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Abstract

We compare three dependence coefficients expressed in terms of condi-
tional expectations, and we study their behaviour in various situations. Next,
we give a new covariance inequality involving the weakest of those coefficients,
and we compare this bound to that obtained by Rio (1993) in the strongly
mixing case. This new inequality is used to derive sharp limit theorems, such
as Donsker’s invariance principle and Marcinkiewicz’s strong law. As a conse-
quence of a Burkhölder-type inequality, we obtain a deviation inequality for
partial sums.
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1 Introduction

To describe the asymptotic behavior of certain time series, many authors have used

one of the two following type of dependence: on one hand mixing properties, intro-

duced in this context by Rosenblatt (1956), on an other hand martingales approx-

imations or mixingales, following the works of Gordin (1969, 1973) and McLeisch

(1975(a), 1975(b)). Concerning strongly mixing sequences, very deep and elegant

results have been established: for recent works, we mention the monographs of Rio

(2000) and Bradley (2002). However many classes of time series do not satisfy any

mixing condition as it is quoted e.g. in Eberlein and Taqqu (1986) or Doukhan

(1994). Conversely, most of such time series enter the scope of mixingales but limit

theorems and moment inequalities are more difficult to obtain in this general set-

ting. For instance, we cannot prove any empirical central limit theorem by using

only mixingale-type coefficients.
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Between those directions, Doukhan and Louhichi (1999) and simultaneously

Bickel and Bühlmann (1999) introduced a new idea of weak dependence. The main

advantage is that such a kind of dependence contains lots of pertinent examples

(cf. Doukhan (2002) and Section 3 below) and can be used in various situations:

empirical central limit theorems are proved in Doukhan and Louhichi (1999) and

Borovkova, Burton and Dehling (2001), while applications to bootstrap are given by

Bickel and Bühlmann (1999) and Ango Nzé, Bühlmann and Doukhan (2002). Such

weak dependence conditions are easier to check than mixing properties and allow to

cover empirical limit theorems which cannot be achieved via mixingales techniques.

Let us describe this type of dependence in more details. Following Coulon-

Prieur and Doukhan (2000), we say that a sequence (Xn)n∈Z of real-valued random

variables is s-weakly dependent if there exists a sequence (θi)i∈N tending to zero

at infinity such that: for any positive integer u, any function g from Ru to [−1, 1]

and any Lipschitz function f from R to [−1, 1] with Lipschitz coefficient Lip(f), the

following upper bound holds
∣∣Cov

(
g
(
Xi1 , . . . , Xiu

)
, f

(
Xiu+i

))∣∣ ≤ θiLip(f) (1.1)

for any u-tuple i1 ≤ i2 ≤ · · · ≤ iu. We shall see in Remark 2 of Section 2 that such

a coefficient can be expressed in terms of conditional expectations of some functions

of the variables, so that it is easily comparable to mixingale-type coefficients. In

Section 3 we present a large class of models for which (1.1) holds with a sequence

θi decreasing to zero as i tends to infinity.

Our purpose in this paper is two-fold. We first compare the s-weak dependence

coefficient with both strong mixing and mixingale-type coefficients (cf. Lemma 1,

Section 2). Secondly, we establish in Proposition 1 of Section 4 a new covariance

inequality involving a mixingale-type coefficient and comparable to that obtained

by Rio (1993) in the strongly mixing case. With the help of this inequality, we

give sharp versions of certain limit theorems. In Proposition 2 of Section 5, we

give an upper bound for the variance of partial sums in terms of mixingale-type

coefficients. In Corollary 2 of Section 6, we give three sufficient conditions, in terms

of strong mixing, s-weak dependence and mixingale-type coefficients, for the partial

sum process of a strictly stationary sequence to converge in distribution to a mixture

of Brownian motion. Two of these conditons are new, and may be compared with the

help of Lemma 1 to the well known condition of Doukhan, Massart and Rio (1994)

for strongly mixing sequences. In the same way, we give in Theorem 3 of Section 6

a new sufficient condition for the partial sums of a s-weak dependent sequence to

satisfy a Marcinkiewicz strong law of large numbers, and we compare this condition

to that of Rio (1995) for strongly mixing sequences. Finally, we prove in Section 8

a Burkhölder-type inequality for mixingales, and we give an exponential inequality

for the deviation of partial sums when the mixingale coefficients decrease with an

exponential rate.

2



2 Three measures of dependence

Notations 1. Let X, Y be real valued random variables. Denote by

– QX the generalized inverse of the tail function x → P(|X| > x).

– GX the inverse of x → ∫ x

0
QX(u)du.

– HX,Y the generalized inverse of x → E(|X|1I|Y |>x).

Definition 1. Let (Ω,A,P) be a probability space, and M a σ-algebra of A. If

Lip(g) is the lipschitz coefficient of the function g, define the class of functions

L1 = {g : R 7→ R, ‖g‖∞ < ∞, Lip(g) ≤ 1}. For any integrable real valued random

variable X define

1. γ(M, X) = ‖E(X|M)− E(X)‖1.

2. θ(M, X) = sup{‖E(f(X)|M)− E(f(X))‖1, f ∈ L1}.

3. α(M, X) = sup{|P(A ∩B)− P(A)P(B)|, A ∈M, B ∈ σ(X)}.

Let (Xi)i≥0 be a sequence of integrable real valued random variables and let (Mi)i≥0

be a sequence of σ-algebras of A. The sequence of coefficients γi is then defined by

γi = sup
k≥0

γ(Mk, Xi+k) . (2.1)

The coefficients θi and αi are defined in the same way.

