

γ,F (fx,ε+)− ν(fx,ε+)
∥∥∥

1
,

and Lemma 1 implies that the latter tends to zero as t goes to zero. It remains to control the

last term on right hand in (3.1). Applying first S1 and then Lemma 1, we have

lim sup
t→0

lim sup
n→∞

1

t

∥∥∥E
(
fx,ε+(Sn(t))− fx,ε−(Sn(t))

∣∣∣M0,n

)∥∥∥
1
≤

∥∥∥ν(fx,ε+)− ν(fx,ε−)
∥∥∥

1
,

and we know that the latter tends to zero with ε. Hence, for all continuity point of G,

limt→0 lim supn→∞ ‖E(t−1fx(Sn(t))− F (x)|M0,n)‖1 = 0, which is exactly S2(b).

Proof of Lemma 1. Arguing as in Corollary 8.9 in Sato (1999) and using Theorem 8.7 in Sato

(1999), we obtain that for any bounded function f of F and any fixed ω,

lim
t→0

1

t
µt

γ,F (f) = ν(f) . (3.2)

Since t−1
∫

x2µt
γ,F (dx) = tγ2 +

∫
x2ν(dx), we infer that (3.2) extends to the class F . Now, every

f of F satisfies |f(x)| ≤ Mx2, so that |t−1µγ,F (f)− ν(f)| ≤ 2MF (∞) + tγ2. Since F (∞) and

γ2 are integrable, Lemma 1 follows from (3.2) and the dominated convergence theorem.

3.2 S2 implies S1

Let B3
1(R) be the class of three-times continuously differentiable real functions such that

‖h′′‖∞ ≤ 1 and ‖h′′′‖∞ ≤ 1. Assume for a while that S1(h) holds for any h of B3
1(R). In

such a case, we know from Dedecker and Merlevède (2002) that S1 extends to any continuous

bounded function. Since x → x2/2 belongs to B3
1(R), we infer that S2

n(t) is uniformly integrable

for any t in [0, 1], which implies that S1 extends toH. Hence, it suffices to prove that S2 implies

S1(h) for any h of B3
1(R). If h belongs to B3

1(R), then |h(x+a)−h(x)| ≤ a|h′(0)|+a|x|+a2/2.

Hence ‖h(Sn(t))−h(Sn(t)◦T k)‖1 ≤ un(|h′(0)|+‖Sn(t)‖2+un/2) with un = ‖Sn(t)−Sn(t)◦T k‖2.

From S2(b), the stationarity of (Xi,n) and the fact that E(X2
0,n) tends to zero, we infer that

for any t in [0, 1] the sequence ‖Sn(t)‖2 is bounded. The asymptotic negligibility of X0,n also

implies that un goes to zero as n increases. Combining the two preceding arguments, we obtain

lim
n→∞

‖h(Sn(t))− h(Sn(t) ◦ T k)‖1 = 0. (3.3)

(3.3) implies that S1(h) holds if and only if limn→∞ ‖E(h(Sn(t) ◦ T k) − µt
F (h)|Mk,n)‖1 = 0.

Now, since both F and P are T -invariant, the fact that S2 implies S1 follows from:
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Proposition 7 Let Xi,n and Mi,n be defined as in Theorem 1. If S2 holds, then, for any h in

B3
1(R) and any t in [0, 1], limn→∞ ‖E(h(Sn(t))− µt

γ,F (h) |M0,n)‖1 = 0.

Proof of Proposition 7. We prove the result for Sn(1), the proof of the general case being

unchanged. Let M∞ = σ(
⋃

k,nMk,n). Without loss of generality, suppose that there exists

an array (εi,n)i∈Z of i.i.d random variables conditionally to M∞, with conditional marginal

distribution µ
1/n
γ,F .

Notations 1. Let i, p and n be three integers such that 1 ≤ i ≤ p ≤ n. Set q = [n/p] and

define
Ui,n = Xiq−q+1,n + · · ·+ Xiq,n, Vi,n = U1,n + U2,n + · · ·+ Ui,n

∆i,n = εiq−q+1,n + · · ·+ εiq,n, Γi,n = ∆i,n + ∆i+1,n + · · ·+ ∆p,n .

Notations 2. Let g be any function from R to R. For k and l in [1, p] and any positive integer

n ≥ p, set gk,l;n(x) = g(Vk,n + x + Γl,n), with the conventions gk,p+1;n(x) = g(Vk,n + x) and

g0,l;n(x) = g(Γl,n + x). Afterwards, we shall apply this notation to the successive derivatives of

the function h. For brevity we shall omit the index n and write gk,l for gk,l(0).

Let sn = ε1,n + · · · + εn,n. Since (εi,n)i∈Z is i.i.d conditionally to M∞ with conditional

marginal distribution µ
1/n
γ,F , we have,

E
(
h(Sn(1))− µF (h)

∣∣∣M0,n

)
= E(h(Sn(1))− h(Vp,n)|M0,n) + E(h(Vp,n)− h(Γ1,n)|M0,n)

+ E(h(Γ1,n)− h(sn)|M0,n) . (3.4)

Here, note that |Sn(1)− Vp,n| ≤ (|Xn−p+2,n|+ · · ·+ |Xn,n|). Arguing as in (3.3), we infer that

lim
n→∞

‖h(Sn(1))− h(Vp,n)‖1 = 0 and lim
n→∞

‖h(Γ1,n)− h(sn)‖1 = 0 . (3.5)

In view of (3.5), it remains to control the second term in the right hand side of (3.4). To this

end, we use Lindeberg’s decomposition.

h(Vp,n)− h(Γ1,n) =

p∑
i=1

(hi,i+1 − hi−1,i+1) +

p∑
i=1

(hi−1,i+1 − hi−1,i) . (3.6)

Now, applying Taylor’s integral formula we get that:





hi,i+1 − hi−1,i+1 = Ui,nh
′
i−1,i+1 + U2

i,n

∫ 1

0

(1− t)h′′i−1,i+1(tUi,n)dt

hi−1,i+1 − hi−1,i = −∆i,nh
′
i−1,i+1 − ∆2

i,n

∫ 1

0

(1− t)h′′i−1,i+1(t∆i,n)dt

Set G(x) = E(F (x)). Let ε > 0 and choose a finite grid x0 ≤ x1 ≤ . . . ≤ xN of continuity

points of G such that |xj − xj+1| ≤ ε, G(x0) ≤ ε and G(∞) − G(xN) ≤ ε. Let gi(x) =
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∫ 1

0
(1− t)h′′i−1,i+1(tx)dt. Since h ∈ B3

1(R), gi is bounded by 1/2 and 1/6-lipschitz. Hence





6
∣∣∣gi(xj)−

∫ 1

0

(1− t)h′′i−1,i+1(tUi,n)dt
∣∣∣1Ixj<Ui,n≤xj+1

≤ ε

6
∣∣∣gi(xj)−

∫ 1

0

(1− t)h′′i−1,i+1(t∆i,n)dt
∣∣∣1Ixj<∆i,n≤xj+1

≤ ε .

