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Abstract
Let X be a real-valued random variable and M a σ-algebra. We show that

the minimum L1-distance between X and a random variable distributed as
X and independant of M can be viewed as a dependence coefficient τ(M, X)
whose definition is comparable (but different) to that of the usual β-mixing co-
efficient between M and σ(X). We compare this new coefficient to other well
known measures of dependence, and we show that it can be easily computed
in various situations, such as causal Bernoulli shifts or stable Markov chains
defined via iterative random maps. Next, we use coupling techniques to ob-
tain Bennett and Rosenthal-type inequalities for partial sums of τ -dependent
sequences. The former is used to prove a strong invariance principle for partial
sums.
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1 Introduction

To define the dependence coefficient τ between a real-valued random variable X and

a σ-algebra M, we need the following classical result about conditional probability

(see for instance Billingsley (1995) Theorem 33.3).

Lemma 1 Let (Ω,A,P) be a probability space, M a σ-algebra of A and X a real-

valued random variable with distribution PX . There exists a function PX|M from

B(R)× Ω to [0, 1] such that
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1. For any ω in Ω, PX|M(., ω) is a probability measure on B(R).

2. For any A ∈ B(R), PX|M(A, .) is a version of E(1IX∈A|M).

The function PX|M is a conditional distribution of X given M. We denote by

PX|M(A) the random variable PX|M(A, .).

According to Proposition (3.22) (III) in Bradley (2002) the function

V (PX|M) = sup
{∣∣∣

∫
f(x)PX|M(dx)−

∫
f(x)PX(dx)

∣∣∣ , f s. t. ‖f‖∞ ≤ 1
}

(1.1)

is a M-measurable random variable and the usual β-mixing coefficient between M
and σ(X) may be defined as

β(M, σ(X)) =
1

2
‖V (PX|M)‖1 . (1.2)

One of the most important properties of that coefficient is Berbee’s coupling lemma

(1979): if Ω is rich enough, there exists a random variable X∗ independent of M
and distributed as X such that P(X 6= X∗) = β(M, σ(X)).

Unfortunately, many simple Markov chains are not β-mixing (which means that

β(σ(X0), σ(Xn)) does not tend to zero as n tends to infinity). For instance, let Xn

be the stationary solution of

Xn = f(Xn−1) + εn (1.3)

where f is k-lipschitz with k < 1 and the innovations are i.i.d. and integrable.

It is well known that the chain is geometrically β-mixing if the distribution of εi

has an absolutely continuous component which is bounded away from zero in a

neighborhood of the origin. However if we omit the assumption on the innovations,

this may be no longer true (see for instance the counter-example of Andrews (1984)).

In this paper we introduce a new dependence coefficient wich is easier to compute

than β. The definition is similar to that of β except that the supremum in (1.1) is

taken over the class Λ1(R) of 1-Lipschitz functions from R to R. If the real-valued

random variable X is integrable, we shall see in Lemma 2 that the function

W (PX|M) = sup
{∣∣∣

∫
f(x)PX|M(dx)−

∫
f(x)PX(dx)

∣∣∣ , f ∈ Λ1(R)
}

, (1.4)

is a M-measurable random variable. The coefficient τ is now defined by

τ(M, X) = ‖W (PX|M)‖1 . (1.5)

As for β, this definition does not depend on the choice of the conditional distribution.

For the model described in (1.3) we obtain the bound τ(σ(X0), Xn) ≤ Ckn without

any additional assumption on the distribution of the innovations (the constant C is

smaller than 2‖X0‖1).
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The main result of Section 2 is the following coupling lemma: if Ω is rich enough,

the coefficient τ(M, X) is the infimum of ‖X−Y ‖1 where Y is independent ofM and

distributed as X, and this infimum is reached for some particular random variable

X∗ introduced by Major (1978). We also give a less precise result when the random

variable X takes its values in a Banach space E. In Section 3 we compare τ to the

strong mixing coefficient of Rosenblatt (1956) and to the s-dependence coefficient

introduced in Coulon-Prieur and Doukhan (2000). To conclude this section we give

three large classes of examples for which the coefficient τ can be easily computed. In

Section 4 we establish some deviation inequalities for the maximum of partial sums.

Theorem 1 (resp. Corollary 1) extends Bennett’s inequality (resp. Rosenthal’s

inequality) to τ -dependent sequences. Using the comparison between τ and α, we

obtain the same bounds as those given in Rio (2000) for strongly mixing sequences.

These inequalities are the main tools to prove a strong invariance principle for partial

sums of τ -dependent sequences (Section 6).

2 Coupling

The following lemma ensures that the coefficient τ defined in (1.5) does not depend

on the choice of the conditional probability.

Lemma 2 Let (Ω,A,P) be a probability space, M a σ-algebra of A and X an in-

tegrable real-valued random variable with distribution PX . The function W (PX|M)

defined in (1.4) is a M-measurable random variable. Furthermore, if P ′
X|M is an-

other conditional distribution of X given M, then W (PX|M) = W (P ′
X|M) P-almost

surely.

Proof. It is easy to see that there exists a countable subset Λ1,0(R) of Λ1(R) such

that: for any f in Λ1(R), there exists a sequence fn in Λ1,0(R) such that fn(x)

converges to f(x) for any real x. Since X is integrable, we infer from the dominated

convergence theorem that

W (PX|M) = sup
{∣∣∣

∫
f(x)PX|M(dx)−

∫
f(x)PX(dx)

∣∣∣ , f ∈ Λ1,0(R)
}

. (2.1)

It follows that W (PX|M) is a M-measurable random variable.

Now, if P ′
X|M is another conditional probability of X given M, we see that for

any f in Λ1(R), P-almost surely

∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣ =

∣∣∣
∫

f(x)P ′
X|M(dx)−

∫
f(x)PX(dx)

∣∣∣ .

Since Λ1,0(R) is countable, we infer from (2.1) that W (PX|M) = W (P ′
X|M) P-almost

surely.
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In Definitions 1 below, we extend the definition of τ to Banach spaces and we

introduce some well known coefficients.

Definitions 1. Given a Banach space (E, |.|), let Λ1(E) be the set of 1-Lipschitz

functions from E to R. Let (Ω,A,P) be a probability space. We say that a random

variable X with values in E is integrable if the variable |X| is integrable, and we

write ‖X‖1 = E(|X|). For any σ-algebra M of A and any E-valued integrable

variable X, define

τ(M, X) = sup{τ(M, f(X)), f ∈ Λ1(E)} . (2.2)

The s-dependence coefficient of Coulon-Prieur and Doukhan (2000) is defined as

θ(M, X) = sup{‖E(f(X)|M)− E(f(X))‖1, f ∈ Λ1(E)} . (2.3)

If X is real-valued, define the strong mixing coefficient

α(M, X) = sup{|P(A ∩X ≤ t)− P(A)P(X ≤ t)| , A ∈M, t ∈ R} . (2.4)

If M and U are two σ-algebra of A, the strong mixing coefficient of Rosenblatt

(1956) is defined by

α(M,U) = sup{|P(A ∩B)− P(A)P(B)| , A ∈M, B ∈ U} . (2.5)

The following elementary lemma will be very usefull to obtain upper bounds for

the coefficient τ (see Section 3.1).