Remark 1. The coefficient γ(M, X) was introduced by Gordin (1973) (see Theo-

rem 1 of Section 6), and for the L2-norm by Gordin (1969) and McLeisch (1975a).

According to the latter, we say that γ(M, X) is a mixingale-type coefficient.

Remark 2. Let (Xi)i∈Z be a sequence of integrable random variables and consider

the σ-fields Mk = σ(Xi, i ≤ k). By homogeneity it is clear that θi defined as in

(2.1) is the infimum over coefficients such that inequality (1.1) holds.

Remark 3. The usual strong mixing coefficients of the sequence (Xi)i∈Z are defined

by α′i = supk≥0 sup{|P(A ∩ B) − P(A)P(B)|, A ∈ Mk, B ∈ σ(Xj, j ≥ k + i)}. In

particular α′i is greater than the coefficient αi defined as in (2.1). To understand the

difference between αi and α′i, note that the convergence of α′i to zero implies that

the sequence (Xi)i∈Z is ergodic (see Notation 3 Section 6 for a definition), which is

not true if we only assume that αi goes to zero. A simple example of a nonergodic

sequence for which αi = 0 for i ≥ 2 is given in Rio (2000) page 67.

Remark 4. Let (Xi)i∈Z be a stationary sequence of integrable random variables

and Mk = σ(Xi, i ≤ k). Due to the stationarity, the coefficient θi defined in (2.1) is

equal to θi = θ(M0, Xi). Now if θn tends to zero as n tends to infinity then so does

‖E(f(X0)|Mn)−E(f(X0))‖1 for any Lipschitz function f . Applying the martingale-

convergence theorem, we obtain that ‖E(f(X0)|M−∞)−E(f(X0))‖1 = 0. This being
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true for any Lipschitz function, it can be extended to any function f such that f(X0)

belongs to L1. Combining this result with Birkoff’s ergodic theorem, we infer that

for any f such that f(X0) belongs to L1

1

n

n∑
i=1

f(Xi) converges almost surely to E(f(X0)) .

Of course, this is no longer true if we only assume that γi = γ(M0, Xi) tends to

zero as n tends to infinity.

The next Lemma shows how to compare these coefficients.

Lemma 1 Let (Ω,A,P) be a probability space and M be a σ-algebra of A. Let X

be an integrable and real valued random variable. For any random variable Y such

that QY ≥ QX ,

GY (γ(M, X)/2) ≤ GY (θ(M, X)/2) ≤ 2α(M, X) (2.2)

Analogously, if (Xi)i≥0 is a sequence of integrable and real-valued random variables,

(Mi)i≥0 is a sequence of σ-algebra of A and X is a random variable such that

QX ≥ supi≥0 QXi
, then

GX(γi/2) ≤ GX(θi/2) ≤ 2αi (2.3)

Remark 5. In particular, for any conjugate exponent p and q, we infer from (2.2)

that θ(M, X) ≤ 2‖X‖p(2α(M, X))1/q. When p = ∞, this is a direct consequence

of Ibragimov’s inequality (1962). In fact, the coefficient α(M, X) may be defined by

4α(M, X) = sup{‖E(f(X)|M)− E(f(X))‖1, ‖f‖∞ ≤ 1} (see for instance Theorem

4.4 in Bradley (2002)).

Proof of Lemma 1. It is enough to prove (2.2). Clearly γ(M, X) ≤ θ(M, X). The

first inequality is thus proved by using GY ’s monotonicity. In order to prove the

second one, there is no loss of generality in assuming that f ∈ L1 satisfies f(0) = 0.

Hence |f(x)| ≤ |x| and consequently Gf(X) ≥ GX ≥ GY . With GY ’s monotonicity

this yields successively,

GY (θ(M, X)/2) = sup
f∈L1

GY (‖E(f(X)|M)− E(f(X))‖1/2)

≤ sup
f∈L1

Gf(X)(‖E(f(X)|M)− E(f(X))‖1/2) .

The result follows by using Rio’s (1993) covariance inequality:

‖E(f(X)|M)− E(f(X))‖1 ≤ 2

∫ 2α(M,X)

0

Qf(X)(u)du = 2G−1
f(X)(2α(M, X)).
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3 Examples

Most of the examples of Section 3.1 and 3.2 are studied in Doukhan and Louhichi

(1999) and Doukhan (2002).

3.1 Causal Bernoulli shifts

Definition 2. Let (ξi)i∈Z be a stationary sequence of real-valued random variables

and H be a measurable function defined on RN. The stationary sequence (Xn)n∈Z
defined by Xn = H(ξn, ξn−1, ξn−2, . . .) is called a causal Bernoulli shift. For such a

function H, define the coefficient δi by

δi = ‖H(ξ0, ξ−1, ξ−2, . . .)−H(ξ0, ξ−1, ξ−2, . . . , ξ−i, 0, 0, . . .)‖1. (3.1)

Causal Bernoulli shifts with i.i.d. innovations (ξi)i∈Z satisfy θi ≤ 2δi (see for

instance Rio (1996)). Examples of such situations follows:

• Causal linear process: if Xn =
∑

j≥0 ajξn−j then θi ≤ 2‖ξ0‖1

∑
j≥i |aj|. In some

particular cases we can also obtain an upper bound for the usual strong mixing

coefficients α′i defined in Remark 3: If aj = O(j−a), E(|ξ0|1+δ) < ∞ and the distri-

bution of ξ0 is absolutely continuous then we have α′i = O(i−(a−2)δ/(1+δ))) as soon as

a > 2 + 1/δ (see Pham and Tran (1985)). Hence, summability of the series
∑

i≥0 α′i
holds as soon as a > 3 + 2/δ, while summability of

∑
i≥0 θi requires only a > 2.