It follows that

|E(h(Vp,n)− h(Γ1)|M0,n)| ≤ D1 + D2 + D3 + D4 , where (3.7)

D1 =
∣∣∣

p∑
i=1

E((Ui,n −∆i,n)h′i−1,i+1|M0,n)
∣∣∣,

D2 =
∣∣∣

p∑
i=1

N−1∑
j=0

E((U2
i,n1Ixj<Ui,n≤xj+1

−∆2
i,n1Ixj<∆i,n≤xj+1

)gi(xj)|M0,n)
∣∣∣,

D3 =
1

2

p∑
i=1

E(U2
i,n1IUi,n /∈]x0,xN ] + ∆2

i,n1I∆i,n /∈]x0,xN ]|M0,n)

D4 =
ε

6

p∑
i=1

E(U2
i,n + ∆2

i,n|M0,n).

Control of D3 and D4. The probability P being invariant by T , we have

p∑
i=1

‖U2
i,n1IUi,n /∈]x0,xN ]‖1 = E

(S2
n(1/p)

1/p
1ISn(1/p)/∈]x0,xN ]

)
and ε

p∑
i=1

‖U2
i,n‖1 = εE

(S2
n(1/p)

1/p

)
.

Consequently, S2(b) implies both lim
p→∞

lim sup
n→∞

ε

p∑
i=1

‖U2
i,n‖1 = εG(∞) and

lim
p→∞

lim sup
n→∞

p∑
i=1

‖U2
i,n1IUi,n /∈]x0,xN ]‖1 = G(x0) + G(∞)−G(xN) ≤ 2ε .

From Lemma 1, we infer that the same arguments apply to ∆i,n and finally

lim sup
p→∞

lim sup
n→∞

‖D3 + D4‖1 ≤ 2ε +
εG(∞)

3
. (3.8)

Control of D1. Clearly ‖D1‖1 ≤
∑p

i=1 ‖E((Ui,n − ∆i,n)h′i−1,i+1|M0,n)‖1. Define the index

l(i, n) = (i− 1)[n/p] and recall that q = [n/p]. By definition of ∆i,n,

E(∆i,nh
′
i−1,i+1|M∞) = E(h′i−1,i+1|M∞)

∫
xµ

q/n
γ,F (dx) = E(h′i−1,i+1|M∞)

qγ

n
,
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where the random variable E(h′i−1,i+1|M∞) is Ml(i,n),n-measurable and bounded by one. Using

that M0,n ⊆Ml(i,n),n ⊆M∞, we obtain

‖E((Ui,n −∆i,n)h′i−1,i+1|M0,n)‖1 = ‖E((Ui,n − n−1qγ)E(h′i−1,i+1|M∞)|M0,n)‖1

≤ ‖E(Ui,n − n−1qγ|Ml(i,n),n)‖1 .

Since both P and γ are invariant by T , the latter equals ‖E(Sn(1/p)− n−1qγ|M0,n)‖1. Conse-

quently, we infer that ‖D1‖1 ≤ p‖E(Sn(1/p)− n−1qγ|M0,n)‖1 and S2(a) implies that

lim
p→∞

lim sup
n→∞

‖D1‖1 = 0 . (3.9)

Control of D2. We shall prove that, for any nonnegative integer j less than N − 1,

lim
p→∞

lim sup
n→∞

p∑
i=1

∥∥∥E((U2
i,n1Ixj<Ui,n≤xj+1

−∆2
i,n1Ixj<∆i,n≤xj+1

)gi(xj)|M0,n)
∥∥∥

1
= 0 . (3.10)

Define fj(t) = t21Ixj<t≤xj+1
and recall that q = [n/p]. By definition of ∆i,n,

E(∆2
i,n1Ixj<∆i,n≤xj+1

gi(xj)|M∞) = µ
q/n
γ,F (fj)E(gi(xj)|M∞) ,

where the random variable E(gi(xj)|M∞) is Ml(i,n),n-measurable and bounded by one. Since

M0,n ⊆Ml(i,n),n ⊆M∞, we obtain

‖E((U2
i,n1Ixj<Ui,n≤xj+1

−∆2
i,n1Ixj<∆i,n≤xj+1

)gi(xj)|M0,n)‖1

= ‖E((U2
i,n1Ixj<Ui,n≤xj+1

− µ
q/n
γ,F (fj))E(gi(xj)|M∞)|M0,n)‖1

≤ ‖E(U2
i,n1Ixj<Ui,n≤xj+1

− µ
q/n
γ,F (fj)|Ml(i,n),n)‖1 .

Since both µF (fj) and P are invariant by the transformation T , (3.10) follows from

lim
p→∞

lim sup
n→∞

p‖E(fj(Sn(1/p))− µ
q/n
γ,F (fj)|M0,n)‖1 = 0 . (3.11)

We infer from Lemma 1 that limp→∞ lim supn→∞ ‖pµq/n
γ,F (fj)−F (xj+1)+F (xj)‖1 = 0, and (3.11)

follows from S2(b).

End of the proof of Proposition 7. From (3.8), (3.9), (3.10) we infer that, for h in B3
1(R),

limε→0 lim supp→∞ lim supn→∞ ‖D1 + D2 + D3 + D4‖1 = 0 . This fact together with (3.4), (3.5)

and (3.7) imply Proposition 7.

3.3 Sufficient conditions for EQ

In Proposition 8, we give conditions for a WD-array to be EQ. We need a maximal inequality.

Lemma 2 Let Xi,n and Mi,n be as in Theorem 1, and recall that B is either I or {∅, Ω}. Let

X ′
i,n = Xi,n − E(Xi,n|B), S ′n(t) =

∑[nt]
i=1 X ′

i,n and S ′n(t) = sup0≤s≤t |S ′n(s)|. Assume that (Xi,n)

is WD and that lim supn→∞ nE(X ′2
0,n) ≤ C for some positive constant C. Then

lim sup
t→0

lim sup
n→∞

1

t
E((S ′n(t))2) < ∞ . (3.12)
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Proof of Lemma 2. Let S ′∗n (t) = sup0≤s≤t(S
′
n(s))+. Applying Proposition 1(a) of Dedecker and

Rio (2000) to the array (X ′
i,n) with λ = 0, we get

1

t
E

(
(S ′∗n (t))2

) ≤ 8E
(1

t

[nt]∑

k=1

N−1∑
i=0

|X ′
k,nX

′
k+i,n|

)
+ 8n sup

N≤m≤[nt]

∥∥∥X ′
0,n

m∑

k=N

E(X ′
k,n|M0,n)

∥∥∥
1
. (3.13)

Since (Xi,n) is WD, we can choose N(ε) large enough so that R1(N(ε), X) ≤ ε. Now, using the

elementary inequality 2|X ′
k,nX ′

l,n| ≤ X ′2
k,n + X ′2

l,n together with the stationarity of the sequence,

we obtain lim supt→0 lim supn→∞ t−1E((S ′∗n (t))2) ≤ 4N(ε)C +8ε. Of course the same arguments

applies to the array (−X ′
i,n) and (3.12) follows.

Definition 5. Let (Xi,n) and Mi,n be as in Theorem 1. For any nonnegative integer N , define

the variable UN,n(t) by UM,N,n(t) =
∑N−1

i=M

∑[nt]
k=1 |X ′

k−i,n|E(|X ′
k,n| |Mk−i,n). For any 1 ≤ M ≤ N ,

define R4(M, N, X) = lim supt→0 lim supn→∞ t−1E(UM,N,n(t)(1 ∧ S ′n(t))) .

Proposition 8 Let Xi,n, Mi,n and Sn(t) be as Theorem 1. Recall that R3(N,X) has been

defined in Remark 3. Assume that lim supn→∞ nE(X ′2
0,n) ≤ C for some positive constant C.