Lemma 3 Let (Ω,A,P) be a probability space, X an integrable random variable

with values in a Banach space (E, |.|), and M a σ-algebra of A. If Y is a random

variable distributed as X and independent of M, then

τ(M, X) ≤ ‖X − Y ‖1 . (2.6)

Proof. If Y is a random variable independent of M and distributed as X, then for

any function f of Λ1(E) and any function g of Λ1(R) the random variable

T (g) =
∣∣∣
∫

g(x)Pf(X)|M(dx)−
∫

g(x)Pf(X)(dx)
∣∣∣

is a version of |E(g ◦ f(X)|M) − E(g ◦ f(Y )|M)|. Consequently T (g) is P-almost

surely smaller than any version of E(|X − Y ||M). From (2.1), we infer that

W (Pf(X)|M) = sup{T (g), g ∈ Λ1,0(R)} is P-almost surely smaller than any ver-

sion of E(|X − Y ||M). By definition τ(M, f(X)) = ‖W (Pf(X)|M)‖1, which implies

that τ(M, f(X)) ≤ ‖X − Y ‖1. This being true for any function f of Λ1(E), the

result follows.

4



The main result of this section is that if X is real-valued and Ω is rich enough,

the equality can be reached in (2.6). This result is based on Major’s quantile trans-

formation (1978) which we recall in Lemma 4 below (see also Rio (2000), page 161).

Notation 1. For any distribution function F , define the generalized inverse as

follows: for any u in [0, 1], F−1(u) = inf{t ∈ R : F (t) ≥ u}. It is clear that F (t) ≥ u

if and only if t ≥ F−1(u).

Let (Ω,A,P) be a probability space, M a σ-algebra of A and X a real-valued

random variable. Let FM(t, ω) = PX|M(] − ∞, t], ω). For any ω, FM(., ω) is a

distribution function, and for any t, FM(t, .) is a M-measurable random variable.

For any ω, define the generalized inverse F−1
M (u, ω) as in Notation 1. From the

equality {ω : t ≥ F−1
M (u, ω)} = {ω : FM(t, ω) ≥ u}, we infer that F−1

M (u, .) is M-

measurable. In the same way, {(t, ω) : FM(t, ω) ≥ u} = {(t, ω) : t ≥ F−1
M (u, ω)},

which implies that the mapping (t, ω) → FM(t, ω) is measurable with respect to

B(R) ⊗M. The same arguments imply that the mapping (u, ω) → F−1
M (u, ω) is

measurable with respect to B([0, 1]) ⊗ M. Denote by FM(t) (resp.F−1
M (u)) the

random variable FM(t, .) (resp. F−1
M (u, .)), and let FM(t− 0) = sups<t FM(s).

Lemma 4 Let (Ω,A,P) be a probability space, M a σ-algebra of A and X an

integrable real-valued random variable. Assume that there exists a random variable

δ uniformly distributed over [0, 1], independent of the σ-algebra generated by X and

M. Define

U = FM(X − 0) + δ(FM(X)− FM(X − 0)) .

The random variable U is uniformly distributed over [0, 1] and independent of M.

Moreover F−1
M (U) = X P-almost surely.

With the help of Lemma 4, we can now establish our coupling result

Lemma 5 Let (Ω,A,P) be a probability space, X an integrable real-valued random

variable, and M a σ-algebra of A. Assume that there exists a random variable δ

uniformly distributed over [0, 1], independent of the σ-algebra generated by X andM.

Then there exists a random variable X∗, measurable with respect to M∨σ(X)∨σ(δ),

independent of M and distributed as X, such that

‖X −X∗‖1 = τ(M, X) . (2.7)

Remark 1. From Lemma 5, we infer that ‖X −X∗‖1 is the infimum of ‖X − Y ‖1

where Y is independent of M and distributed as X. This result is due to Major

(1978).

Proof. Let U be the random variable defined in Lemma 4 and F be the distribution

function of X. The random variable X∗ = F−1(U) is measurable with respect to
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M ∨ σ(X) ∨ σ(δ), independent of M and distributed as X. Since X = F−1
M (U)

P-almost surely, we have

‖X −X∗‖1 = E
(∫ 1

0

|F−1
M (u)− F−1(u)|du

)
. (2.8)

For two distribution functions F and G, denote by M(F, G) the set of all prob-

ability measures on R× R with marginals F and G. Define

d(F,G) = inf

{∫
|x− y|µ(dx, dy) : µ ∈ M(F, G)

}
,

and recall that (see Dudley (1989), Section 11.8, Problems 1 and 2 page 333)

d(F,G) =

∫

R
|F (t)−G(t)|dt =

∫ 1

0

|F−1(u)−G−1(u)|du . (2.9)

On the other hand, Kantorovich and Rubinstein (Theorem 11.8.2 in Dudley (1989))

have proved that

d(F, G) = sup
{∣∣∣

∫
fdF −

∫
fdG

∣∣∣ : f ∈ Λ1(R)
}

. (2.10)

Combining (2.8), (2.9) and (2.10), we have that

‖X −X∗‖1 = E
(
sup

{∣∣∣
∫

fdFM −
∫

fdF
∣∣∣ : f ∈ Λ1(R)

})
,

and the proof is complete.

3 Comparison of coefficients and examples

Starting from Lemma 5, we can compare the coefficients θ(M, X), τ(M, X) and

α(M, X) when X is some real-valued random variable.

Notation 2. Let X be some random variable with values in some Banach space

(E, |.|). Let H|X|(x) = P(|X| > x), and

– Q|X| the generalized inverse of H|X|: if u ∈ [0, 1], Q|X|(u)=inf{t∈R : H|X|(t) ≤ u}.
– G|X| the inverse of x → ∫ x

0
Q|X|(u)du.

– L|X| the inverse of x → xG|X|(x).

Lemma 6 Let (Ω,A,P) be a probability space, X an integrable real-valued random

variable, and M a σ-algebra of A. The following inequalities hold

τ(M, X) ≤ 2

∫ 2α(M,X)

0

Q|X|(u)du (3.1)

θ(M, X) ≤ τ(M, X) ≤ 4L|X|(θ(M, X)) . (3.2)
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Remark 2. In particular, if p and q are two conjugate exponents, (3.1) yields the

upper bound τ(M, X) ≤ 2‖X‖p(2α(M, X))1/q.

Proof. To obtain (3.1), we use a recent result of Peligrad (2002). In (c) of Theorem

1 of her paper, she proves that if X∗ is the random variable of Lemma 5,

‖X −X∗‖1 ≤ 4

∫ α(M,X)

0

Q|X|(u)du ,

which is not exactly the required inequality. After a carefull reading of the proof,

we see that Peligrad establishes that if X+ = X ∨ 0 and X− = (−X) ∨ 0,

‖X −X∗‖1 ≤ 2

∫ ∞

0

(α(M, X) ∧ P(X+ > u) + α(M, X) ∧ P(X− > u)) du .