• Other non-Markovian examples of Bernoulli shifts are given in Doukhan (2002).

The most striking one is the ARCH(∞) processes from Giraitis, Kokoszka and

Leipus (2000) subject to the recursion Xt = (a0 +
∑∞

j=1 ajXt−j)ξt. Such models have

a stationary representation with chaotic expansion

Xt = a0

∞∑

`=1

∞∑
j1=1

· · ·
∞∑

j`=1

aj1 · · · aj`
ξt−j1 · · · ξt−(j1+···+j`)

under the simple assumption c = ‖ξ0‖1

∑∞
j=1 |aj| < 1. In this case, we have that

θi ≤ 2cL+2‖ξ0‖1(1−c)−1
∑

j≥J |aj| for any JL ≤ i. Indeed, it suffices to approximate

the series Xn by i−dependent ones Xn,i obtained when considering finite sums for

which the previous series are subject to the restrictions ` ≤ L and j1, . . . , j` ≤ J ,

and to note that θi ≤ 2‖X0 − X0,i‖1. This gives rise to various dependence rates:

if aj = 0 for large enough j ≥ J then θi = O(ci/J). If aj = O(j−b) for some b > 1,

then θi = O((ln i/i)b). If aj = bj for some b < 1, then θi = O(exp(−
√

i ln b ln c)).

3.2 Stable Markov chains

Let (Xn)n≥0 be a stationary Markov chain with value in a metric space (E, d) and

satisfying the equation Xn = F (Xn−1, ξn) for some measurable map F and some
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i.i.d. sequence (ξi)i≥0. Denote by µ the law of X0 and by (Xx
n)n≥0 the chain starting

from Xx
0 = x. If f is a L-Lipschitz function from E to R, it is easy to see that

‖E(f(Xi)|X0)− E(f(Xi))‖1 ≤ L

∫∫
E(d(Xx

i , Xy
i ))µ(dx)µ(dy) .

Consequently, if the Makov chain satisfies E(d(Xx
i , Xy

i )) ≤ δid(x, y) for some de-

creasing sequence δi, we have that θi ≤ δiE(d(X0, X
′
0)) where X ′

0 is independent and

distributed as X0. Duflo (1997) studied the case where E(d(Xx
1 , Xy

1 )) ≤ kd(x, y)

for some constant k < 1, for which δi = ki. We refer to the nice review paper

by Diaconis and Friedmann (1999) for various examples of iterative random maps

Xn = F (Xn−1, ξn).

Ango Nzé (1998) obtained geometrical and polynomial mixing rates for functional

autoregressive processes Xn = f(Xn−1) + ξn when the common distribution of the

ξi has an absolutely continuous component. If this is not true, such a process may

not have any mixing property although it is s-weakly dependent (see Example 2 of

Section 3.3). Let us give a simple example of a non contracting function f for which

the coefficient θi decreases with a polynomial rate: for δ in [0, 1[, C in ]0, 1] and

S ≥ 1, let L(C, δ) be the class of 1-Lipschitz functions f satisfying

f(0) = 0 and |f ′(t)| ≤ 1− C(1 + |t|)−δ almost everywhere

and ARL(C, δ, S) be the class of Markov chains on R defined by Xn = f(Xn−1)+ ξn

where f ∈ L(C, δ) and ‖ξ0‖S < ∞. Dedecker and Rio (2000) proved that for any

Markov kernel belonging to ARL(C, δ, S), there exists an unique invariant proba-

bility µ and moreover µ(|x|S−δ) < ∞. Furhter, if S > 1 + δ, the stationary chain is

s-weakly dependent with rate θi = O(n(δ+1−S)/δ).

3.3 Some more precise computations

We now give the precise behaviour of the coefficients γi, θi and αi in two simple

situations. In the first example, (Xi)i∈Z is a martingale-difference sequence, γi = 0

while θi (and hence αi) does not even go to zero except if (Xi)i∈Z is i.i.d. In the

second case, (Xi)i∈Z is an autoregressive process, θi = λi = 2−i−1 while αi ≡ 1/4.

Example 1. Let (εi)i∈Z be a sequence of i.i.d. mean-zero random variables and

Y be an integrable random variable independent of (εi)i∈Z. Consider the strictly

stationary sequence (Xi)i∈Z defined by Xi = Y εi and take Mi = σ(Xk, k ≤ i).

Since E(Xi|Mi−1) = 0 we infer that γi = 0. Now if θi tends to zero, we know from

Remark 4 that for any f such that f(X0) belongs to L1, the sequence n−1
∑n

i=1 f(Xi)

converges almost surely to E(f(X0)) = E(f(Y ε0)). Comparing this limit with that

given by the strong law of large numbers, we infer that if θi tends to zero, then

E(f(Y ε0)) =

∫
f(Y x)Pε0(dx) almost surely. (3.2)
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Taking f = | · | in (3.2) we obtain that ‖ε0‖1(|Y | − ‖Y ‖1) = 0 almost surely, which

means that either ‖ε0‖1 = 0 or |Y | is almost surely constant. In the second case, if

Y is not almost surely constant we infer from (3.2) that ε0 must be symmetric, so

that the sequence (Xi)i∈Z is i.i.d. In any cases, we conclude that θi tends to zero if

and only if the sequence (Xi)i∈Z is i.i.d., which is not true in general.