1. If the array (Xi,n) is WD, then R2(N) ≤ R3(N)+2(M − 1)
√

CR3(N)+2R4(M,N), for

any 1 ≤ M ≤ N . Consequently N2(X) ≤ N3(X) ∨ 1 and (Xi,n) is EQ as soon as R3(N)

tends to zero as N tends to infinity and limM→∞ lim supN→∞ R4(M, N) = 0.

2. For any sequence un of random variables such that nun is equiintegrable,

R3(N) ≤ lim sup
t→0

lim sup
n→∞

1

t

∥∥∥(1 ∧ S ′n(t))

[nt]∑

k=1

(
E(X ′2

k,n|Mk−N,n)− un

)∥∥∥
1
.

In particular R3(N) ≤ lim sup
n→∞

n‖E(X ′2
N,n|M0,n)− E(X ′2

0,n)‖1.

3. For any sequences (ui,n)M≤i<N of random variables such that nu2
i,n is equiintegrable,

R4(M,N) ≤ lim sup
t→0

lim sup
n→∞

1

t

∥∥∥(1 ∧ S ′n(t))
N−1∑
i=M

[nt]∑

k=1

|X ′
k−i,n|(E(|X ′

k,n| |Mk−i,n)− ui,n)
∥∥∥

1
.

In particular R4(M, N) ≤ lim sup
n→∞

N−1∑
i=M

n‖X ′
0,n(E(|X ′

i,n| |M0,n)− E(|X ′
0,n|))‖1.

Proof of 1. For 0 ≤ i < N define Vi,N,n(t) = E(
∑[nt]

k=1 |X ′
k,nX

′
k−i,n|(1 ∧ |S ′k−N |)) and also

Q(i, N) = lim supt→0 lim supn→∞ t−1Vi,N,n(t). By definition of R2(N,X), we have

R2(N, X) ≤ Q(0, N) + 2
M−1∑
i=1

Q(i, N) + 2 lim sup
t→0

lim sup
n→∞

1

t

N−1∑
i=M

Vi,N,n(t) . (3.14)
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Clearly we have the two inequalities V0,N,n(t) ≤ E((1 ∧ |S ′n(t)|) ∑[nt]
i=1 E(X ′2

i,n|Mi−N,n)) and∑N−1
i=M Vi,N,n(t) ≤ E((1∧ |S ′n(t)|)UM,N,n(t)). Consequently Q(0, N) ≤ R3(N). In the same way,

we obtain that

lim sup
t→0

lim sup
n→∞

1

t

N−1∑
i=M

Vi,N,n(t) ≤ R4(M,N) . (3.15)

Now, applying Cauchy-Schwarz twice, we have

Vi,N,n(t) ≤ E
(( [nt]∑

k=1

X ′2
k−i,n

)1/2( [nt]∑

k=1

X ′2
k,n(1 ∧ |S ′k−N |)

)1/2)
≤

√
ntE(X ′2

0,n)
√

V0,N,n(t) ,

and we derive from (??) that Q(i, N) ≤
√

CR3(N). This completes the proof.

Proof of 2. By the triangle inequality, we have

R3(N) ≤ lim sup
t→0

lim sup
n→∞

1

t

∥∥∥(1 ∧ S ′n(t))

[nt]∑

k=1

(
E(X ′2

k,n|Mk−N,n)− un

)∥∥∥
1

+ lim sup
t→0

lim sup
n→∞

E(nun(1 ∧ S ′n(t))) .

By Lemma 2, lim supn→0 E((1 ∧ S ′n(t)) = O(
√

t), so that the second term in right hand is 0.

Proof of 3. By the triangle inequality, we have

R4(M,N) ≤ lim sup
t→0

lim sup
n→∞

1

t

∥∥∥(1 ∧ S ′n(t))
N−1∑
i=M

[nt]∑

k=1

|X ′
k−i,n|

(
E(|X ′

k,n||Mk−i,n)− ui,n

)∥∥∥
1

+ lim sup
t→0

lim sup
n→∞

1

t

N−1∑
i=M

E
(
ui,n(1 ∧ S ′n(t))

[nt]∑

k=1

|X ′
k−i,n|

)
. (3.16)

Next, applying Cauchy-Schwarz inequality, we obtain that

1

t
E

(
ui,n(1 ∧ S ′n(t))

[nt]∑

k=1

|X ′
k−i,n|

)
≤

√
E(nu2

i,n(1 ∧ S ′n(t)))
√

nE(X ′2
0,n) . (3.17)

and we conclude as for 2.

3.4 Proof of Proposition 1 and Corollary 3

We first prove the following Lemma, which is the main result of this section:

Lemma 3 Let Xi,n and Mi,n be as in Theorem 1. Let X ′
i,n = Xi,n − E(Xi,n|B) and S ′n(t) =∑[nt]

i=1 X ′
i,n. For any nonnegative integer N and any function f , let VN,n(k) =

∑k−1
i=k−N+1 X ′

i,n

and ∆f(N, n, k) = f(VN,n(k) + X ′
k,n) − f(VN,n(k)) For any positive number C, let FC be the

class of three-times continuously differentiable functions from R to R such that ‖h′′′‖∞ ≤ C,

‖h′′‖∞ ≤ C, h′(0) = 0 and h(0) = 0. For any function h belonging to FC, we have

lim sup
t→0

lim sup
n→∞

∥∥∥1

t
E

(
h(S ′n(t))−

[nt]∑

k=1

∆h(N,n, k)
∣∣∣M0,n

)∥∥∥
1
≤ C(R1(N, X) + R2(N,X)).
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Proof of Lemma 3. For any integer N , we have the decompositions

h(S ′n(t)) =

[nt]∑

k=1

X ′
k,nh′(S ′k−N,n) +

[nt]∑

k=1

X ′2
k,n

∫ 1

0

(1− s)h′′(S ′k−1,n + sX ′
k,n)ds

+

[nt]∑

k=1

X ′
k,n(S ′k−1,n − S ′k−N,n)

∫ 1

0

h′′(S ′k−N,n + s(S ′k−1,n − S ′k−N,n))ds

and

h(VN,n(k) + X ′
k,n)− h(VN,n(k)) = X ′2

k,n

∫ 1

0

(1− s)h′′(S ′k−1,n − S ′k−N,n + sX ′
k,n)ds

+ X ′
k,n(S ′k−1,n − S ′k−N,n)

∫ 1

0

h′′(s(S ′k−1,n − S ′k−N,n))ds .

From this two decompositions, we get

h(S ′n(t))−
[nt]∑

k=1

∆h(N, n, k) =

[nt]∑

k=1

X ′
k,nh

′(S ′k−N,n) + E1 + E2 , (3.18)

where

E1 =

[nt]∑

k=1

X ′
k,n(S ′k−1,n−S ′k−N,n)

∫ 1

0

h′′(S ′k−N,n+s(S ′k−1,n−S ′k−N,n))−h′′(s(S ′k−1,n−S ′k−N,n))ds

E2 =

[nt]∑

k=1

X ′2
k,n

∫ 1

0

(1− s)(h′′(S ′k−1,n + sX ′
k,n)− h′′(S ′k−1,n − S ′k−N,n + sX ′

k,n))ds .

Let us first study the first term on right hand in (3.18). Obviously

[nt]∑

k=1

X ′
k,nh′(S ′k−N,n) =

[nt]∑
i=1

( [nt]∑

k=N+i

X ′
k,n

)
(h′(S ′i,n)− h′(S ′i−1,n)) .