Since a ∧ b + c ∧ d ≤ (a + c) ∧ (b + d), we obtain that

‖X −X∗‖1 ≤ 2

∫ ∞

0

(2α(M, X)) ∧H|X|(u)du ≤ 2

∫ ∞

0

∫ 2α(M,X)

0

1It<H|X|(u)dt du ,

and the result follows by applying Fubini and by noting that t < H|X|(u) if and only

if u < Q|X|(t).
To obtain (3.2), note that from (2.8) and (2.9),

‖X −X∗‖1 =

∫

R
‖E(1IX≤t|M)− P(X ≤ t)‖1 dt

=

∫ ∞

0

‖E(1IX+≤t|M)− P(X+ ≤ t)‖1 dt

+

∫ ∞

0

‖E(1IX−<t|M)− P(X− < t)‖1 dt . (3.3)

For any positive ε, let f t
ε (x) = 1Ix≤t + ε−1(t + ε− x)1It<x≤t+ε. Clearly

‖E(1IX+≤t|M)− P(X+ ≤ t)‖1 ≤ ‖E(f t
ε (X+)|M)− E(f t

ε (X+))‖1+ 2P(X+∈ [t, t + ε])

≤ ε−1θ(M, X) ∧ 2P(X+ > t) + 2P(X+∈ [t, t + ε])

and the same is true for X−. Integrating (3.3) and applying Fubini, we have that

‖X −X∗‖1 ≤
∫ ∞

0

ε−1θ(M, X) ∧ 2P(X+ > t) + ε−1θ(M, X) ∧ 2P(X− > t) dt + 2ε

≤ 2

∫ ∞

0

ε−1θ(M, X) ∧ P(|X| > t) dt + 2ε ,

and consequently

‖X −X∗‖1 ≤ 2

∫ ε−1θ(M,X)

0

Q|X|(u)du + 2ε .
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The two terms on right hand are equal for ε = G−1
|X|(θ(M, X)/ε) which means that

ε = L|X|(θ(M, X)). This completes the proof.

We now define the coefficients θ, τ and α for a sequence (Xi)i>0 of Banach-valued

random variables.

Definitions 2. Let (E, |.|) be some Banach space. On Ek we put the norm |.|1
defined by |x− y|1 = |x1− y1|+ · · ·+ |xk− yk|. Let (Ω,A,P) be a probability space,

(Xi)i>0 a sequence of E-valued random variables and Mi a sequence of σ-algebra of

A. For any positive integer k, define

θk(i) = max
1≤l≤k

1

l
sup{θ(Mp, (Xj1 , . . . , Xjl

)), p+i ≤ j1 < · · · < jl} and θ(i) = sup
k≥0

θk(i).

Define τk(i) and τ(i) in the same way. As usual, the coefficient α(i) is defined by

αk(i) = sup{α(Mp, σ(Xj1 , . . . , Xjk
)), p + i ≤ j1 < · · · < jk} and α(i) = sup

k≥0
αk(i).

With this definition, it is clear that if (Xi)i>0 is some sequence with coefficients

θ(i) (resp. τ(i)) and if g is some L-lipschitz function, then the coefficients of the

sequence (g(Xi))i>0 are smaller than Lθ(i) (resp. Lτ(i)).

The following lemma allows to compare the coefficients θk(i), τk(i) and αk(i).

Lemma 7 Let (Ω,A,P) be a probability space, (Xi)i>0 a sequence of random vari-

ables with values in a Banach space (E, |.|) and Mi a sequence of σ-algebra of A.

Let X be some nonnegative random variable such that QX ≥ supk≥1 Q|Xk|. The

following inequalities hold

τk(i) ≤ 2

∫ 2αk(i)

0

QX(u)du, and θk(i) ≤ τk(i) ≤ 4LX(θk(i)) .

Proof. We first compare τ and α. Without loss of generality, we can assume that

f(0, . . . , 0) = 0 in the definition of τ(M, X). For p + i ≤ j1 < · · · < jl and f in

Λ1(E
l), we infer from Lemma 6 that

τ(Mp, f(Xj1 , . . . , Xjl
)) ≤ 2

∫ 2αk(i)

0

Q|f(Xj1
,...,Xjl

)|(u)du ≤ 2

∫ 2αk(i)

0

Q|Xj1
|+···+|Xjl

|du .

(3.4)

From Lemma 2.1 in Rio (2000) we know that if Z1, Z2 et Z3 are three nonnegative

random variables, then
∫ 1

0

QZ1+Z2(u)QZ3(u)du ≤
∫ 1

0

(QZ1(u) + QZ2(u))QZ3(u)du .

Applying this result with QZ3(u) = 1Iu≤2αk(i), we infer from (3.4) that

τ(Mp, f(Xj1 , . . . , Xjl
)) ≤ 2

∫ 2αk(i)

0

Q|Xj1
|(u) + · · ·+ Q|Xjl

|(u)du ≤ 2l

∫ 2αk(i)

0

QX(u)du ,
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and the result follows from the definition of τk(i).

Let us prove that τk(i) ≤ 4LX(θk(i)). Applying once again Lemma 2.1 in Rio

(2000), we obtain that
∫ x

0

Q|Xj1
|+···+|Xjl

|(u)du ≤ l

∫ x

0

QX(u)du .

Hence G|f(Xj1
,...,Xjl

)|(u) ≥ GX(u/l) and therefore L|f(Xj1
,··· ,Xjl

)|(u) ≤ lLX(u/l). Con-

sequently, for p + i ≤ j1 < · · · < jl,

τ(Mp, f(Xj1 , . . . , Xjl
)) ≤ 4 lLX(θ(Mp, f(Xj1 , . . . , Xjl

))/l) ≤ 4 lLX(θk(i)) ,

and the result follows from the definition of τk(i).

3.1 Examples.

We can use Lemma 7 to obtain upper bounds for the coefficients (τ(i))i>0 of an

α-mixing sequence (or a s-dependent sequence). We refer to the book of Doukhan

(1994) for examples of α-mixing processes and to the paper by Coulon-Prieur and

Doukhan (2000) for examples of s-dependent sequences (see also the paper by

Doukhan and Louhichi (1999)).

Concerning the examples given by Coulon-Prieur and Doukhan, it is easy to see

that we can obtain the same bounds for τ(i) as those obtained for θ(i). In each case,

the result follows by applying Lemma 3.

In this section, we show how to compute upper bounds for the coefficient τ(i) for

three large classes of examples. In Examples 1 and 2 we apply Lemma 3 to obtain

an upper bound for τ(i), while in Example 3 we start from the definition of τ(i).

Example 1: causal Bernoulli shifts. Let (ξi)i∈Z be a sequence of i.i.d. random

variables with values in a measurable space X . Assume that there exists a function

H defined on a subset of X N, with values in a Banach space (E, |.|), and such

that H(ξ0, ξ−1, ξ−2, . . . , ) is defined almost surely. The stationary sequence (Xn)n>0

defined by Xn = H(ξn, ξn−1, ξn−2, . . .) is called a causal Bernoulli shift.