Example 2. Let (εi)i∈Z be a sequence of independent random variables with com-

mon Bernoulli distribution B(1/2). Consider the linear process Xi =
∑∞

k=0 2−kεi−k

and define the σ-algebras Mi = σ(Xk, k ≤ i). For such a process, it is well known

that αi ≡ 1/4 (see for instance Doukhan (1994)). To compute γi, note that

γi = ‖E(Xi|M0)− 1‖1 = 2−i
∥∥∥
∑

k≥0

2−k
(
εk − 1

2

)∥∥∥
1

= 2−i−1. (3.3)

To evaluate θi, introduce the variables V =
∑i−1

k=0 2−kεi−k and U =
∑∞

k=i 2
i−k−1εi−k.

Note that U is uniformly distributed over [0, 1] and that Xi = V + 2−i+1U . Clearly

θi = sup
f∈L1

∥∥∥
∫

f(2−i+1U + v)PV (dv)− E
(∫

f(2−i+1U + v)PV (dv)
)∥∥∥

1
. (3.4)

The function u → ∫
f(2−i+1u + v)PV (dv) being 2−i+1-Lipschitz, we infer from (3.4)

that θi ≤ 2−i+1 supf∈L1
‖f(U)− E(f(U))‖1 , or equivalently that

θi ≤ 2−i+1 sup
{∫ 1

0

|g(x)|dx, g ∈ L1,

∫ 1

0

g(x)dx = 0
}

.

It is easy to see that the supremum on the right hand side is 1/4, so that θi ≤ 2−i−1.

Since θi ≥ γi, we conclude from (3.3) that θi = γi = 2−i−1.

4 A covariance inequality

Recall that for two real-valued random variables X, Y the functions GX and HX,Y

have been defined in Notations 1 of Section 2. The main result of this paper is the

following:

Proposition 1 Let (Ω,A,P) be a probability space and M be a σ-algebra of A. Let

X be an integrable random variable and Y be an M-measurable random variable

such that |XY | is integrable. The following inequalities hold

|E(Y X)| ≤
∫ ‖E(X|M)‖1

0

HX,Y (u)du ≤
∫ ‖E(X|M)‖1

0

QY ◦GX(u)du . (4.1)

If furthermore Y is integrable, then

|Cov(Y,X)| ≤
∫ γ(M,X)

0

QY ◦GX−E(X)(u)du ≤ 2

∫ γ(M,X)/2

0

QY ◦GX(u)du . (4.2)
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Applying Lemma 1, we also have that

∫ γ(M,X)/2

0

QY ◦GX(u)du ≤
∫ θ(M,X)/2

0

QY ◦GX(u)du ≤
∫ 2α(M,X)

0

QY (u)QX(u)du . (4.3)

Remark 6. Combining (4.2) and (4.3) we obtain the inequality

|Cov(Y, X)| ≤ 2

∫ 2α(M,X)

0

QY (u)QX(u)du,

which was proved by Rio (1993). A converse inequality is given in Theorem (1.1)(b)

of the same paper.

Proof of Proposition 1. We start from the inequality

|E(Y X)| ≤ E(|Y E(X|M)|) =

∫ ∞

0

E(|E(X|M)|1I|Y |>t)dt .

Clearly we have that E(|E(X|M)|1I|Y |>t) ≤ ‖E(X|M)‖1 ∧ E(|X|1I|Y |>t). Hence

|E(Y X)| ≤
∫ ∞

0

(∫ ‖E(X|M)‖1

0

1Iu<E(|X|1I|Y |>t)du
)
dt ≤

∫ ‖E(X|M)‖1

0

(∫ ∞

0

1It<HX,Y (u)dt
)
du,

and the first inequality in (4.1) is proved. In order to prove the second one we use

Fréchet’s inequality (1957) :

E(|X|1I|Y |>t) ≤
∫ P(|Y |>t)

0

QX(u)du. (4.4)

We infer from (4.4) that HX,Y (u) ≤ QY ◦GX(u), which yields the second inequality

in (4.1).

We now prove (4.2). The first inequality in (4.2) follows directly from (4.1). To

prove the second one, note that QX−E(X) ≤ QX + ‖X‖1 and consequently

∫ x

0

QX−E(X)(u)du ≤
∫ x

0

QX(u)du + x‖X‖1 . (4.5)

Set R(x) =
∫ x

0
QX(u)du−x‖X‖1. Clearly, R′ is non-increasing over ]0, 1], R′(ε) ≥ 0

for ε small enough and R′(1) ≤ 0. We infer that R is first non-decreasing and

next non-increasing, and that for any x in [0, 1], R(x) ≥ min(R(0), R(1)). Since∫ 1

0
QX(u)du = ‖X‖1, we have that R(1) = R(0) = 0 and we infer from (4.5) that

∫ x

0

QX−E(X)(u)du ≤
∫ x

0

QX(u)du + x‖X‖1 ≤ 2

∫ x

0

QX(u)du .

This implies that GX−E(X)(u) ≥ GX(u/2) which concludes the proof of (4.2).

To prove (4.3), apply Lemma 1 and set z = GX(u) in the second integral.
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5 Variance of partial sums

Notation 2. For any sequence (δi)i≥0 of nonnegative numbers define

δ−1(u) =
∑
i≥0

1Iu<δi

Note that if (δi)i≥0 is non-increasing, the function δ−1(u) = inf{k ∈ N : δk ≤ u} is

the generalized inverse of x → δ[x], [ . ] denoting the integer part. Given (δi)i≥0 and

a random variable X, we introduce the conditions

for p >1, D(p, δ,X) :

∫ ‖X‖1

0

(δ−1(u))p−1 Qp−1
X ◦GX(u)du < ∞.

and D(1, δ,X) :

∫ ‖X‖1

0

ln(1 + δ−1(u))du < ∞.