Taking the conditional expectation with respect to Mi,n and using that h′ is C-lipschitz,

∥∥∥E
( [nt]∑

k=1

X ′
k,nh

′(S ′k−N,n)
∣∣∣M0,n

)∥∥∥
1
≤ C

[nt]∑
i=1

∥∥∥X ′
i,n

[nt]∑

k=N+i

E(X ′
k,n|Mi,n)

∥∥∥
1

≤ tC max
N≤m≤[nt]

n
∥∥∥X ′

0,n

m∑

k=N

E(X ′
k,n|M0,n)

∥∥∥
1
,

the second inequality involving the stationarity of (X ′
i,n). This together with (3.18) yields

lim sup
t→0

lim sup
n→∞

1

t

∥∥∥E
(
h(S ′n(t))−

[nt]∑

k=1

∆h(N, n, k)
∣∣∣M0,n

)∥∥∥
1

≤ CR1(N, X) + lim sup
t→0

lim sup
n→∞

1

t
‖E1 + E2‖1 .
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Now, since h′′ is C-lipschitz and bounded by C, we easily see that

|E1| ≤ 2C

[nt]∑

k=1

|X ′
k,n(S ′k−1,n − S ′k−N,n)|(1 ∧ |S ′k−N,n|) and |E2| ≤ C

[nt]∑

k=1

X ′2
k,n(1 ∧ |S ′k−N,n|) .

This completes the proof of Lemma 3.

End of the Proof of Proposition 1. Assume that (Xi,n) is WD and EQ. Let (Ni)i∈N∗ be a

nondecreasing sequence converging to N0(X) such that A(Ni) holds for any i in N∗.
For any function g denote by ḡ the function y → y2g(y). For any positive integer k, we have

E(V 2
N,n(k)) ≤ N2E(X ′2

0,n). Since by assumption the sequence nE(X ′2
0,n) is bounded, we infer

that, for each N , the sequence t−1
∑[nt]

k=1 E(V 2
N,n(k)) is bounded. This fact together with A(Ni)

implies that, for each i and each continuous bounded function g,

lim
t→0

lim sup
n→∞

∥∥∥∥∥∥
E

(1

t

[nt]∑

k=1

∆ḡ(Ni, n, k)−
∫

gdFNi

∣∣∣M0,n

)
∥∥∥∥∥∥

1

= 0 . (3.19)

If furthermore g is three times continuously differentiable with compactly supported derivatives,

then ḡ belongs to a class FC for a certain constant C. Now Lemma 3 together with (3.19) yields

lim sup
t→0

lim sup
n→∞

∥∥∥∥E
(1

t
ḡ(S ′n(t))−

∫
gdFNi

∣∣∣M0,n

)∥∥∥∥
1

≤ C(R1(Ni, X) + R2(Ni, X)) . (3.20)

From (3.20), we first derive that, for j ≥ i,

lim sup
n→∞

∥∥∥∥E
(∫

gdFNj
−

∫
gdFNi

∣∣∣M0,n

)∥∥∥∥
1

≤ 2C(R1(Ni, X) + R2(Ni, X)) , (3.21)

so that lim supn→∞ ‖E(
∫

gdFNj
− ∫

gdFNi
| ∩k≥n M0,k)‖1 ≤ 2C(R1(Ni, X) + R2(Ni, X)). Ap-

plying the martingale convergence theorem, and bearing in mind that each FNi
is M0,inf-

measurable, it follows from (3.21) that

for j ≥ i,

∥∥∥∥
∫

gdFNj
−

∫
gdFNi

∥∥∥∥
1

≤ 2C(R1(Ni, X) + R2(Ni, X)) .

Hence,
∫

gdFNi
converges in L1 to a M0,inf-measurable limit L(g). Now, from (3.20) again

limt→0 lim supn→∞ ‖E(t−1ḡ(S ′n(t))−L(g)|∩k≥nM0,k)‖1 = 0, and since L(g) isM0,inf-measurable,

lim
t→0

lim sup
n→∞

∥∥∥∥∥E
(1

t
ḡ(S ′n(t))

∣∣∣
⋂

k≥n

M0,k

)
− L(g)

∥∥∥∥∥
1

= 0 . (3.22)

From (3.22), we infer that for nonnegative g, L(g) is almost surely nonnegative. Furthermore,

L(f + g) = L(f) + L(g), L(αg) = αL(g) and E(L(1)) is finite. This enables us to prove the

following lemma:
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Lemma 4 Let C3 be the space of bounded and three times continuously differentiable functions

with compactly supported derivatives. There exists a M0,inf-measurable distribution function F

such that, for any function g in C3, L(g) =
∫

gdF almost surely.

Applying Lemma 4, we obtain that

lim
t→0

lim sup
n→∞

∥∥∥∥E
(1

t
ḡ(S ′n(t))−

∫
gdF

∣∣∣M0,n

)∥∥∥∥
1

= 0 . (3.23)

To prove that (3.23) still holds for g(y) = 1Iy≤x where x is a continuity point of x → E(F (x)),

we proceed as in Inequality (3.1), Section 3.1. Since S2(a) holds, we can apply Remark 1 with

Zn(t) = [nt]E(X0,n), and Proposition 1 follows.

Proof of Lemma 4. Let g : R 7→ [0, 1] be a function of C3, equal to one on ] − ∞, 0] and to

0 on [1, +∞[. Define gn,x(y) = g(n(y − x)). For almost every ω, the sequence L(gn,x)(ω) is

nonincreasing with n. Denote by L(1I]−∞,x])(ω) its limit. Since L(gn,x)(ω) ≤ L(1)(ω) a.s., the

dominated convergence theorem ensures that L(gn,x) converges to L(1I]−∞,x]) in L1. It is clear

that if h ≥ 1I]−∞,x] then L(h) ≥ L(1I]−∞,x]) a.s., and if x ≥ y then L(1I]−∞,x]) ≥ L(1I]−∞,y]) a.s..

Therefore, on a set A of probability 1, the function from Q to R : x → L(1I]−∞,x]) is almost

surely nondecreasing. Define the random function F as follows: for each ω of A, F is the

unique distribution function equal to x → L(1I]−∞,x]) on Q. For ω in Ac, F ≡ 0. According to

our definition, F is a M0,inf-measurable distribution function. Now, let h be any function of

C3 with compact support, and choose a function hε =
∑m

i=1 ai1I]xi,xi+1], with xi ∈ Q, such that

0 ≤ h− hε ≤ ε. Then |L(h)− ∫
hεdF | ≤ εL(1) a.s. and consequently L(h) =

∫
hdF a.s.. This

result extends to any function of C3 and the proof of Lemma 4 is complete.