Let (ξ′i)i∈Z be a sequence of i.i.d. random variables, independent of (ξi)i∈Z and

distributed as (ξi)i∈Z. Let (δi)i>0 be a decreasing sequence such that

‖H(ξi, ξi−1, ξi−2, . . .)−H(ξi, ξi−1, ξi−2, . . . , ξ1, ξ
′
0, ξ

′
−1, . . .)‖1 ≤ δi .

If Mi = σ(Xj, j ≤ i), the coefficient τk(i) of (Xn)n>0 satisfies τk(i) ≤ δi.

Proof. Define X ′
n = H(ξn, . . . , ξ1, ξ

′
0, ξ

′
−1, . . .). The sequence (X ′

n)n>0 is distributed

as (Xn)n>0 and is independent of the σ-algebra M0. From Lemma 3 we have that,

for jk > · · · > j1 ≥ i,

τ(M0, (Xj1 , . . . , Xjk
)) ≤

k∑

l=1

‖Xjl
−X ′

jl
‖1 ≤ kδi .
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The result follows by using the stationarity of (Xn)n>0 and the definition of τ(i).

Application 1: causal linear processes. In that case X = R and Xn is defined

by Xn =
∑

j≥0 ajξn−j. If |ξ0| is integrable, we can take δi =
∑

j≥i |aj|‖ξ0 − ξ′0‖1.

Let ∆(ξ0) = infa∈R ‖ξ0 − a‖1. Since ‖ξ0 − ξ′0‖1 = 2∆(ξ0), we see that δi =

2∆(ξ0)
∑

j≥i |aj|. If ξ2
0 is integrable, we can take δi = (2Var(ξ0)

∑
j≥i a

2
j)

1/2. For

instance, if ai = 2−i−1 and ξ0 ∼ B(1/2), δi = 2−i
√

1/6. Recall that in that case,

αi = 1/4 for any positive integer i.

Example 2: iterative random functions. Let (Xn)n≥0 be a stationary Markov

chain, with values in a Banach space (E, |.|) and such that Xn = F (Xn−1, ξn) for

some measurable function F and some i.i.d. sequence (ξi)i≥0. Let X ′
0 be a random

variable independent of X0 and distributed as X0, and define X ′
n = F (X ′

n−1, ξn) .

The sequence (X ′
n)n≥0 is distributed as (Xn)n≥0 and independent of X0. We infer

from Lemma 3 that, for jk > · · · > j1 ≥ i,

τ(σ(X0), (Xj1 , . . . , Xjk
)) ≤

k∑

l=1

‖Xjl
−X ′

jl
‖1.

Let µ be the distribution of X0 and (Xx
n)n≥0 the chain starting from Xx

0 = x. With

these notations, we have that

τ(σ(X0), (Xj1 , . . . , Xjk
)) ≤

k∑

l=1

∫∫
‖Xx

jl
−Xy

jl
‖1µ(dx)µ(dy) . (3.5)

For instance, assume that there exists a decreasing sequence (δi)i≥0 of positive num-

bers such that ‖Xx
i −Xy

i ‖1 ≤ δi|x− y|. In that case

τ(σ(X0), (Xj1 , . . . , Xjk
)) ≤ kδi‖X0 −X ′

0‖1 ,

and consequently τ(i) ≤ δi‖X0 − X ′
0‖1. For instance in the usual case where

‖F (x, ξ0) − F (y, ξ0)‖1 ≤ κ|x − y| for some κ < 1, we can take δi = κi. An im-

portant example is Xn = f(Xn−1) + ξn for some κ-lipschitz function f .

Application 2: functional autoregressive processes. We give a simple example

of a non contractive function for which the coefficient τ(i) decreases arithmetically.

Given δ ∈ [0, 1[, C ∈]0, 1] and S ≥ 1, let L(C, δ) be the class of 1-Lipschitz functions

f such that

f(0) = 0 and |f ′(t)| ≤ 1− C(1 + |t|)−δ almost everywhere.

Let ARL(C, δ, S) be the class of real-valued Markov chains (Xn)n>0 solutions of

the equation Xn = f(Xn−1) + ξn where f ∈ L(C, δ) and ‖ξ0‖S < ∞. Dedecker

and Rio (2000) have proved that for any Markov chain belonging to ARL(C, δ, S),

there exists an unique invariant probability µ, and that µ(|x|S−δ) < ∞. Starting
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from (3.5) and arguing as in Dedecker and Rio, we can prove that if S > 1 + δ the

coefficients of the stationary chain satisfy τ(n) = O(n(δ+1−S)/δ).

Example 3: other Markov chains. Let P be a Markov kernel defined on a mea-

surable subset X of a Banach space (E, |.|). For any continuous bounded function

f from X to R we have

P (f)(x) =

∫

X
f(z)P (x, dz) .

We make the following assumptions on P

H For some 0 < κ < 1, P maps Λ1(X ) to Λκ(X ).

Let (Xn)n∈N be a stationary Markov chain with values in X , with marginal

distribution µ and transition kernel P satisfying H. Then for jk > · · · > j1 ≥ i and

f in Λ1(X k), the function E(f(Xj1 , . . . , Xjk
)|Xj1=x) belongs to Λ1+κ+···+κk−1(X ) and

consequently fj1,...,jk
(x) = E(f(Xj1 , . . . , Xjk

)|X0 = x) belongs to Λkκi(X ). Since

τ(σ(X0), (Xj1 , . . . , Xjk
)) ≤

∫∫
sup

f∈Λ1(Xk)

|fj1,...,jk
(x)− fj1,...,jk

(y)|µ(dx)µ(dy),

we infer that

τ(σ(X0), (Xj1 , . . . , Xjk
)) ≤ kκi‖X0 −X ′

0‖1 (3.6)

where X ′
0 is independent of X0 and distributed as X0. By definition of τ , we infer

from (3.6) that τ(i) ≤ κi‖X0 −X ′
0‖1 and the chain is geometrically τ -dependent.

In the case of iterated random maps (Example 2 above) the map F is a measur-

able function from X × Y to X , and the transition kernel P has the form

P (f)(x) =

∫

Y
f(F (x, z))ν(dz) (3.7)

for some probability measure ν on Y . Assumption H is satisfied as soon as
∫
|F (x, z)− F (y, z)|ν(dz) ≤ κ|x− y| ,

which was the condition previously found.

We now consider the more general situation

P (f)(x) =

∫

Y
b(x, z)f(F (x, z))ν(dz) , (3.8)

where ν is a measure on Y and b(x, y)ν(dy) is a probability measure for each x in

X . For simplicity, we assume that E = R and that X = I is either R, [a, b], [a,∞[

or ]−∞, b]. According to property 34.5 in McShane (1947) a function g from I to

R is M -lipshitz if and only if

sup
x∈I

lim sup
h→0

|f(x + h)− f(x)|
|h| ≤ M .

