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Abstract

We establish new exponential inequalities for partial sums of ran-
dom fields. Next, using classical chaining arguments, we give sufficient
conditions for partial sum processes indexed by large classes of sets
to converge to a set-indexed Brownian motion. For stationary fields
of bounded random variables, the condition is expressed in terms of a
series of conditional expectations. For non-uniform φ-mixing random
fields, we require both finite fourth moments and an algebraic decay
of the mixing coefficients.

Résumé

Nous établissons des inégalités exponentielles pour des sommes
partielles issues de champs aléatoires. En utilisant des arguments de
châınage classiques, nous donnons ensuite des conditions suffisantes
pour que des processus de sommes partielles indexés par de grandes
classes d’ensembles convergent vers un mouvement Brownien. Pour
les champs stationnaires de variables aléatoires bornées, la condition
fait intervenir une série d’espérances conditionnelles. Dans le cas des
champs non uniformément φ-mélangeants, nous supposons l’existence
de moments d’ordre quatre ainsi qu’une decroissance algébrique des
coefficients de mélange.

Mathematics Subject Classifications (1991): 60 F 05, 60 F 17.
Key words: functional central limit theorem, random fields, moment
inequalities, exponential inequalities, mixing, entropy, chaining.
Short title: Functional CLT for random fields
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1 Introduction

Let (Xi)i∈Zd be a strictly stationary field of real-valued random variables with

mean zero and finite variance. If A is a collection of Borel subsets of [0, 1]d,

define the smoothed partial sum process {Sn(A) : A ∈ A} by

Sn(A) =
∑

i∈Zd

λ(nA ∩Ri)Xi , (1.1)

where Ri =]i1 − 1, i1] × · · ·×]id − 1, id] is the unit cube with upper corner

at i and λ is the Lebesgue measure on Rd. In a recent paper (cf. Dedecker

(1998)) we prove that the sequence n−d/2Sn(A) converges in distribution to a

mixture of Gaussian laws provided that the following L1-projective criterion

is satisfied

∑

k∈Zd

‖XkE(X0|Fk)‖1 < ∞ where Fk = σ(Xi, |i| ≥ |k|) . (1.2)

This condition is weaker than martingale-type assumptions and provides op-

timal results for mixing random fields.

The next step is to study the asymptotic behavior of the sequence of

processes {n−d/2Sn(A) : A ∈ A}. To be precise we focus on the following

property: the sequence {n−d/2Sn(A) : A ∈ A} is said to satisfy a functional

central limit theorem if it converges in distribution to a mixture of Brownian

motions in the space C(A) of continuous real functions on A equipped with

the metric of uniform convergence.

To measure the size of A one usually considers the metric entropy with

respect to the Lebesgue measure. Dudley (1973) proves the existence of a

standard Brownian motion with sample paths in C(A) as soon as A has finite

entropy integral (i.e. Condition (2.1) of Section 2 holds). Using the more

restrictive notion of entropy with inclusion, Bass (1985) and simultaneously

Alexander and Pyke (1986) establish a functional central limit theorem for

partial sums of i.i.d. random fields. Bass’s approach is mainly based on Bern-

stein’s inequality for sums of independent random variables, which allows an

adaptative truncation of the variables in the chaining procedure.

More generally, the problem of establishing tightness for Banach-valued

random sequences is strongly related, via chaining arguments, to the exis-

tence of exponential bounds (see e.g. Ledoux and Talagrand (1991)). There-

fore our first objective is to build tractable inequalities for partial sums of

random fields. In Proposition 1, we establish upper bounds for Lp-norms of
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partial sums by adapting a scheme of our own (cf. Dedecker (1998) Section

5.2). Proposition 1(a) is an extension of Burkholder’s inequality: the upper

bound consists in a series of conditional expectations which reduces to a single

term in the particular case of martingale-differences random fields. Propo-

sition 1(b) is comparable to Rosenthal-type inequality: The upper bound

consists in a variance term and in several sums of conditional expectations.

Next, optimizing in p these inequalities (as done in Doukhan, León and

Portal (1984)), we obtain exponential bounds for partial sums of bounded

random fields. Corollary 3(a) generalizes Azuma’s inequality, while Corollary

3(b) is comparable to Bernstein’s. In particular, these inequalities apply to

non-uniform φ-mixing random fields under fairly mild conditions: we obtain

Hoeffding and Bernstein-type bounds by assuming only an algebraic decay

of the coefficients (see Corollary 4).