When λi = GX(δi) these conditions are equivalent to

for p >1, R(p, λ, X) :

∫ 1

0

(λ−1(u))p−1Qp
X(u)du < ∞.

and R(1, λ,X) :

∫ 1

0

QX(u) ln(1 + λ−1(u))du < ∞.

Remark 7. Let (Xi)i∈Z be a stationary sequence of square integrable random

variables and Mk = σ(Xk). Set Sn = X1 + · · · + Xn. Condition R(2, 2α, X0) was

first introduced by Rio (1993) to control the variance of Sn.

The next lemma gives sufficient conditions for D(p, δ,X) to hold. The proof will

be done in appendix.

Lemma 2 Let p > 1 and (δi)i≥0 be a non-increasing sequence of nonnegative num-

bers. Any of the following condition implies D(p, δ,X)

1. P(|X| > x) ≤ (c/x)r for some r > p, and
∑

i≥0(i + 1)p−2δ
(r−p)/(r−1)
i < ∞.

2. ‖X‖r < ∞ for some r > p, and
∑

i≥0 i(pr−2r+1)/(r−p)δi < ∞.

3. E(|X|p(ln(1 + |X|))p−1) < ∞ and δi = O(ai) for some a < 1.

Moreover D(1, δ,X) holds if and only if
∑

i>0 δi/i < ∞ .

We also need the following comparison lemma, whose proof follows straightfor-

wardly from Lemma 1.

Lemma 3 Let (Ω,A,P) be a probability space, (Xi)i≥0 a sequence of integrable real-

valued random variables, (Mi)i≥0 a σ-algebra of A, and X a real-valued random

variable such that QX ≥ supi≥0 QXi
. Then

R(p, 2α, X) ⇒ D(p, θ/2, X) ⇒ D(p, γ/2, X) .
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The first application of Inequality (4.2) is the following control of the variance

of partial sums.

Proposition 2 Let (Xi)i≥0 be a sequence of square integrable random variables and

let Mi = σ(Xi). Setting Sn = X1 + · · ·+ Xn, we have

Var(Sn) ≤
n∑

i=1

Var(Xi) + 2
∑

1≤j<i≤n

∫ γi−j/2

0

QXi
◦GXj

(u)du. (5.1)

if X is a random variable such that QX ≥ supk≥0 QXk
, then

Var(Sn) ≤ 4n

∫ ‖X‖1

0

((γ/2)−1(u) ∧ n) QX ◦GX(u)du . (5.2)

In particular, if (Xi)i≥0 is strictly stationary, the sequence n−1Var(Sn) converges as

soon as D(2, γ/2, X0) holds.

Proof of Proposition 2. Inequality (5.1) follows from (4.2) and the decomposition

Var(Sn) =
n∑

k=1

Var(Xi) + 2
∑

1≤j<i≤n

Cov(Xi, Xj) .

We now prove (5.2). Since QXi
≤ QX we have that GXi

≥ GX for any nonnega-

tive integer i. Consequently QXi
◦ GXj

≤ QX ◦ GX and (5.2) follows from (5.1).

Finally, if (Xi)i≥0 is a strictly stationary sequence, Condition D(2, γ/2, X0) ensures

that
∑

k>0 |Cov(X0, Xk)| is finite. Applying Césaro’s lemma, we conclude that the

sequence n−1Var(Sn) converges.

6 CLT and weak invariance principle

Definition 2. Let T be the shift operator from RZ to RZ: (T (x))i = xi+1. Let I
the σ-algebra of T -invariants elements of B(RZ). We say that a strictly stationary

sequence X = (Xi)i∈Z of real-valued random variables is ergodic if each element of

X−1(I) has measure 0 or 1.

The following theorem is a particular case of a central limit theorem which

was first communicated by Gordin at the Vilnius Conference on Probability and

Statistics (1973) (a proof may be found in Esseen and Janson (1985)).

Theorem 1 Let X = (Xi)i∈Z be a strictly stationary and ergodic sequence of inte-

grable an centered variables, Mi = σ(Xj, j ≤ i) and Sn = X1 + · · ·+ Xn. If

G :
∑
i≥0

γi < ∞ and lim inf
n→∞

1√
n
‖Sn‖1 < ∞

then n−1/2Sn converges in distribution to a normal distribution.

10



From Samek and Volný (1998), we know that Condition G is not sufficient to

obtain the weak invariance principle. The next theorem is due to Dedecker and

Rio (2000). For further comments on Condition DR below, see also Dedecker and

Merlevède (2002). Contrary to Theorem 1, we do not require X to be ergodic, and

consequently the limit is a mixture of Wiener processes.

Theorem 2 Let X = (Xi)i∈Z be a strictly stationary sequence of square integrable

an centered random variables, and let Mi = σ(Xj, j ≤ i). For any t in [0, 1] set

Sn(t) = X1 + · · ·+ X[nt] + (nt− [nt])X[nt]+1. If

DR : X0E(Sn|M0) converges in L1 ,

then {n−1/2Sn(t), t ∈ [0, 1]} converges in distribution in (C[0, 1], ‖·‖∞) to ηW, where

W is a standard Brownian motion independent of η and η is the nonnegative X−1(I)-

measurable variable defined by η = E(X2
0 |X−1(I)) + 2

∑∞
k=1 E(X0Xk|X−1(I)).

Applying Proposition 1, we easily get the following result

Corollary 1 Let (Xi)i∈Z and (Mi)i≥0 be as in Theorem 1. The sequences (γi)i≥0,

(θi)i≥0 and (αi)i≥0 are non-increasing and we have the implications

R(2, 2α, X0) ⇒ D(2, θ/2, X0) ⇒ D(2, γ/2, X0) ⇒ DR.