Proof of Corollary 3. We begin with the first part of Corollary 3. Let (Xi,n) be WD and EQ

with N0(X) = 1. From Proposition 1, we know that (2.4) implies S2. Assume that S2 holds

and let fx(y) = y21Iy≤x. To see that (2.4) holds, it suffices to prove that, for any continuity

point of x → G(x) = E(F (x)),

lim
t→0

lim sup
n→∞

∥∥∥1

t
E

(
fx(S

′
n(t))−

[nt]∑

k=1

fx(X
′
k,n)

∣∣∣M0,n

)∥∥∥
1

= 0 . (3.24)

For any positive ε let hx,ε+ (resp. hx,ε−) be a positive three times continuously differentiable

function, bounded by one, equal to one on the interval ] −∞, x] (resp ] − ∞, x − ε]) and to

zero on [x + ε,∞[ (resp. [x,∞[). The functions fx,ε+(y) = y2hx,ε+(y) and fx,ε−(y) = y2hx,ε−(y)

belong to a class FC for a certain constant C. Using these functions, we have the inequality

1

t

∥∥∥E
(
fx(S

′
n(t))−

[nt]∑

k=1

fx(X
′
k,n)

∣∣∣M0,n

)∥∥∥
1
≤ 1

t

∥∥∥E
(
fx,ε+(S ′n(t))−

[nt]∑

k=1

fx,ε+(Xk,n)
∣∣∣M0,n

)∥∥∥
1

+
1

t
E

( [nt]∑

k=1

(fx,ε+ − fx,ε−)(X ′
k,n)

)
+

1

t
E

(
(fx,ε+ − fx,ε−)(S ′n(t))

)
. (3.25)
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The first term on right hand is well controlled via Lemma 3. From Remark 1 with Zn(t) =

[nt]E(X0,n|B), we infer that S2(b) holds with X ′
i,n instead of Xi,n. Combining this fact with

Lemma 3, we obtain

lim sup
t→0

lim sup
n→∞

1

t
E

( [nt]∑

k=1

(fx,ε+ − fx,ε−)(X ′
k,n)

)
≤ G(x + ε)−G(x− ε) , (3.26)

and Property S2(b) with X ′
i,n instead of Xi,n provides also

lim sup
t→0

lim sup
n→∞

1

t
E

(
(fx,ε+ − fx,ε−)(S ′n(t))

)
≤ G(x + ε)−G(x− ε) . (3.27)

Collecting (3.25), (3.26) and (3.27), we obtain (3.24). This completes the proof of the first part

of Corollary 3. The second part of Corollary 3 follows from the first part by noting that, if

(Xi,n) is an array with i.i.d. rows such that nE(X0,n) converges to γ and nE(X ′2
0,n) is bounded

(here B = {∅, Ω}), then it is WD and EQ with N0(X) = 1.

3.5 Sufficient conditions for WD and proof of Corollary 4.

Proposition 9 Let (Xi,n) and Mi,n be as in Theorem 1. Consider the two conditions:

(a) S2(a) holds, and lim
N→∞

lim sup
n→∞

n

n∑

k=N

‖X ′
0,nE(X ′

k,n|M0,n)‖1 = 0.

(b) There exists an M0,inf-measurable square integrable random variable γ such that the se-

quence ‖nE(X0,n|B)− γ‖1 converges to 0, and for some conjugate exponents p, q,

lim
N→∞

lim sup
n→∞

n‖X ′
0,n‖p

n∑

k=N

‖E(X ′
k,n|M0,n)‖q = 0 .

We have the implications (b) ⇒ (a) ⇒ WD.

Proof of Proposition 9. The fact that (a) ⇒ WD is straightforward. Applying Hölder’s

inequality, we easily see that (b) implies the second condition required in (a). It remains to see

that (b) also implies S2(a), for some γ such that ‖nE(X0,n|B) − γ‖1 converges to 0. Since by

assumption ‖X0,n‖1 tends to zero as n tends to infinity, S2(a) follows from

lim
N→∞

lim sup
n→∞

∥∥∥
n∑

k=N

E(Xk,n|M0,n)− E(X0,n|B)
∥∥∥

1
= lim

N→∞
lim sup

n→∞

∥∥∥
n∑

k=N

E(X ′
k,n|M0,n)

∥∥∥
1

= 0 .

For any conjugate exponent p, q we have the inequality

∥∥∥
n∑

k=N

E(X ′
k,n|M0,n)

∥∥∥
1
≤

(
n‖X ′

0,n‖p

n∑

k=N

‖E(X ′
k,n|M0,n)‖q

)1/2

.

Consequently S2(a) follows from (c) and the proof of Proposition 9 is complete.

Proof of Corollary 4. This corollary follows from Proposition 1 and the following proposition.
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Proposition 10 Let Xi,n, Mi,n and Sn(t) be as in Theorem 1 and let B = {∅, Ω}. Assume

that nE(X0,n) converges to γ.

1. If Cφ(p, 1) (resp. Cρ(1)) holds then (Xi,n)i,n is WD and lim
M→∞

lim sup
N→∞

R4(M,N) = 0.

2. Assume that C0 and Cφ(p, 1) (resp. Cρ(1)) hold. Then R3(N) tends to zero as N →∞.

3. Assume that C0 and Cφ(p,N) (resp. Cρ(N)) hold. If B(N) holds then A(N) holds.

Proof of Proposition 10. We do the proof under Condition Cφ only. In fact, the proof is the

same under Cρ by taking p = q = 2 everywhere and replacing φ
1/p
∞,N by ρ∞,N .

Proof of 1. We first prove that if Condition Cφ(p, 1) holds, then (Xi,n) is WD. It suffices to

see that Condition (b) of Proposition 9 holds. Applying Serfling’s inequality (1968), we have

‖E(X ′
k,n|M0,n)‖q ≤ 2φ

1/p
∞,1(k, n)‖X ′

0,n‖q, and consequently

n‖X ′
0,n‖p

n∑

k=N

‖E(X ′
k,n|M0,n)‖q ≤ 2n‖X ′

0,n‖p‖X ′
0,n‖q

n∑

k=N

φ
1/p
∞,1(k, n) .

This inequality together with Cφ(p, 1) imply that (c) holds, and the array (Xi,n) is WD.

It remains to see that Cφ(p, 1) implies lim
M→∞

lim sup
N→∞

R4(M, N) = 0. From 3 of Proposition 8

R4(M, N) ≤ lim sup
n→∞

n∑
i=M

n‖X ′
0,n(E(|X ′

i,n| |M0,n)− E(|X ′
0,n|))‖1 . (3.28)

Now n‖X ′
0,n(E(|X ′

i,n| |M0,n)− E(|X ′
0,n|))‖1 ≤ 2n‖X ′

0,n‖q‖X ′
0,n‖pφ

1/p
∞,1(i, n) by Serfling’s inequal-

ity. This inequality together with Cφ(p, 1) and (3.28) gives the result.

Proof of 2. By C0, we can choose K large enough so that lim supn→∞ nE(X ′2
0,n1I|X′

0,n|>K) ≤ ε.

Hence, it follows from 2 of Proposition 8 that R3(N) tends to zero as soon as, for any K > 0,

lim
N→∞

lim sup
t→0

lim sup
n→∞

1

t

∥∥∥(1 ∧ S ′n(t))

[nt]∑

k=1

(
E(X ′2

k,n1I|X′
k,n|≤K |Mk−N,n)− E(X ′2

0,n1I|X′
0,n|≤K)

)∥∥∥
1

= 0 .

Since by Lemma 2 lim supn→∞ ‖(1 ∧ S ′n(t))‖2 = O(
√

t), this equality follows from

lim
N→∞

lim sup
t→0

lim sup
n→∞

1

t
Var

( [nt]∑

k=1

E(X ′2
k,n1I|X′

k,n|≤K |Mk−N,n)
)

= 0 . (3.29)

Setting Yk,n = E(X ′2
k,n1I|X′

k,n|≤K |Mk−N,n), we have the elementary inequality

1

t
Var

( [nt]∑

k=1

Yk,n

)
≤ 2n

n∑

k=0

|Cov(Y0,n, Yk,n)| . (3.30)
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Now, by definition of Yk,n and applying Peligrad’s inequality (1983), we have successively

|Cov(Y0,n, Yk,n)| = |Cov(Y0,n, X ′2
k,n1I|X′

k,n|≤K)|
≤ 2φ

1/p
∞,1(k + N, n)‖X ′2

0,n1I|X′
0,n|≤K‖p‖X ′2

0,n1I|X′
0,n|≤K‖q

≤ 2K2φ
1/p
∞,1(k + N, n)‖X ′

0,n‖p‖X ′
0,n‖q .