We now go back to our original interest. Denote by “Lp criterion” the

projective condition obtained from (1.2) by replacing L1-norms by Lp-norms.

With the help of the above inequalities, we are in position to prove the tight-

ness of the sequence of processes {n−d/2Sn(A) : A ∈ A} in the following

situations:

- When A is the collection of lower-left quadrants, we establish in Theorem 1

a functional central limit theorem for random fields satisfying a Lp criterion

for some p > 1. As a straightforward consequence, we deduce an α-mixing

condition which improves on Chen’s (1991) result.

- When X0 is bounded and A satisfies Dudley’s entropy condition, we prove

in Theorem 2 a functional central limit theorem under the L∞ criterion.

Applied to non-uniform φ-mixing random fields, this criterion provides the

same condition as for finite-dimensional convergence: we only require that

the sum over Zd of the coefficients is finite. Moreover, the L∞ criterion is

satisfied for bounded lattice spin systems in the so-called weak-mixing region.

In particular it applies to the 2D-Ising model with external field in the whole

interior of the uniqueness region.

- When (Xi)i∈Zd is a non-uniform φ-mixing random field and A satisfies Dud-

ley’s entropy condition (using entropy with inclusion), we prove in Theorem

3 a functional central limit theorem by assuming an algebraic decay of the

coefficients. More precisely the mixing rate is related to the moments of the

variables: if the φ-mixing rate is O(k−b) for some b in ]d, 2d[, we require fi-

nite (2b/(b− d))-moments. The fastest rate is obtained for random variables
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having only finite fourth moments.

Before presenting our results in more details, let us explain why a φ-

mixing setting seems to be well adapted to our problem. First, note that the

summands in (1.2) are easily controled with the help of φ-mixing coefficients

(see Section 3.1). In fact, since a mixing coefficient measures the dependence

between two σ-algebras U and V , it allows to bound the conditional expec-

tation of any integrable and V-measurable function with respect to U . As

we shall see in Section 5, this property will play an essential role to build

a tractable exponential inequality. The functional central limit question for

mixing random fields has been already investigated in an early work of Goldie

and Greenwood (1986). The mixing coefficients they consider in this paper

are uniform φ-mixing and β-mixing coefficients (by uniform we mean that

the supremum is taken over a collection of (U ,V), where U and V may be

each generated by an infinite number of variables). The idea is first to apply

coupling techniques in order to come down to the independant case and then

to adapt Bass’s approach. However, as pointed out by Dobrushin (1968, page

205), the notion of uniform mixing may be too restictive: for instance, it is

too strong in general for applications to Gibbs random fields (see Remark 4,

Section 2.4 for further comments on this question). The coefficients we use

in this paper are non-uniform (more precisely the σ-algebra V is generated

by at most two variables).

The paper is organized as follows: Section 2 is devoted to background

material and to the functional central limit question. The tools are presented

in Section 3: moment inequalities are stated in Proposition 1 and exponential

inequalities in Corollaries 3 and 4. The former are proved in Section 4 and

the latter in Section 5. In Section 6 we explain how to obtain the finite

dimentional convergence from Theorem 2 in Dedecker (1998). Tightness of

the partial sum process is proved in Section 7 by combining some of our

inequalities with classical chaining arguments.

2 Functional central limit theorems

Let A be a collection of Borel subsets of [0, 1]d. We focus on the process

{Sn(A) : A ∈ A} defined by (1.1). As a function of A, this process is

continuous with respect to the pseudo-metric d(A,B) =
√

λ(A∆B).

Denote by H(A, ε) the logarithm of the smallest number of open balls of
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radius ε with respect to d which form a covering of A. Let C(A) be the space

of continuous real functions on A, equipped with the norm ‖.‖A defined by

‖f‖A = sup
A∈A

|f(A)| .

A standard Brownian motion indexed by A is a mean zero Gaussian process

with sample paths in C(A) and Cov(W (A),W (B)) = λ(A∩B). From Dudley

(1973), we know that such a process exists as soon as

∫ 1

0

√
H(A, x) dx < ∞ . (2.1)

We say that the sequence {n−d/2Sn(A) : A ∈ A} satisfies a functional cen-

tral limit theorem if it converges in distribution to a mixture of set-indexed

Brownian motions in the space C(A) (which means that the limiting process

is of the form ηW , where W is a standard Brownian motion and η is a

nonnegative random variable independent of W ).