11



Starting from this property, we infer that Condition H is satisfied as soon as, for

any x in I,

lim sup
h→0

1

|h|
(∫

b(x + h, z)|F (x + h, z)− F (x, z)|ν(dz)

+

∫
|b(x + h, z)− b(x, z)||F (x, z)|ν(dz)

)
≤ κ . (3.9)

In particular, if for ν-almost every z the functions x → b(x, z) and x → F (x, z) are

derivable and the functions b(x, z)|F ′(x, z)| and |b′(x, z)F (x, z)| are each bounded

by integrable functions not depending on z, (3.9) writes in fact: for any x in I,
∫

b(x, z)|F ′(x, z)|+ |b′(x, z)F (x, z)|ν(dz) ≤ κ . (3.10)

Application 3: Markov kernel associated to expanding maps. In this ex-

ample, X = I = [0, 1]. We consider a transformation T from [0, 1] to [0, 1]. Assume

that there exist N in N∗ ∪+∞ and a partition ([aj, aj+1[)1≤j≤N of [0, 1[ such that:

- For each 1 ≤ j ≤ N , the restriction Tj of T to ]aj, aj+1[ is strictly monotonic

and can be extended to a function T j belonging to C1([aj, aj+1]). Moreover

T j([aj, aj+1]) = [0, 1].

Denote by λ the Lebesgue measure on [0, 1], and define the operator Φ from L1(I, λ)

to L1(I, λ) via the equality

∫ 1

0

Φ(f)(x)g(x)λ(dx) =

∫ 1

0

f(x)(g◦T )(x)λ(dx) where f ∈ L1(I, λ) and g ∈ L∞(I, λ).

By definition of T , we infer that for any continuous bounded function f ,

Φ(f)(x) =
N∑

j=1

f(σj(x))|σ′j(x)| where σj = T
−1

j .

(see Broise (1996) for more details on the operator Φ). Assume that there exists a

positive density h such that T preserves the probability measure hλ (or equivalently

Φ(h) = h). On the probability space (I, hλ), the sequence (g ◦ T j)j≥0 is strictly

stationary. Moreover the vector (g, g ◦ T, . . . , g ◦ T n) has the same distribution

as (g(Xn), g(Xn−1), . . . , g(X0)) where (Xi)i≥0 is a stationary Markov chain with

invariant distribution hλ and transition kernel P given by

P (f)(x) =
Φ(hf)(x)

h(x)
=

∑N
j=1 h(σj(x))f(σj(x))|σ′j(x)|

∑N
j=1 h(σj(x))|σ′j(x)| .

In particular, P has the form (3.8) with ν =
∑N

i=1 δi, F (x, i) = σi(x) and b(x, i) =

h(σi(x))|σ′i(x)|/h(x). Consequently, the chain is geometrically τ -dependent as soon

as (3.9) holds. Let us chek this condition on some examples.
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- If Tj is linear, then h ≡ 1, σ′j is constant, and
∑N

j=1 |σ′j| = 1. Hence the

chain is geometrically τ -dependent as soon as N ≥ 2, with κ = sup1≤i≤N |σ′i|.
In fact, this is an example of iterated random maps, since the kernel P has

the form (3.7) with F (x, i) = σi(x) and ν =
∑N

j=1 |σ′j|δi. In particular, if

T (x) = Kx mod 1 for some integer K ≥ 2, then κ = 1/K.

- Denote by {x} = x− [x], [x] being the integer part of x. If T (x) = {a(x−1−1)}
for some positive real a, then h(x) = 1/((x + a) ln(1 + 1/a)) and

P (f)(x) = (x + a)
∞∑

n=0

f
( a

x + n + a

)( 1

x + n + a
− 1

x + n + 1 + a

)
.

If a ≥ 1, one can easily see that (3.10) holds (for a = 1, κ = 421/432 works).

4 Exponential and moment inequalities

The first theorem of this section extends Bennett’s inequality for independent se-

quences to the case of τ -dependent sequences. For any positive integer q, we obtain

an upper bound involving two terms: the first one is the classical Bennett’s bound

at level λ for a sum
∑

n of independent variables ξi such that Var(
∑

n) = vq and

‖ξi‖∞ ≤ qM , and the second one is equal to nλ−1 τq(q + 1). Using lemma 7, we

obtain the same inequalities as those established by Rio (2000) for strongly mixing

sequences. This is not surprising, for we follow the proof of Rio and we use Lemma

5 instead of Rio’s coupling lemma.

Theorem 1 Let (Xi)i>0 be a sequence of real-valued random variables sucht that

‖Xi‖∞ ≤ M , and Mi = σ(Xk, 1 ≤ k ≤ i). Let Sk =
∑k

i=1(Xi − E(Xi)) and

Sn = max1≤k≤n |Sk|. Let q be some positive integer, vq some nonnegative number

such that

vq ≥ ‖Xq[n/q]+1 + · · ·+ Xn‖2
2 +

[n/q]∑
i=1

‖X(i−1)q+1 + · · ·+ Xiq‖2
2 .

and h the function defined by h(x) = (1 + x) ln(1 + x)− x.

1. For any positive λ, we have

P(|Sn| ≥ 3λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM

vq

))
+

n

λ
τq(q + 1) .

2. For any λ ≥ Mq, we have

P(Sn ≥ (1Iq>1 + 3)λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM

vq

))
+

n

λ
τq(q + 1) .
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Proof. We proceed as in Rio (2000) page 83. For 1 ≤ i ≤ [n/q], define the variables

Ui = Siq−Siq−q and U[n/q]+1 = Sn−Sq[n/q]. Let (δj)1≤j≤[n/q]+1 be independent random

variables uniformly distributed over [0, 1] and independent of (Ui)1≤j≤[n/q]+1. We now

apply Lemma 5: For any 1 ≤ i ≤ [n/q] + 1, there exists a measurable function Fi

such that U∗
i = Fi(U1, . . . , Ui−2, Ui, δi) satisfies the conclusions of Lemma 5, with

M = σ(Ul, l ≤ i− 2). The sequence (U∗
i )1≤j≤[n/q]+1 has the following properties:

a. For any 1 ≤ i ≤ [n/q] + 1, the random variable U∗
i is distributed as Ui.

b. The random variables (U∗
2i)2≤2i≤[n/q]+1 are independent and so are the variables

(U∗
2i−1)1≤2i−1≤[n/q]+1.

c. Moreover ‖Ui − U∗
i ‖1 ≤ τ(σ(Ul, l ≤ i− 2), Ui).

Since for 1 ≤ i ≤ [n/q] we have τ(σ(Ul, l ≤ i− 2), Ui) ≤ qτq(q + 1), we infer that

for 1 ≤ i ≤ [n/q], ‖Ui − U∗
i ‖1 ≤ qτq(q + 1) (4.1)

and ‖U[n/q]+1 − U∗
[n/q]+1‖1 ≤ (n− q[n/q])τn−q[n/q](q + 1) .

Proof of 1. Clearly

|Sn| ≤
[n/q]+1∑

i=1

|Ui − U∗
i |+

∣∣∣
([n/q]+1)/2∑

i=1

U∗
2i

∣∣∣+
∣∣∣

[n/q]/2+1∑
i=1

U∗
2i−1

∣∣∣. (4.2)

Combining (4.1) with the fact that τn−q[n/q](q + 1) ≤ τq(q + 1), we obtain

P
( [n/q]+1∑

i=1

|Ui − U∗
i | ≥ λ

)
≤ n

λ
τq(q + 1) . (4.3)

The result follows by applying Bennett’s inequality to the two other sums in (4.2).