Remark 8. The fact that R(2, 2α,X0) implies DR is proved in Dedecker and Rio

(2000). For the usual strong mixing coefficients α′i, the functional central limit

theorem has been established under condition R(2, 2α′, X0) by Doukhan, Massart

and Rio (1994). Note that the latter condition implies that X is ergodic, so that

the limiting process is necessarily Gaussian. Optimality of Condition R(2, 2α′, X0)

is studied in Bradley (1997, 2002).

Proof of Corollary 1. The two first implications are given in Lemma 2. In order to

prove that D(2, γ/2, X0) ⇒ DR, note that if εk = sign(E(Xk|M0)), we obtain from

(4.2) that

∑

k≥0

‖X0E(Xk|M0)‖1 =
∑

k≥0

Cov(|X0|εk, Xk) ≤2

∫ ‖X‖1

0

(γ/2)−1(u)QX0 ◦GX0(u)du .

7 Marcinkiewicz strong laws

Theorem 3 Let (Xi)i∈N be a sequence of integrable random variables, and define

Mi = σ(Xj, 0 ≤ j ≤ i). Let X be a variable such that QX ≥ supk≥1 QXk
.

The sequences (θi)i≥0 and (αi)i≥0 are non-increasing and we have the implication

R(p, 2α,X) ⇒ D(p, θ/2, X). Further, if D(p, θ/2, X) holds for some p in [1, 2[,

then n−1/p
∑n

k=1(Xk − E(Xk)) converges almost surely to 0 as n goes to infinity.

11



Remark 9. The fact that R(p, 2α,X) implies that n−1/p
∑n

k=1(Xk − E(Xk)) con-

verges almost surely to 0 has been proved by Rio (1995, 2000).

Proof of Theorem 3. The first implication is given in Lemma 2. Now, setting λi =

GX(θi/2), Condition D(p, θ/2, X) is equivalent to R(p, λ,X). The latter condition is

the same as in Rio (2000), Corollary (3.1), with λ in place of α. In fact, the proof of

Theorem 2 is the same as that of Rio’s corollary (cf. Rio (2000) pages 57-60). This

comes from the fact that the truncation X̄i used by Rio is an 1-Lipschitz function of

Xi. Consequently the coefficients θi of the sequence (X̄i)i∈N are smaller or equal to

that of (Xi)i∈N. The only tool we need is a maximal inequality similar to Corollary

2.4 in Peligrad (1999) or Theorem 3.2 in Rio (2000).

Proposition 3 Let (Xi)i∈N be a sequence of square integrable random variables, and

Mi = σ(Xj, 0 ≤ j ≤ i). Let X be a random variable such that QX ≥ supk≥1 QXk
.

Let λi = GX(γi/2), Sn =
∑n

k=1 Xk − E(Xk) and S∗n = max(0, . . . , Sn). For any

positive integer p and any positive real x we have

P(S∗n ≥ 2x) ≤ 4

x2

n∑

k=1

∫ 1

0

(λ−1(u) ∧ p)Q2
X(u)du +

4

x

n∑

k=1

∫ λp

0

QX(u)du . (7.1)

Proof of Proposition 3. As noted by Rio (2000), page 55, It suffices to consider the

case x = 1. Indeed, for any positive real x consider the sequences (Xi/x)i∈Z and

(γi/x)i≥0, the variable X/x and the functions QX/x and GX/x given by QX/x(u) =

QX(u)/x and GX/x(u) = GX(xu). The coefficient λi of the sequence (Xi/x)i∈Z is

given by GX/x(γi/2x) = GX(γi/2) and is the same as that of (Xi)i∈Z. By homogene-

ity, it is enough to prove (7.1) for x = 1.

The end of the proof follows Rio (2000), pages 55-57, by noting that:

1. Let Y be any Mk−p-measurable random variable such that ‖Y ‖∞ ≤ 1. By

(4.2) and the fact that QY ◦GXk
≤ QY ◦GX , we have

|Cov(Y, Xk)| ≤ 2

∫ γp/2

0

QY ◦GX(u)du ≤ 2

∫ λp

0

QX(u)du .

2. Let Z be any Mi-measurable random variable such that |Z| ≤ |Xi|. By (4.2)

and the fact that QZ ◦GXk
≤ QZ ◦GX , we have

|Cov(Z, Xk)| ≤ 2

∫ γk−i/2

0

QX ◦GX(u)du = 2

∫ λk−i

0

Q2
X(u)du .

8 Burkhölder’s inequality

The next result extends Theorem 2.5 of Rio (2000) to non-stationary sequences.
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Proposition 4 Let (Xi)i∈N be a sequence of centered and square integrable random

variables, and Mi = σ(Xj, 0 ≤ j ≤ i). Define Sn = X1 + · · ·+ Xn and

bi,n = max
i≤l≤n

∥∥∥Xi

l∑

k=i

E(Xk|Mi)
∥∥∥

p/2
.

For any p ≥ 2, the following inequality holds

‖Sn‖p ≤
(
2p

n∑
i=1

bi,n

)1/2

. (8.1)

Proof of Proposition 4. We proceed as in Rio (2000) pages 46-47. For any t in [0, 1]

and p ≥ 2, let hn(t) = ‖Sn−1 + tXn‖p
p. Our induction hypothesis at step n− 1 is the

following: for any k < n

hk(t) ≤ (2p)p/2
(k−1∑

i=1

bi,k + tbk,k

)p/2

.