2.1 Preliminary notations

Let us consider the space R with its borel σ-algebra B. By a real random

field we mean a probability space (RZd
,BZd

,P). Denote by X the identity

application from RZd
to RZd

, and by Xi the projection from RZd
to R defined

by Xi(ω) = ωi, for any ω in RZd
and i in Zd. From now on, the application

X, or the field of all projections (Xi)i∈Zd will designate the whole random

field (RZd
,BZd

,P).

For k in Zd, define the translation operator Tk from RZd
to RZd

by:

[Tk(ω)]i = ωi+k. An element A of BZd
is said to be invariant if Tk(A) = A for

any k in Zd. We denote by I the σ-algebra of all invariant sets. A random

field is said to be strictly stationary if Tk ◦ P = P, for any k in Zd.

On Zd we define the lexicographic order as follows: if i = (i1, i2, ..., id) and

j = (j1, j2, ..., jd) are distinct elements of Zd, the notation i <lex j means that

either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq for 1 ≤ q < p.

Note that the lexicographic order provides a total ordering of Zd. Let the

sets {V k
i : i ∈ Zd , k ∈ IN∗} be defined as follows: V 1

i = {j ∈ Zd : j <lex i},
and for k ≥ 2 :

V k
i = V 1

i ∩ {j ∈ Zd : |i− j| ≥ k} where |i− j| = max
1≤k≤d

|ik − jk| .
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For any Γ in Zd, define FΓ = σ(Xi : i ∈ Γ). If f(Xi) belongs to L1(P), set

Ek(f(Xi)) = E(f(Xi)|FV k
i
) . (2.2)

The lexicographical ordering appears not veary natural, because it is asy-

metric. There are two reasons why we use the σ-field FV k
0

instead of Fk.

Firstly the former is included in the latter, so that for any p ≥ 1, ‖Ek(X0)‖p

is smaller than ‖E(X0|Fk)‖p and the Lp criterion (2.3) below is weaker than

the Lp criterion derived from (1.2). Secondly, when d = 1 the σ-field FV k
0

coincides with the past σ-algebras Mk = σ(Xi, i ≤ k), which are the natural

ones in that case.

Mixing coefficients for random fields. Let (Ω,A,P) be a probability space.

Given two σ-algebras U and V of A, define the φ-mixing coefficient and the

strong mixing coefficient α by

φ(U ,V) = sup{‖P(V |U)− P(V )‖∞ , V ∈ V} ,

α(U ,V) = sup{|P(U)P(V )− P(U ∩ V )|; U ∈ U , V ∈ V} .

Now, let (RZd
,BZd

,P) be a real random field and denote by |Γ| the cardinality

of any subset Γ of Zd. The coefficients we shall use in the sequel are defined

by: for any (k, n) in IN2,

φk(n) = sup{φ(FΓ1 ,FΓ2), |Γ2| ≤ k, d(Γ1, Γ2) ≥ n} ,

αk(n) = sup{α(FΓ1 ,FΓ2), |Γ2| ≤ k, d(Γ1, Γ2) ≥ n} ,

where the distance d is defined by d(Γ1, Γ2) = min{|j − i| , i ∈ Γ1, j ∈ Γ2}.
See Notations 3, Section 3.1 for more general mixing coefficients and some

of their properties.

2.2 The case of lower-left quadrants

For any p in [1,∞], consider the following Lp-projective criterion, slightly

less restrictive than the Lp criterion derived from (1.2):

∑

k∈V 1
0

‖XkE|k|(X0)‖p < ∞ . (2.3)

When d = 1, the summands are equal to ‖X0E(Xk|M0)‖p, where M0 is the

past σ-algebra M0 = σ(Xi, i ≤ 0). In that case, Dedecker and Rio (2000)
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obtained a functional central limit theorem for the Donsker line under the

L1 criterion. In this section, we consider the general case d ≥ 1.

If (2.3) holds with p = 1, the finite-dimensional convergence of n−d/2Sn(A)

is a consequence of a central limit theorem established in Dedecker (1998).

We shall see that Criterion (2.3) with p > 1 implies the tightness of the

sequence {n−d/2Sn(A) : A ∈ A} in C(A) when A is the family of lower-left

quadrants.

For any t in [0, 1]d, define the lower-left quadrant [0, t] with upper corner

at t by: [0, t] = [0, t1] × · · · × [0, td] . Denote by Qd the collection of lower-

left quadrants in [0, 1]d, and write f(t) for f([0, t]). Obviously Qd satisfies

condition (2.1).