Proof of 2. Any integer j being distant from at most [q/2] of an element of qN, we

have that

max
1≤k≤n

|Sk| ≤ 2[q/2]M + max
1≤j≤[n/q]+1

∣∣∣
j∑

i=1

Ui

∣∣∣ .

Hence Theorem 1 follows from the bound

P
(

max
1≤j≤[n/q]+1

∣∣∣
j∑

i=1

Ui

∣∣∣≥ 3λ
)
≤ 4 exp

(
− vq

(qM)2
h
(λqM

vq

))
+

n

λ
τq(q + 1) . (4.4)

Using again the variables U∗
i we find:

max
1≤j≤[n/q]+1

∣∣∣
j∑

i=1

Ui

∣∣∣≤
[n/q]+1∑

i=1

|Ui − U∗
i |+ max

2≤2j≤[n/q]+1

∣∣∣
j∑

i=1

U∗
2i

∣∣∣+ max
1≤2j−1≤[n/q]+1

∣∣∣
j∑

i=1

U∗
2i−1

∣∣∣.
(4.5)
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Inequality (4.4) follows by applying (4.3) to the first term on right hand in (4.5) and

Bennett’s inequality to the two others terms.

Proceeding as in Theorem 1, we establish Fuk-Nagaev type inequalities (see Fuk

and Nagaev (1971)) for sums of τ -dependent sequences. Applying Lemma 7, we

obtain the same inequalities (up to some numerical constant) as those established

by Rio (2000) for strongly mixing sequences.

Notation 3. For any non-increasing sequence (δi)i≥0 of nonnegative numbers, define

δ−1(u) =
∑

i≥0 1Iu<δi
= inf{k ∈ N : δk ≤ u}. For any non-increasing cadlag function

f define the generalized inverse f−1(u) = inf{t : f(t) ≤ u}. Note that δ−1 is the

generalized inverse of the cadlag function x → δ[x], [.] denoting the integer part.

Theorem 2 Let (Xi)i>0 be a sequence of centered and square integrable random

variables, and define (Mi)i>0 and Sn as in Theorem 1. Let X be some positive

random variable sucht that QX ≥ supk≥1 Q|Xk| and

s2
n =

n∑
i=1

n∑
j=1

|Cov(Xi, Xj)| .

Let R = ((τ/2)−1 ◦G−1
X )QX and S = R−1. For any λ > 0 and r ≥ 1,

P(Sn ≥ 5λ) ≤ 4
(
1 +

λ2

rs2
n

)−r/2

+
4n

λ

∫ S(λ/r)

0

QX(u)du . (4.6)

Proof. We proceed as in Rio (2000) and we use the notations of the proof of Theorem

1. Define U i = (Ui ∧ qM) ∨ (−qM) et ϕM(x) = (|x| −M)+. Arguing as in Rio we

can show that

Sn ≤ max
1≤j≤[n/q]

∣∣∣
j∑

i=1

(U i − E(U i))
∣∣∣ + qM +

n∑

k=1

(E(ϕM(Xk)) + ϕM(Xk)) . (4.7)

Choose v = S(λ/r), q = (τ/2)−1 ◦G−1
X (v) and M = QX(v). We have that

qM = R(v) = R(S(λ/r)) ≤ λ/r .

We use the same arguments as in the proof of inequality (4.4). Since U i a 1-Lipschitz

function of Ui, we have that τ(σ(Ul, l ≤ i− 2), U i) ≤ qτq(q + 1). This fact together

with the inequality s2
n ≥ ‖U1‖2

2 + · · ·+ ‖U [n/q]‖2
2 yield

P
(

max
1≤j≤[n/q]

∣∣∣
j∑

i=1

(U i − E(U i))
∣∣∣ ≥ 3λ

)
≤ 4

(
1 +

λ2

rs2
n

)−r/2

+
n

λ
τ(q + 1) . (4.8)

On the other hand, since M = QX(v),

P
( n∑

k=1

(E(ϕM(Xk)) + ϕM(Xk)) ≥ λ
)
≤ 2n

λ

∫ v

0

QX(u)du . (4.9)

The choice of q implies that τ(q) ≤ 2
∫ v

0
QX(u)du. Since qM ≤ λ, the result follows

from (4.7), (4.8) and (4.9).
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Corollary 1 Let (Xi)i>0 be a sequence of centered random variables belonging to

Lp for some p ≥ 2. Define (Mi)i>0, Sn, QX and sn as in Theorem 2. The following

inequalities hold

‖Sn‖p
p ≤ aps

p
n + nbp

∫ ‖X‖1

0

((τ/2)−1(u))p−1Qp−1
X ◦GX(u)du ,

where ap = 4p5p(p + 1)p/2 and (p− 1)bp = 4p5p(p + 1)p−1. Moreover we have that

s2
n ≤ 4n

∫ ‖X‖1

0

(τ/2)−1(u)QX ◦GX(u)du .

Proof. The result follows by integrating the inequality of Theorem 2 (as done in Rio

(2000) page 88) and by noting that

∫ 1

0

Q(u)(R(u))p−1(u)du =

∫ ‖X‖1

0

((τ/2)−1(u))p−1Qp−1
X ◦GX(u)du .

The upper bound for s2
n holds with θ instead of τ (cf. Dedecker and Doukhan (2002),

Proposition 2).

5 Strong invariance principle

The main result of this section is a strong invariance principle for partial sums of

τ -dependent sequences. Let (Xi)i∈Z be a stationary sequence of zero-mean square

integrable random variables, and Mi = σ(Xj, j ≤ i). Define

Sn = X1 + · · ·+ Xn and Sn(t) = S[nt] + (nt− [nt])X[nt]+1 .

Assume that n−1Var(Sn) converges to some constant σ2 as n tends to infinity (this

will always be true for any of the conditions we shall use hereafter). For σ > 0, we

study the almost sure behavior of the partial sum process

{
σ−1 (2n ln ln n)−1/2 Sn(t) : t ∈ [0, 1]

}
. (5.1)

Let S be the subset of C([0, 1]) consisting of all absolutely continuous functions with

respect to the Lebesgue measure such that h(0) = 0 and
∫ 1

0
(h′(t))2dt ≤ 1.

In 1964, Strassen proved that if the sequence (Xi)i∈Z is i.i.d. then the process

defined in (5.1) is relatively compact with a.s. limit set S. This result is known

as the functional law of the iterated logarithm (FLIL for short). Heyde and Scott

(1973) extended the FLIL to the case where E(X1|M0) = 0 and the sequence is

ergodic. Starting from this result and from a coboundary decomposition due to

Gordin (1969), Heyde (1975) proved that the FLIL holds if E (Sn|M0) converges in
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L2 and the sequence is ergodic. Applying Proposition 1 in Dedecker and Doukhan

(2002), we see that Heyde’s condition holds as soon as

∞∑

k=1

k

∫ γ(k)/2

0

Q ◦G(u) du < ∞, (5.2)

where the functions Q = Q|X0| and G = G|X0| have been defined in Notation 2 and

γ(k) = ‖E (Xk|M0) ‖1 is the coefficient introduced by Gordin (1973).