Clearly, this assumption is true at step 1. Assuming that it holds for n− 1, we have

to check it at step n. Setting G(i, n, t) = Xi(tE(Xn|Mi) +
∑n−1

k=i E(Xk|Mi)) and

applying Theorem (2.3) in Rio (2000) with ψ(x) = |x|p, we get

hn(t)

p2
≤

n−1∑
i=1

∫ 1

0

E
(|Si−1 + sXi|p−2G(i, n, t)

)
ds +

∫ t

0

E(|Sn−1 + sXn|p−2X2
n)ds .

(8.2)

Note that the function t → E(|G(i, n, t)|p/2) is convex, so that for any t in [0, 1],

E(|G(i, n, t)|p/2) ≤ E(|G(i, n, 0)|p/2) ∨ E(|G(i, n, 1)|p/2) ≤ b
p/2
i,n . Applying Hölder’s

inequality, we obtain

E
(|Si−1 + sXi|p−2G(i, n, t)

) ≤ (hi(s))
(p−2)/p ‖G(i, n, t)‖p/2 ≤ (hi(s))

(p−2)/p bi,n .

This bound together with (8.2) and the induction hypothesis yields

hn(t) ≤ p2
(n−1∑

i=1

bi,n

∫ 1

0

(hi(s))
(p−2)/pds + bn,n

∫ 1

0

(hn(s))(p−2)/pds
)

≤ p2
(n−1∑

i=1

(2p)
p
2
−1bi,n

∫ 1

0

( i∑
j=1

bj,n + sbi,n

) p
2
−1

ds + bn,n

∫ 1

0

(hn(s))1− 2
p ds

)
.

Integrating with respect to s we find

bi,n

∫ 1

0

( i∑
j=1

bj,n + sbi,n

) p
2
−1

ds =
2

p

( i∑
j=1

bj,n

) p
2 − 2

p

( i−1∑
j=1

bj,n

) p
2
,

13



and summing in j we finally obtain

hn(t) ≤
(
2p

n−1∑
j=1

bj,n

) p
2

+ p2bn,n

∫ 1

0

(hn(s))1− 2
p ds . (8.3)

Clearly the function u(t) = (2p)p/2(b1,n+· · ·+tbn,n)p/2 solves the equation associated

to Inequality (8.3). A classical argument ensures that hn(t) ≤ u(t) which concludes

the proof.

Corollary 2 Let (Xi)i∈N and (Mi)i∈N be as in Proposition 4. Let X be any random

variable such that QX ≥ supk≥1 QXk
. This sequence of coefficients is non-increasing

and for p ≥ 2 we have the inequality

‖Sn‖p ≤
√

2pn
(∫ ‖X‖1

0

(γ−1(u) ∧ n)p/2Qp−1
X ◦GX(u)du

)1/p

.

Proof of Corollary 2. Let q = p/(p−2). By duality there exists Y such that ‖Y ‖q = 1

and

bi,n ≤
n∑

k=i

E(|Y XiE(Xk|Mi)|) .

Let λi = GX(γi). Applying (4.1) and Fréchet’s inequality (1957), we obtain

bi,n ≤
n∑

k=i

∫ γk−i

0

QY Xi
◦GX(u)du ≤

n∑

k=i

∫ λk−i

0

QY (u)Q2
X(u)du .

Using the duality once more, we get

b
p/2
i,n ≤

∫ 1

0

(λ−1(u) ∧ n)p/2Qp
X(u)du ≤

∫ ‖X‖1

0

(γ−1(u) ∧ n)p/2Qp−1
X ◦GX(u)du .

The result follows.

Corollary 3 Let (Xi)i∈N, (Mi)i∈N be as in Proposition 4. Assume that the sequence

(Xi)i∈N is uniformly bounded by M and that there exist c > 0 and a in ]0, 1[ such

that γi ≤ Mcai. The following inequality holds

P(|Sn| > x) ≤ C(a, c) exp
(−x

√
ln(1/a)√
neM

)
,

where the constant C(a, c) is defined by

C(a, c) = u(c/a) with u(x) = exp(2e−1
√

x)1Ix≤e2 + x1Ix>e2 .

Assume now that θi is such that θi ≤ 2Mcai. For any K-Lipschitz function f and

Sn(f) =
∑n

i=1 f(Xi)− E(f(Xi)) we have

P(|Sn(f)| > x) ≤ C(a, c) exp
(−x

√
ln(1/a)√

n2eKM

)
.
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Proof of Corollary 4. Set λi = γi/M . Applying first Markov’s inequality and then

Corollary 2, we obtain

P(|Sn| > x) ≤
(‖Sn‖p

x

)p

≤
(√

2pnM

x

)p ∫ 1

0

(λ−1(u))p/2du . (8.4)

By assumption λ[x] ≤ cax−1. Setting u = cax−1 we get
∫ 1

0

(λ−1(u))p/2du ≤ c ln(1/a)

a

∫ ∞

0

xp/2axdx ≤ c

a

( √
p√

2 ln(1/a)

)p

This bound together with (8.4) yields

P(|Sn| > x) ≤ min

(
1,

c

a

( √
npM

x
√

ln(1/a)

)p
)

.

Set b =
√

nM(x
√

ln(1/a))−1. The function p → ca−1(bp)p has an unique minimum

over [2,∞[ at point min(2, 1/be). It follows that P(|Sn| > x) ≤ h(1/be), where h is

the function from R+ to R+ defined by h(y) = 1∧ (ca−1(2/ey)21Iy<2 + ca−1e−y1Iy≥2).

The result follows by noting that h(y) ≤ u(c/a) exp(−y). To prove the second

point, note that ‖f(Xi) − E(f(Xi))‖∞ ≤ 2KM and that, by definition of θi,

supk≥0 ‖E(f(Xi+k)|Mk)− E(f(Xi + k)))‖1 ≤ Kθi .