Theorem 1 Let (Xi)i∈Zd be a strictly stationary field of centered random

variables. Assume that there exists p > 1 such that ‖X2
0‖p is finite and the

Lp criterion (2.3) is satisfied. Then

(a) For the σ-algebra I of invariant sets defined in Section 2.1, we have
∑

k∈Zd

‖E(X0Xk|I)‖p < ∞ .

We denote by η the nonnegative and I-measurable random variable

η =
∑

k∈Zd E(X0Xk|I) .

(b) The sequence {n−d/2Sn(t) : t ∈ [0, 1]d} converges in distribution in

C(Qd) to
√

ηW , where W is a standard Brownian motion indexed by

Qd and independent of I.

Remark 1. When d = 1, Dedecker and Rio (2000) prove that Theorem

1 holds with p = 1. Note also that Theorem 2 requires 2 + ε moments,

whereas Basu and Dorea (1979) show that (b) holds for square-integrable

martingale-difference random fields. Consequently, we conjecture that The-

orem 2 remains valid for p = 1.

For α-mixing random fields, we control the summands in the Lp criterion

(2.3) by combining Rio’s inequality (cf. Rio (1994), Theorem 1.1) with a

duality argument. We obtain the bound

‖XkE|k|(X0)‖p ≤ 4
(∫ α1(|k|)

0

Q2p
X0

(u)du
) 1

p
,

where QXi
is the inverse càdlàg of the tail function t → P(|Xi| > t). This

leads to the following corollary for α-mixing random fields:
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Corollary 1 Theorem 1 holds if we replace the Lp criterion (2.3) by

∑

k∈Zd

(∫ α1(|k|)

0

Q2p
X0

(u)du
) 1

p
< ∞ . (2.4)

Let δ be any positive real such that E(|X0|2+δ) < ∞. Condition (2.4) is

satisfied if there exists a positive real number ε such that

∞∑

k=1

kd−1α
δ

2+δ
−ε

1 (k) < ∞ .

Remark 2. Define the coefficients

α2,2(n) = sup{α(σ(Xi, Xj), σ(Xk, Xl)) : d({i, j}, {k, l}) ≥ n} .

If α2,2(n) tends to zero as n tends to infinity, then the σ-algebras σ(X0, Xk)

are independent of I and consequently η = σ2 =
∑

k∈Zd E(X0Xk). This

follows from Corollary 2 and Remark 4 in Dedecker (1998).

2.3 The bounded case

In this section, we shall see that the L∞ criterion (2.3) implies the tightness

of the sequence {n−d/2Sn(A) : A ∈ A} in C(A) under Dudley’s entropy

condition. For any Borel set A in [0, 1]d, let ∂A be the boundary of A. We

say that A is regular if λ(∂A) = 0.

Theorem 2 Let (Xi)i∈Zd be a strictly stationary field of bounded and cen-

tered random variables. Let A be a collection of regular Borel sets of [0, 1]d

satisfying the entropy condition (2.1). Assume that the L∞ criterion (2.3)

holds. Then the sequence {n−d/2Sn(A) : A ∈ A} converges in distribution

in C(A) to
√

ηW , where W is a standard Brownian motion indexed by A
and independent of I and η is the nonnegative I-measurable random variable

defined in Theorem 1(a).

Remark 3. As shown in Perera (1997), a regularity assumption on the

boundary of A is necessary to ensure the asymptotic normality of n−1/2Sn(A).

Applying an inequality due to Serfling (1968) (cf. inequality (3.2) Section

3.1), we obtain the following corollary for bounded φ-mixing random fields:

Corollary 2 Theorem 2 holds if we replace the L∞ criterion (2.3) by

∞∑

k=1

kd−1φ1(k) < ∞ . (2.5)
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Application to bounded spin systems: Let (RZd
,BZd

,P) be a strictly station-

ary random field. Assume that the random variable X0 is bounded and that

P is a Gibbs measure associated to a finite-range potential (see for instance

Martinelli and Olivieri (1994) for a definition of Gibbs measures). For any

finite subset Γ of Zd define the Gibbs specifications πΓ,X by

πΓ,X = P(.|σ(Xi : i ∈ Γc)) . (2.6)

Suppose now that the family π satisfies the weak mixing condition introduced

by Dobrushin and Shlosman (1985) (see also Martinelli and Olivieri (1994),

inequality (2.5)). In that case P is the unique solution of equation (2.6) and

the σ-algebra I is P-trivial. Moreover, there exist two positive constants C1

and C2 such that

‖Ek(X0)− E(X0)‖∞ ≤ C1 exp(−C2k) . (2.7)

Set Y = (Xi−E(Xi))i∈Zd . From inequality (2.7) we infer that the L∞ criterion

is satisfied. Consequently Theorem 2 applies to the stationary random field

Y , with η = σ2 =
∑

k∈Zd Cov(X0, Xk).