For strongly mixing sequences, Rio (1995) proved the FLIL (and even a strong

invariance principle) for the process defined in (5.1) as soon as the DMR (Doukhan,

Massart and Rio, 1994) condition (5.3) is satisfied

∞∑

k=1

∫ 2α(k)

0

Q2(u) du < ∞. (5.3)

From Lemma 7, we easily infer that

∫ γ(k)/2

0

Q ◦G(u) du ≤
∫ τ(k)/2

0

Q ◦G(u) du ≤
∫ 2α(k)

0

Q2(u) du. (5.4)

Hence a reasonable conjecture for the FLIL is that condition (5.2) holds without

the k in front of the integral. Actually, we can only prove this conjecture with τ(k)

instead of γ(k), that is the FLIL holds as soon as

∞∑

k=1

∫ τ(k)/2

0

Q ◦G(u) du < ∞. (5.5)

More precisely, we shall prove that

Theorem 3 Let (Xn)n∈Z be a strictly stationary sequence of centered and square

integrable random variables satisfying (5.5). Then n−1Var(Sn) converges to σ2, and

there exists a sequence (Yn)n∈N of independent N (0, σ2)-distributed random variables

(possibly degenerate) such that

n∑
i=1

(Xi − Yi) = o
(√

n ln ln n
)

a.s.

Such a result is known as a strong invariance principle. If σ > 0, Theorem 3 and

Strassen’s FLIL for the Brownian motion yield the FLIL for the process (5.1).

Starting from (5.5) and applying Lemma 2 of Dedecker and Doukhan (2002), we

obtain some simple sufficient conditions for the FLIL to hold.

Corollary 2 Let (Xi)i∈Z be a strictly stationary sequence of centered and square

integrable random variables. Any of the following conditions implies (5.5) and hence

the FLIL.
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1. P(|X0| > x) ≤ (c/x)r for some r > 2, and
∑

i≥0 (τ(i))(r−2)/(r−1) < ∞.

2. ‖X0‖r < ∞ for some r > 2, and
∑

i≥0 i1/(r−2)τ(i) < ∞.

3. E(|X0|2 ln(1 + |X0|)) < ∞ and τ(i) = O(ai) for some a < 1.

Now, according to Lemma 7 and to the examples given in Doukhan, Massart and

Rio (1994), we can see that Condition (5.5) is essentially optimal. For instance,

Corollary 3 below follows easily from Proposition 3 in Doukhan, Massart and Rio.

Corollary 3 For any r > 2, there exists a strictly stationary Markov chain (Xi)i∈Z
such that E(X0) = 0 and

1. For any nonnegative real x, P(|X0| > x) = min(1, x−r).

2. The sequence (τi)i≥0 satisfies supi≥0 i(r−1)/(r−2)τ(i) < ∞.

3. lim sup
n→∞

|Sn|√
n ln ln n

= +∞ almost surely.

5.1 Proofs

Notations 4. Define the set

Ψ =

{
ψ : N→ N , ψ increasing ,

ψ(n)

n
−−−−→
n→+∞

+∞ , ψ(n) = o (n
√

LLn )

}
.

If ψ is some function of Ψ, let M1 = 0 and Mn =
∑n−1

k=1(ψ(k) + k) for n ≥ 2. For

n ≥ 1, define the random variables

Un =

Mn+ψ(n)∑
i=Mn+1

Xi , Vn =

Mn+1∑
i=Mn+1+1−n

Xi , and U
′
n =

Mn+1∑
i=Mn+1

|Xi|.

If Lx = max(1, ln x), define the truncated random variables

Un = max

(
min

(
Un,

n√
LLn

)
,
−n√
LLn

)
.

Theorem 3 is a consequence of the following Proposition

Proposition 1 Let (Xn)n∈Z be a strictly stationary sequence of centered and square

integrable random variables satisfying condition (5.5). Then n−1Var(Sn) converges

to σ2 and there exist a function ψ ∈ Ψ and a sequence (Wn)n∈N of independent

N (0, ψ(n)σ2)-distributed random variables (possibly degenerate) such that

(a)
n∑

i=1

(Wi − U i) = o
(√

MnLLn
)

a.s.
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(b)
∞∑

n=1

E(|Un − Un|)
n
√

LLn
< ∞

(c) U
′
n = o

(
n
√

LLn
)

a.s.

Proof of Proposition 1. It is adapted from the proof of Proposition 2 in Rio (1995).

Proof of (b). Note first that

E|Un − Un| = E
((
|Un| − n√

LLn

)
+

)
so that E|Un − Un| =

∫ +∞

n√
LLn

P(|Un| > t)dt.

(5.6)

In the following we write Q instead of Q|X0|. Since Un is distributed as Sψ(n), we

infer from Theorem 2 that

P(|Un| > t) ≤ 4
(
1 +

t2

25 r s2
ψ(n)

)− r
2

+
20 ψ(n)

t

∫ S( t
5 r )

0

Q(u)du. (5.7)

Consider the two terms

A1,n =
4

n
√

LLn

∫ +∞

n√
LLn

(
1+

t2

25 r s2
ψ(n)

)− r
2
dt , A2,n =

20 ψ(n)

n
√

LLn

∫ +∞

n√
LLn

1

t

∫ S( t
5 r )

0

Q(u)du dt.

From (5.6) and (5.7), we infer that

E|Un − Un|
n
√

LLn
≤ A1,n + A2,n . (5.8)

Study of A1,n. Since the sequence (Xn)n∈N satisfies (5.5), s2
ψ(n)/ψ(n) converges to

some positive constant. Let Cr denote some constant depending only on r which

may vary from line to line. We have that

A1,n ≤ 4

n
√

LLn

∫ +∞

n√
LLn

t−r

Cr s−r
ψ(n)

dt ≤ Cr sr
ψ(n)

n−r

LLn1− r
2

.

We infer that A1,n = O(ψ(n)r/2n−rLLn(r−2)/2) as n tends to infinity. Since ψ ∈ Ψ

and r > 2, we infer that
∑

n≥1 A1,n is finite.

Study of A2,n. We use the elementary result: if (ai)i≥1 is a sequence of positive

numbers, then there exists a sequence of positive numbers (bi)i≥1 such that bi →∞
and

∑
i≥1 aibi < ∞ if and only if

∑
i≥1 ai < ∞ (note that b2

n = (
∑∞

i=n ai)
−1

works).

Consequently
∑

n≥1 A2,n is finite for some ψ ∈ Ψ if and only if

∑
n≥1

1√
LLn

∫ +∞

n√
LLn

1

t

∫ S( t
5 r )

0

Q(u)du dt < +∞. (5.9)

19



Recall that S = R−1, with the notations of Theorem 2. To prove (5.9), write

∫ +∞

n√
LLn

1

t

∫ S( t
5 r )

0

Q(u)du dt =

∫ +∞

n√
LLn

1

t

∫ 1

0

1R(u)≥ t
5 r

Q(u)du dt

=

∫ 1

0

Q(u)

∫ 5 r R(u)

n√
LLn

1

t
dtdu

=

∫ 1

0

Q(u) ln
5 r R(u)

n√
LLn

1R(u)≥ n

5 r
√

LLn
du.