This last inequality together with (3.30) yields

1

t
Var

( [nt]∑

k=1

E(X ′2
k,n1I|X′

k,n|≤K |Mk−N,n)
)
≤ 4K2n‖X ′

0,n‖p‖X ′
0,n‖q

n∑

k=0

φ
1/p
∞,1(k + N, n) . (3.31)

Now
∑n

k=0 φ
1/p
∞,1(k + N,n) ≤ ∑n

i=N φ
1/p
∞,1(i, n) +

∑n
i=n−N+1 φ

1/p
∞,1(i, n), since φ∞,1(k, n) is nonin-

creasing in k. Combining this inequality with Cφ(p, 1) and (3.31), we infer that (3.29) holds.

Proof of 3. With the notations of Proposition 1, set Zk,n = ∆fx(N, n, k). To prove that B(N)

implies A(N), it suffices to see that

lim
n→∞

∥∥∥
[nt]∑

k=1

(E(Zk,n|M0,n)− E(Zk,n))
∥∥∥

1
= 0 . (3.32)

Since C0 holds and |Zk,n| ≤ 2N(X ′2
k−N+1 + · · · + X ′2

k,n), we can choose K large enough so that

lim supn→∞ nE(|Z0,n|1I|Z0,n|>K) ≤ ε. Therefore, to prove (3.32) it suffices to see that for any K,

lim
n→∞

Var
( [nt]∑

k=1

E(Zk,n1I|Zk,n|≤K |M0,n)
)

= 0 . (3.33)

Setting Wk,n = E(Zk,n1I|Zk,n|≤K |M0,n), we have the elementary inequality

Var
( [nt]∑

k=1

Wk,n

)
≤ 2

[nt]∑
i=1

[nt]∑
j=i

|Cov(Wi,n,Wj,n)| . (3.34)

Now, by definition of Wk,n and applying Peligrad’s inequality (1983), we have successively

|Cov(Wi,n,Wj,n)| = |Cov(Wi,n, Zj,n1I|Zj,n|≤K)|
≤ 2φ

1/p
∞,N ((j −N + 1)+, n) ‖Zi,n1I|Zi,n|≤K‖p‖Zj,n1I|Zj,n|≤K‖q

≤ 8KN2φ
1/p
∞,N((j −N + 1)+, n)‖X ′

0,n‖p‖X ′
0,n‖q .

This last inequality together with (3.34) yields

Var
( [nt]∑

k=1

E(Zk,n1I|Zk,n|≤K |M0,n)
)
≤ (16KN2n‖X ′

0,n‖p‖X ′
0,n‖q)

1

n

[nt]∑
j=1

jφ
1/p
∞,N((j −N + 1)+, n)

and the right hand term tends to zero as soon as limn→∞ n−1
∑

j≤n jφ
1/p
∞,N(j, n) = 0. Finally,

(3.33) holds as soon as Cφ(p,N) holds, which completes the proof.
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3.6 Proof of Proposition 2

The main reference here is Dedecker and Merlevède (2002), Section 4, where it is shown that

property LP with F = λ1I[0,∞[ follows from both finite dimensional convergence and tightness

of some sequences of signed measures. This results extends easily to any M0,inf-measurable

distribution function F . Now, finite dimensional convergence follows from S2 as in Section 4.1

in Dedecker and Merlevède (2002). Furthermore, proceeding as in Section 4.2 of the latter and

applying Theorem 15.3 in Billingsley (1968), tightness holds as soon as, setting δk = 2−k,

for any positive ε, lim
k→∞

lim sup
n→∞

P
(
w′′(Sn, δk) ≥ ε

)
= 0 (3.35)

where w′′(x, δ) = sup{|x(t)− x(t1)| ∧ |x(t2)− x(t)|, t1 ≤ t ≤ t2, t2 − t1 ≤ δ} is defined for x in

D([0, 1]) and δ > 0. Recall that B is I or {∅, Ω}. From S2(a), ‖nE(X0,n|B)− γ‖1 converges to

0. Hence supt∈[0,1] |[nt]E(X0,n|B) − tγ| converges in L1 to 0. Let X ′
i,n = Xi,n − E(Xi,n|B) and

S ′n = {t → S ′n(t) =
∑[nt]

i=1 X ′
i,n}. It follows that (3.35) holds if and only if

for any positive ε, lim
k→∞

lim sup
n→∞

P
(
w′′(S ′n, δk) ≥ ε

)
= 0 (3.36)

Consequently, Proposition 2 follows straightforwadly from the two following lemmas

Lemma 5 Let (X ′
i,n) be an array with stationary rows, such that X ′

0,n converges in probability

to zero. Then (3.36) holds as soon as, for any positive ε,

lim
δ→0

lim sup
n→∞

1

δ
P

(
sup

0≤t≤s≤δ
|S ′n(t)| ∧ |S ′n(δ)− S ′n(s)| ≥ ε

)
= 0 . (3.37)

Moreover (3.37) is satisfied provided that

1. For any positive η, there exists K such that lim
δ→0

lim sup
n→∞

1

δ
P(|S ′n(δ)| > K) ≤ η.

2. For any real a, lim
δ→0

lim sup
n→∞

1

δ
P

(
sup

0≤t≤s≤δ
|S ′n(t)| ∧ |S ′n(s)− a| ≥ 2ε, |S ′n(δ)− a| ≤ ε

)
= 0.

Lemma 6 Let (Xi,n) be a WD and 1-EQ array. Let a be a real number and ga be a function

from R to [0, 1] such that: ga is two times continuously differentiable, ga(x) = 1 if |x − a| ≤ ε

and ga(x) = 0 if |x− a| ≥ 2ε. Let fa(x, y) = 1I|x|∧|y−a|≥2ε. Then

lim
δ→0

lim sup
n→∞

1

δ
E

(
sup

0≤t≤s≤δ
fa

(
S ′n(t), S ′n(s)

)
ga(S

′
n(δ))

)
= 0 . (3.38)

Proof of Lemma 5. For any integer 0 ≤ j ≤ 2k − 1, let Ij,k = [j2−k, (j + 1)2−k]. If t2 − t1 ≤ δk,

there are two possibility: either both t1 and t2 belongs to the same Ij,k or t1 belongs to Ij,k

and t2 to Ij+1,k. In the first case, |x(t) − x(t1)| ∧ |x(t2) − x(t)| ≤ A1 + A2 + A3 + A4, with

A1 = |x(t)−x(j2−k)|∧ |x((j +1)2−k)−x(t)|, A2 = |x(t)−x(j2−k)|∧ |x((j +1)2−k)−x(t2)|, and

A3 = |x(t1)− x(j2−k)| ∧ |x((j + 1)2−k)− x(t)|, A4 = |x(t1)− x(j2−k)| ∧ |x((j + 1)2−k)− x(t2)|.
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In the second case |x(t) − x(t1)| ∧ |x(t2) − x(t)| ≤ B1 + B2 + B3 + B4, with the quantities

B1 = |x(t)− x(j2−k)| ∧ |x((j + 2)2−k)− x(t)|, B2 = |x(t)− x(j2−k)| ∧ |x((j + 2)2−k)− x(t2)|,
B3 = |x(t1)− x(j2−k)| ∧ |x((j + 2)2−k)− x(t)|, B4 = |x(t1)− x(j2−k)| ∧ |x((j + 2)2−k)− x(t2)|.
Define the quantities vk,j(x), wk,j(x), vk(x) and wk(x) by

vk,j(x) = sup
j2−k≤t≤s≤(j+1)2−k

|x(t)− x(j2−k)| ∧ |x((j + 1)2−k)− x(s)|

wk,j(x) = sup
j2−k≤t≤s≤(j+2)2−k

|x(t)− x(j2−k)| ∧ |x((j + 2)2−k)− x(s)|

vk(x) = max
0≤j≤2k−1

vk,j(x) and wk,j(x) = max
0≤j≤2k−1

wk,j(x) .