9 Appendix

Proof of Lemma 2. We proceed as in Rio (2000). For any function f we have that

f(δ−1(u)) =
∑∞

i=0 f(i + 1)1Iδi+1≤u<δi
. Assume that f(0) = 0. Since we can write

f(i + 1) =
∑i

j=0 f(j + 1)− f(j), we infer that

f(δ−1(u)) =
∞∑

j=0

(f(j + 1)− f(j))1Iu<δj
(9.1)

The last assertion of Lemma 2 follows by taking f(x) = ln(1 + x).

Proof of 1. Since P(|X| > x) ≤ (c/x)r we easily get that
∫ x

0

QX(u)du ≤ c(r − 1)

r
x(r−1)/r and then GX(u) ≥

( ur

c(r − 1)

)r/(r−1)

.

Set Cp = 1 ∨ (p − 1) and Kp,r = Cpc(c − cr−1)(p−1)/(r−1), and apply (9.1) with

f(x) = xp−1. Since (i + 1)p−1 − ip−1 ≤ Cp(i + 1)p−2, we obtain
∫ ‖X‖1

0

(δ−1(u))p−1 Qp−1
X ◦GX(u)du ≤ Cp

∑
i≥0

(i + 1)p−2

∫ δi

0

Qp−1 ◦GX(u)du

≤ Kp,r

∑
i≥0

(i + 1)p−2

∫ δi

0

u(1−p)/(r−1)du

≤ Kp,r(r − 1)

r − p

∑
i≥0

(i + 2)p−2δ
(r−p)/(r−1)
i .
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Proof of 2. Note first that
∫ ‖X‖1
0

Qr−1
X ◦GX(u)du =

∫ 1

0
Qr

X(u)du = E(|X|r). Applying

Hölder’s inequality, we obtain that

(∫ ‖X‖1

0

(δ−1(u))p−1Qp−1
X ◦GX(u)du

)r−1

≤ ‖X‖rp−r
r

(∫ ‖X‖1

0

(δ−1(u))(p−1)(r−1)/(r−p)du
)r−p

.

Now, apply (9.1) with f(x) = xq and q = (p − 1)(r − 1)/(r − p). Noting that

(i + 1)q − iq ≤ (1 ∨ q)(i + 1)q−1, we infer that

∫ ‖X‖1

0

(δ−1(u))(p−1)(r−1)/(r−p)du ≤ (1 ∨ q)
∑
i≥0

(i + 1)(pr−2r+1)/(r−p)δi .

Proof of 3. Let τi = δi/‖X‖1 and U be a random variable uniformly distributed over

[0, 1]. We have

∫ ‖X‖1

0

(δ−1(u))p−1Qp−1
X ◦GX(u)du =

∫ 1

0

(τ−1(u))p−1Qp−1
X ◦GX(u‖X‖1)du

= E((τ−1(U))p−1Qp−1
X ◦GX(U‖X‖1)) .

Let φ be the function defined on R+ by φ(x) = x(ln(1 + x))p−1. Denote by φ∗ its

Young’s transform. Applying Young’s inequality, we have that

E((τ−1(U))p−1Qp−1
X ◦GX(U‖X‖1)) ≤ 2‖(τ−1(U))p−1‖φ∗‖Qp−1

X ◦GX(U‖X‖1)‖φ

Here, note that ‖QX ◦GX(U‖X‖1)‖φ is finite as soon as

∫ ‖X‖1

0

Qp−1
X ◦GX(u)(ln(1 + Qp−1

X ◦GX(u)))p−1du < ∞ .

Setting z = GX(u), we obtain the condition

∫ 1

0

Qp
X(u)(ln(1 + Qp−1

X (u)))p−1du < ∞ . (9.2)

Since both ln(1 + |x|p−1) ≤ ln(2) + (p − 1) ln(1 + |x|) and QX(U) has the same

distribution as |X|, we infer that (9.2) holds as soon as E(|X|p(ln(1 + |X|))p−1) is

finite. It remains to control ‖(τ−1(U))p−1‖φ∗ . Arguing as in Rio (2000) page 17, we

see that ‖(τ−1(U))p−1‖φ∗ is finite as soon as there exists c > 0 such that

∑
i≥0

τi φ
′−1

((i + 1)p−1/cp−1) < ∞ . (9.3)

Since φ′−1 has the same behaviour as x → exp(x1/(p−1)) as x goes to infinity, we can

always find c > 0 such that (9.3) holds provided that δi = O(ai) for some a < 1.
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[2] Ango Nzé, P. Bühlman, P. and Doukhan, P. (2000). Nonparametric Regression un-
der non-mixing weak dependence, Technical Report, Department of Statistics, ETH
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[3] Bickel, P. and Bühlmann, P. (1999). A new mixing notion and functional central limit
theorems for a sieve bootstrap in time series. Bernoulli 5-3, 413-446.

[4] Bradley, R. C. (1997). On quantiles and the central limit question for strongly mixing
sequences, J. Theoret. Probab. 10 507-555.

[5] Bradley, R. C. (2002). Introduction to Strong Mixing Conditions, Volume 1. Technical
Report, Department of Mathematics, I. U. Bloomington.

[6] Coulon-Prieur, C. and Doukhan, P. (2000). A triangular CLT for weakly dependent
sequences. Statist. Probab. Lett. 47 61-68.

[7] Dedecker, J. and Rio, E. (2000). On the functional central limit theorem for stationary
processes, Ann. Inst. H. Poincaré Probab. Statist. 36 1-34.
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