Consequently (5.9) holds if and only if

∫ 1

0

Q(u)
∑
n≥1

1√
LLn

ln
5 r R(u)

n√
LLn

1R(u)≥ n
5 r
√

LLn
du < +∞. (5.10)

To see that (5.10) holds, we shall prove the following result: if f is any increasing

function such that f(0) = 0 and f(1) = 1, then for any positive R we have that

∑
n≥1

ln

(
R

f(n)

)
(f(n)− f(n− 1)) 1f(n)≤R ≤ max(R− 1, 0) ≤ R . (5.11)

Applying this result to f(x) = x(LLx)−1/2 and R = 5rR(u), and noting that

(LLn)−1/2 ≤ C (f(n)− f(n− 1)) for some constant C > 1, we infer that

∫ 1

0

Q(u)
∑
n≥1

1√
LLn

ln
5 r R(u)

n√
LLn

1R(u)≥ n
5 r
√

LLn
du ≤ 5Cr

∫ 1

0

Q(u)R(u)du ,

which is finite as soon as (5.5) holds.

It remains to prove (5.11). If R ≤ 1, the result is clear. Now, for R > 1, let xR

be the greatest integer such that f(xR) ≤ R and write R∗ = f(xR). Note first that
∑
n≥1

ln(R) (f(n)− f(n− 1)) 1f(n)≤R ≤ R∗ ln(R). (5.12)

On the other hand, we have that

∑
n≥1

ln (f(n)) (f(n)− f(n− 1)) 1f(n)≤R =

xR∑
n=1

ln (f(n)) (f(n)− f(n− 1)) .

It follows that

∑
n≥1

ln (f(n)) (f(n)− f(n− 1)) ≥
∫ R∗

1

ln(x)dx = R∗ ln(R∗)−R∗ + 1. (5.13)

Using (5.12) and (5.13) we get that

∑
n≥1

ln

(
R

f(n)

)
(f(n)− f(n− 1)) 1f(n)≤R ≤ R∗ − 1 + R∗(ln(R)− ln(R∗)). (5.14)
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Using Taylor’s inequality, we have that R∗(ln(R) − ln(R∗)) ≤ R − R∗ and (5.11)

follows. The proof of (b) is complete.

Proof of (c). Let Tn =
∑Mn+1

i=Mn+1 (|Xi| − E|Xi|) . We easily see that

U
′
n = (ψ(n) + n)E(|X1|) + Tn. (5.15)

By definition of Ψ, we have ψ(n) = o
(
n
√

LLn
)
. Here note that

Tn ≤ n√
LLn

+ sup

(
0, Tn − n√

LLn

)
. (5.16)

Using same arguments as for the proof of (b), we obtain that

∑
n≥1

E
(
sup

(
0, Tn − n√

LLn

))

n
√

LLn
< +∞, so that

∑
n≥1

(
sup

(
0, Tn − n√

LLn

))

n
√

LLn
< +∞ a.s.

Consequently max(0, Tn − n(LLn)−1/2) = o(n
√

LLn) almost surely, and the result

follows from (5.15) and (5.16).

Proof of (a). In the following, (δn)n≥1 and (ηn)n≥1 denote independent sequences of

independent random variables with uniform distribution over [0, 1], independent of

(Xn)n≥1. Since Un is a 1-Lipschitz function of Ui, τ(σ(Ui, i ≤ n−1), Un) ≤ ψ(n)τ(n).

Using Lemma 5 and arguing as in the proof of Theorem 1, we get the existence of

a sequence (U
∗
n)n≥1 of independent random variables with the same distribution as

the random variables Un such that U
∗
n is a measurable function of

(
U l, δl

)
l≤n

and

E
(
|Un − U

∗
n|

)
≤ ψ(n) τ(n).

Since (5.5) holds, we have that

∑
n≥1

E
(
|Un − U

∗
n|

)
√

Mn LLn
< +∞ so that

∑
n≥1

|Un − U
∗
n|√

Mn LLn
< +∞ a.s.

Applying Kronecker’s lemma, we obtain that

n∑
i=1

(U i − U
∗
i ) = o

(√
Mn LLn

)
a.s. (5.17)

We infer from (5.5) and from Dedecker and Doukhan (2002) that

(ψ(n))−1 Var Un −−−−→
n→+∞

σ2 and (ψ(n))−1/2 Un
D−−−−→

n→+∞
N (

0, σ2
)
.

Hence the sequence (U2
n/ψ(n))n≥1 is uniformly integrable (Theorem 5.4. in Billings-

ley (1968)). Consequently, since the random variables U
∗
n have the same distribution
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as the random variables Un, we deduce from the above limit results, from Strassen’s

representation theorem (see Dudley (1968)), and from Skorohod’s lemma (1976) that

one can construct some sequence (Wn)n≥1 of σ(U
∗
n, ηn)-measurable random variables

with respective distribution N (0, ψ(n) σ2) such that

E
((

U
∗
n −Wn

)2
)

= o (ψ(n)) as n → +∞, (5.18)

which is exactly equation (5.17) of the proof of Proposition 2(c) in Rio (1995). The

end of the proof is the same as that of Rio.

Proof of Theorem 3. By Skohorod’s lemma (1976), there exists a sequence (Yi)i≥1

of independent N (0, σ2)-distributed random variables satisfying for all positive n

Wn =
∑Mn+ψ(n)

i=Mn+1 Yi. Define the random variable V ′
n =

∑Mn+1

i=Mn+1+1−n Yi .

Let n(k) := sup {n ≥ 0 : Mn ≤ k}, and note that by definition of Mn we have

n(k) = o(
√

k). Applying Proposition 1(c) we see that

∣∣∣
k∑

i=1

Xi −
n(k)∑
i=1

(Ui + Vi)
∣∣∣ ≤ U ′

n(k) = o
(√

k LLk
)

a.s. (5.19)

From (5.26) in Rio (1995), we infer that

n(k)∑
i=1

Vi = o
(√

k LLk
)

a.s. and

n(k)∑
i=1

V ′
i = o

(√
k LLk

)
a.s. (5.20)

Gathering (5.19), (5.20) and Proposition 1(a) and (b), we obtain that

k∑
i=1

Xi −
n(k)∑
i=1

(Wi + V ′
i ) = o

(√
k LLk

)
a.s. (5.21)

Clearly
∑k

i=1 Yi−
∑n(k)

i=1 (Wi +V ′
i ) is normally distributed with variance smaller than

ψ(n(k)) + n(k). Since n(k) = o(
√

k) we have that ψ(n(k)) + n(k) = o(
√

kLLk) by

definition of ψ. An elementary calculation on Gaussian random variables shows that

k∑
i=1

Yi −
n(k)∑
i=1

(Wi + V ′
i ) = o

(√
k LLk

)
a.s. (5.22)

Theorem 3 follows from (5.21) and (5.22).
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