In many interesting cases, the Gibbs specifications may be deduced from

the physical properties of the system. The first problem is then to find a

probability measure solution of (2.6), which will be a possible law for the

whole system (if there are several solutions, one says that there is phase co-

existence). In what follows, we present an example of such a system, namely

the nearest neighbor Ising model, and recall some recent results concerning

this model.

Example : Ising model with external field. For each element x of Zd, define

the `1-norm ‖x‖1 = |x1|+ . . . + |xd|. Given a finite subset Γ of Zd, consider

BΓ = {{x, y} : x, y ∈ Γ and ‖x− y‖1 = 1},
∂BΓ = {{x, y} : x ∈ Γ, y /∈ Γ and ‖x− y‖1 = 1}.

For σ and τ in Ω = {−1, +1}Zd
and h in R, define the Hamiltonian by

HΓ,τ,h(σ) = −1

2

∑

{x,y}∈BΓ

σ(x)σ(y)− 1

2

∑

{x,y}∈∂BΓ

y/∈Γ

σ(x)τ(y)− h

2

∑
x∈Γ

σ(x) .

The Gibbs probability in Γ with boundary condition τ under external field

h and at temperature T = β−1 is defined on Ω as
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µΓ,τ,T,h(σ) =





exp(−βHΓ,τ,h(σ))

ZΓ,τ,T,h

if σ(x) = τ(x) for each x in Γc,

0 otherwise,

where the partition function ZΓ,τ,T,h is the appropriate normalization. It is

well known that for high enough temperature, the influence of the boundary

conditions becomes negligible as the size of Γ increases. More precisely, there

exists a critical temperature Tc and a uniqueness region U

U = {(h, T ) ∈ R× [0,∞) : h 6= 0 or T > Tc}

such that: for any (h, T ) in U and any τ in Ω, the sequence µ[−n,n]d,τ,T,h

converges weakly to a strictly stationary and ergodic probability µT,h as n

tends to infinity. Moreover, if X is a random field with probability µT,h, the

probabilities µΓ,X,T,h are the Gibbs specifications of µT,h.

The family µΓ,X,T,h is weak mixing in the following regions of U :

(a) for any temperature T > Tc.

(b) for low temperature and arbitrarily small (not vanishing) field h pro-

vided that h/T is large enough.

(c) for any (h, T ) in U if d = 2.

Part (a) is due to Higuchi (1993), Theorem 2(i). Part (b) has been proved

by Martinelli and Olivieri (1994), Theorems 3.1 and 5.1. Complete analitic-

ity for two-dimensional Ising model (which implies weak mixing) has been

established by Schonmann and Shlosman (1995). We refer to the latter for

a clear and detailed description of the Ising model.

2.4 The unbounded case

Assume now that A is totally bounded with inclusion: for each positive ε

there exists a finite collection such that for any A in A, there exists A+ and

A− in A(ε) with A− ⊆ A ⊆ A+ and d(A−, A+) ≤ ε. Denote by H(A, ε)

the logarithm of the cardinality of the smallest such subcollection A(ε). The

function H(A, .) is the entropy with inclusion (or bracketing entropy) of the

class A. Assume that A has a convergent bracketing entropy integral:
∫ 1

0

√
H(A, x) dx < ∞ . (2.8)
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Theorem 3 Let (Xi)i∈Zd be a strictly stationary field of random variables

with mean zero and finite variance. Let A be a collection of regular Borel

sets of [0, 1]d satisfying the bracketing entropy condition (2.8). Consider the

following assumptions

(i) E(|X0|4) < ∞ and
∑

k>0 k2d−1φ2(k) < ∞.

(ii) For some b in ] d, 2d [, E(|X0|2b/(b−d)) < ∞ and φ2(k) = O(k−b).

Suppose that one of the two assumption (i) or (ii) is satisfied and define

σ2 =
∑

k∈Zd E(X0Xk). Then the sequence {n−d/2Sn(A) : A ∈ A} converges

in distribution in C(A) to σW , where W is a standard Brownian motion

indexed by A.