From this definition P(w′′(S ′n, δk) ≥ 4ε) ≤ P(vk(S
′
n) ≥ ε) + P(wk(S

′
n) ≥ ε). By subbaditivity

P(vk(S
′
n) ≥ ε) ≤ ∑2k−1

j=0 P (vk,j(S
′
n) ≥ ε) and P(wk(S

′
n) ≥ ε) ≤ ∑2k−1

j=0 P (wk,j(S
′
n) ≥ ε). Using

both the stationarity and the fact that X ′
0,n converges in probability to zero,

lim sup
n→∞

P(vk,j(S
′
n) ≥ ε) = lim sup

n→∞
P
(

sup
0≤t≤s≤2−k

|S ′n(t)| ∧ |S ′n(2−k)− S ′n(s)| ≥ ε
)

lim sup
n→∞

P(wk,j(S
′
n) ≥ ε) = lim sup

n→∞
P
(

sup
0≤t≤s≤2−k+1

|S ′n(t)| ∧ |S ′n(2−k+1)− S ′n(s)| ≥ ε
)
.

From the two preceding remarks, it is clear that (3.36) follows from (3.37). Now let (Ai)i∈I be a

finite covering of [−K, K] by intervals with centers (ai)i∈I and length ε. We have the inequality

P
(

sup
0≤t≤s≤δ

|S ′n(t)| ∧ |S ′n(δ)− S ′n(s)| ≥ 3ε

)
≤ P(|S ′n(δ)| > K)

+
∑
i∈I

P
(

sup
0≤t≤s≤δ

|S ′n(t)| ∧ |S ′n(δ)− S ′n(s)| ≥ 3ε, |S ′n(δ)− ai| ≤ ε

)
(3.39)

If |S ′n(s)− S ′n(δ)| ≥ 3ε and |S ′n(δ)− a| ≤ ε then |S ′n(s)− a| ≥ 2ε. Combining this fact together

with (3.39), we infer that (3.37) follows from 1. and 2. of Lemma 5. This completes the proof.

Proof of Lemma 6. Let f ∗(k) = max{fa(S
′
i,n, S

′
j,n), 1 ≤ i ≤ j ≤ k} if k > 0 and f ∗(k) = 0

otherwise. Let g(k) = ga(S
′
k,n) if k > 0 and g(k) = ga(0) otherwise. Using these notations,

(3.38) becomes limδ→0 lim supn→∞ δ−1E (f ∗([nδ])g([nδ])) = 0. We make the decomposition

f ∗([nδ])g([nδ]) =

[nδ]∑

k=1

g(k)(f ∗(k) − f ∗(k − 1)) +

[nδ]∑

k=1

f ∗(k − 1)(g(k) − g(k − 1)) . (3.40)

To control the first term, note that for positive k,

f ∗(k)− f ∗(k − 1) ≤ max
1≤i≤k

fa(S
′
i,n, S

′
k,n) . (3.41)

Since fa(x, y)ga(y) = 0, (3.41) implies that the first term on right hand in (3.40) is 0. Hence

f ∗([nδ])g([nδ]) =

[nδ]∑

k=1

f ∗(k − 1)
(
g(k)− g(k − 1)

)
. (3.42)
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Let C = ‖g′′a‖∞ and g′(k) = g′a(S
′
k,n). Applying Taylor’s formula, we obtain from (3.42) that

f ∗([nδ])g([nδ]) ≤
[nδ]∑

k=1

f ∗(k − 1)g′(k − 1)X ′
k,n +

C

2

[nδ]∑

k=1

f ∗(k − 1)X ′2
k,n . (3.43)

Now |f ∗(k)g′(k)− f ∗(k− 1)g′(k− 1)| ≤ f ∗(k− 1)|g′(k)− g′(k− 1)|+ |g′(k)|(f ∗(k)− f ∗(k− 1)).

Since g′a(S
′
k,n)fa(S

′
i,n, S

′
k,n) = 0, we infer from (3.41) that the second term on right hand is zero.

Since furthermore |g′(k)− g′(k − 1)| ≤ C|X ′
k,n|, we easily obtain that for positive k,

|f ∗(k)g′(k)− f ∗(k − 1)g′(k − 1)| ≤ Cf ∗(k − 1)|X ′
k,n| . (3.44)

From (3.43) and (3.44), we have, for any positive integer N ,

f ∗([nδ])g([nδ]) ≤
[nδ]∑

k=1

X ′
k,nf ∗(k −N)g′(k −N) + C

[nδ]∑

k=1

k∑

i=(k−N)++1

|X ′
k,nX ′

i,n|f ∗(i− 1) . (3.45)

Let us first study the first term on right hand in Inequality (3.45). Setting h(k) = f ∗(k)g′(k),

we have
∑[nδ]

k=1 X ′
k,nh(k − N) =

∑[nδ]
i=1(

∑[nδ]
k=N+i X

′
k,n)(h(i) − h(i − 1)). Taking the conditional

expectation with respect to Mi,n and using again (3.44), we obtain

∣∣∣E
( [nδ]∑

k=1

X ′
k,nh(k −N)

)∣∣∣ ≤ C

[nδ]∑
i=1

∥∥∥X ′
i,n

[nδ]∑

k=N+i

E(X ′
k,n|Mi,n)

∥∥∥
1

≤ Cδ max
N≤m≤[nδ]

n
∥∥∥X ′

0,n

m∑

k=N

E(X ′
k,n|M0,n)

∥∥∥
1
,

the second inequality involving the stationarity of (X ′
i,n). This together with (3.45) yields

lim sup
δ→0

lim sup
n→∞

1

δ
E (f ∗([nδ])g([nδ])) ≤ CR1(N,X) + lim sup

δ→0
lim sup

n→∞

C

δ
‖Q(n, δ)‖1 , (3.46)

where R1(N,X) is defined in (2.2) and, Q(n, δ) =
∑[nδ]

k=1

∑k
i=(k−N)++1 |X ′

k,nX
′
i,n|f ∗(i−1). Using

the basic inequality 2|X ′
k,nX ′

i,n| ≤ X ′2
k,n + X ′2

i,n, and the fact that f ∗ increases, we obtain

Q(n, δ) ≤ 1

2

[nδ]∑

k=1

k∑

i=(k−N)++1

X ′2
k,nf

∗(i− 1) +
N

2

[nδ]∑
i=1

X ′2
i,nf

∗(i− 1) ≤ N

[nδ]∑

k=1

X ′2
k,nf

∗(k − 1) . (3.47)

Set S ′k,n = max{|S ′1,n|, . . . , |S ′k,n|}. Since f ∗(k − 1) ≤ (2ε)−1(S ′k−1,n ∧ 1), Inequality (3.47)

becomes, letting C ′ = (2ε)−1 ∨ 1,

Q(n, δ) ≤ NC ′
[nδ]∑

k=1

X ′2
k,n(S ′k−1,n ∧ 1) . (3.48)

Since (Xi,n) is 1-EQ, lim supδ→0 lim supn→∞
1
δ
E (f ∗([nδ])g([nδ])) ≤ CR1(N, X) by (3.46) and

(3.48). Since (Xi,n) is WD, the last term is as small as we wish. This completes the proof.
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3.7 Proofs of Propositions 3, 4, 5, 6 and of Corollary 6

Proof of Proposition 3. Assume that R3(N, X) tends to zero as N tends to infinity and that

L1(N3) holds. Note that (S ′k,n∧1)−(S ′k−1,n∧1) ≤ (|X ′
k,n|∧1). Hence, for P ≤ N3∨1, we have

that
∑[nt]

k=1 X ′2
k,n(S ′k−1,n ∧ 1) ≤ ∑[nt]

k=1 X ′2
k,n(S ′k−P,n ∧ 1) +

∑[nt]
k=1

∑k−1
i=k−P+1 X ′2

k,n(1∧ |X ′
i,n|). From

L1(N3), the expectation of the second term on right hand vanishes as n increases. Consequently,

it remains to study the first term. Taking the conditional expectation with respect to Mk−P,n,

we obtain
∑[nt]

k=1 E(X ′2
k,n(S ′k−P,n ∧ 1)) ≤ E((S ′n(t) ∧ 1)

∑[nt]
k=1 E(X ′2

k,n|Mk−P,n)). Consequently,

lim sup
t→0

lim sup
n→∞

1

t
E

( [nt]∑

k=1

X ′2
k,n(S ′k−1,n ∧ 1)

)
≤ R3(P, X) .

Since R3(P,X) tends to 0 as P tends to N3, the result follows.

Proof of Proposition 5. We have to prove that if (Xi,n) is WD and 0-EQ, then S2(b1) holds

with a = 0. From Remark 1 applied to Zn(t) = [nt]E(X0,n|B), it is equivalent to prove this

with X ′
i,n = Xi,n − E(X ′

i,n|B) and S ′n(t) =
∑[nt]

i=1 X ′
i,n. Write first

E
(S ′2n (t)

t
(1 ∧ |S ′n(t)|)

)
≤ E

(S ′2n (t)

t
1I|S′n(t)|>2ε

)
+

2ε

t
E(S ′2n (t)) ≤ 4

t
E(|S ′n(t)| − ε)2

+ +
2ε

t
E(S ′2n (t)).

(3.49)

From Lemma 2, t−1E(S ′2n (t)) is bounded, so that the second term on right hand is a small as

we wish. Consequently, we infer from (3.49) that S2(b1) holds with a = 0 as soon as,

for any positive ε, lim
t→0

lim sup
n→∞

1

t
E

(
(|S ′n(t)| − ε)2

+

)
= 0 . (3.50)

We shall prove that (3.50) holds with S ′n(t) instead of |S ′n(t)|. Let G(t, ε, n) = {S ′∗n (t) > ε}.
From Proposition 1(a) in Dedecker and Rio (2000), we have, for any positive integer N ,

1

t
E

(
(S ′∗n (t)− ε)2

+

) ≤ 8E
(
1IG(t,ε,n)

1

t

[nt]∑

k=1

N−1∑
i=0

|X ′
k,nX ′

k+i,n|
)

+ 8n sup
N≤m≤[nt]

∥∥∥X ′
0,n

m∑

k=N+1

E(X ′
k,n|M0,n)

∥∥∥
1
.

(3.51)

Since (Xi,n) is WD, the second term on right hand is as small as we wish by choosing N

large enough. To control the first term, note that G(t, ε, n) ≤ ε−1(1 ∧ S ′n(t)) Since fur-

thermore 2|X ′
k,nX ′

l,n| ≤ X ′2
k,n + X ′2

l,n and (Xi,n) is 0-EQ we infer that, for any positive ε,

limt→0 lim supn→∞ t−1E(1IG(t,ε,n)

∑[nt]
k=1

∑N−1
i=0 |X ′

k,nX
′
k+i,n|) = 0. Consequently, (3.51) yields

for any positive ε, lim
t→0

lim sup
n→∞

1

t
E

(
(S ′∗n (t)− ε)2

+

)
= 0 . (3.52)

Of course, the same arguments apply to the array (−Xi,n), so that (3.52) holds for S ′n(t). This

proves (3.50) and hence S2(b1). The first item of Proposition 5 follows directly from Lemma 3

by noting that the function x → x2 belongs to F2 and that R2(N,X) = 0 for any positive integer

N (so that N0 = N1). The second item of Proposition 5 follows directly from Proposition 1 by

noting that if k ≥ N , then (VN,n(k)+X ′
k,n)2−(VN,n(k))2 = X ′2

k,n+2X ′
k,n(X ′

k−1,n+· · ·+X ′
k−N+1,n).
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Proof of Proposition 4. Let (Xi,n) be a WD array such that nE(X ′2
0,n) is bounded. Assume

that C1 holds and that L1(N) is satisfied for some N in N∗ such that R1(N,X) = 0. For any

positive integer P , we have

R1(1, X) ≤ lim sup
n→∞

n

P−1∑

k=1

‖X ′
0,nX ′

k,n‖1 + R1(P, X) . (3.53)

Choose a finite integer P ≤ N such that R(P, X) ≤ ε. We have the inequality n‖X ′
0,nX ′

k,n‖1 ≤
n‖X ′

0,n‖2‖X ′
k,n1I|X′

0,n|>ε‖2 + n‖X ′
k,n‖2‖X ′

0,n1I|X′
0,n|≤ε‖2. Now, L1(N) means exactly that for any

positive ε and any integer 1 ≤ k < N , the sequence n1/2‖X ′
k,n1I|X′

0,n|>ε‖2 tends to zero. Letting

first n go to infinity and next ε go to zero, Condition C1 implies that n1/2‖X ′
0,n1I|X′

0,n|≤ε‖2 van-

ishes. Since furthermore n1/2‖X ′
0,n‖2 = n1/2‖X ′

k,n‖2 is bounded, we conclude that n‖X ′
0,nX

′
k,n‖1

tends to zero. From (3.53) we infer that R(1, X) = 0, and consequently N1(X) = 1.

Proofs of Proposition 6 and Corollary 6. Assume that (Xi,n) is WD with N1(X) = 1 and

1-EQ. From Corollary 3, P1(γ, a, λ) holds if and only if (2.4) holds with F = λ1I[a,∞[. Now

(2.4) holds for F if and only if C2 and C3 holds. This completes the proof of Proposition 6.

Since C2 with P(a = 0) = 0 implies C1, Corollary 6 follows from Propositions 4, 6 and 3.
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Ann. Inst. H. Poincaré Probab. Statist. 36 1-34.

[8] Eagleson, G. K. (1975) Martingale convergence to mixture of infinitely divisible laws. Ann. Probab.
3 557-562.

[9] Eagleson, G. K. (1976a) Some simple conditions for limit theorems to be mixing. Teor. Verojatnost.
i Primenen. 21 653-660.

29



[10] Eagleson, G. K. (1976b) Martingale convergence to the Poisson distribution. Časopis Pěst. Mat.
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