Remark 4. The functional central limit question for mixing random fields

has been already investigated by Goldie and Greenwood (1986) who give

conditions in terms of uniform φ∞ and β∞ coefficients (the latter being less

restictive than the former). See also Goldie and Morrow (1986) for a detailed

discussion of this question and further references. The main idea is to apply

coupling techniques related to β∞ coefficients in order to approximate sums

of dependent random variables by sums of independant variables. However,

as first pointed out by Dobrushin (1968, p. 205), uniform mixing is too strong

in general for applications to Gibbs fields when d > 1. For β-mixing fields,

this point has been definitively enlightened by Bradley (1989), who proves in

Theorem 1(ii) of his paper that if β∞(n) tends to zero as n goes to infinity

then the random field is m-dependent, even if d = 1. He also proves in

Theorem 1(i) that this fact remains true for d > 1 when considering weaker

coefficients, which are natural generalization of classical β-mixing coefficients

for random sequences to higher dimension. This means that for d > 1, the

use of “natural” uniform φ or β-mixing coefficients is forbidden. See again

Doukhan (1994), Sections 1.3 and 2.2 for more informartions on this subject.

Remark 5. Conditions (2.6) and (i) are in some sense the boundary of

condition (ii). The rate φ2(k) = O(k−2d), close to Condition (i), seems to

have a particular signification for Gibbs measures. Indeed, for the covariances

decay (which is controlled by the decay of φ-mixing coefficients), Laroche

(1995) proves that there is no transitory rate between an algebraic decay as

k−2d and exponential decay. More precisely, outside the weak mixing region

(in particular in the phase transition region), the coefficient φ2(k) cannot

decrease faster than k−2d.
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3 Upper bounds for partial sums

In this section we establish new moment inequalities for partial sums of ran-

dom fields, which are comparable to classical Burkholder’s and Rosenthal’s.

These inequalities are the main tools to prove tightness of the partial sum

process {n−d/2Sn(A) : A ∈ A}, as we shall see in Section 7. More precisely,

Theorem 1 (resp. Theorem 2 and Theorem 3) of the preceding section is a

consequence of Proposition 1(a) below (resp. Corollary 3(a) and Corollary

4(b)). Before stating these results, we need more notations.

Notations 1. Define the sets {W k
i,j : i ∈ Zd , j ∈ V 1

i , k ≥ |i− j|} as follows

W k
i,j = {l ∈ V 1

i : d(l, {i, j}) ≥ k} .

Write Wi,j for the set W
|i−j|
i,j and define W c

i,j = V
|i−j|
i \Wi,j. For any measur-

able function g from R2 to R such that g(Xi, Xj) belongs to L1, set

Ek(g(Xi, Xj)) = E(g(Xi, Xj)|FW k
i,j

) . (3.1)

If j = i set W k
i,j = V k

i , so that Notation (3.1) is a natural extension of

Notation (2.2).

Notations 2. For any i in Zd and any α ≥ 1, let

bi,α(X) = ‖X2
i ‖α +

∑

k∈V 1
i

‖XkE|k−i|(Xi)‖α

ci(X) =
1

2
E(X2

i ) +
∑

j∈V 1
i

|E(XiXj)|

d
(1)
i,α(X) =

∑

j∈V 1
i

∑

k∈W c
i,j

‖XkXjE|i−j|(Xi)‖α

d
(2)
i,α(X) =

∑

j∈V 1
i

∑

k∈Wi,j

‖XkEd(k,{i,j})(XjXi − E(XjXi))‖α

d
(3)
i,α(X) =

1

2

∑

j∈V 1
i

‖XjE|i−j|(X
2
i − E(X2

i ))‖α

and di,α(X) = d
(1)
i,α(X) + d

(2)
i,α(X) + d

(3)
i,α(X) + ‖X3

i ‖α .

We are now in position to state our main result.

Proposition 1 Let (Xi)i∈Zd be a field of centered and square-integrable ran-

dom variables. Let Γ be a finite subset of Zd and set SΓ(X) =
∑

i∈Γ Xi. The

following inequalities hold:

12



(a) For any p ≥ 2,

‖SΓ(X)‖p ≤
(
2p

∑
i∈Γ

bi,p/2(X)
) 1

2
.

(b) For any p ≥ 3,

‖SΓ(X)‖p ≤
(
2p

∑
i∈Γ

ci(X)
) 1

2
+

(
3p2

∑
i∈Γ

di,p/3(X)
) 1

3
.

Remark 6. Assume that the martingale-type condition E1(Xi) = 0 holds

for any i in Zd. Then bi,p/2 = ‖X2
i ‖p/2 and Proposition 1(a) reduces to

‖SΓ(X)‖p ≤
(
2p

∑
i∈Γ

‖X2
i ‖ p

2

) 1
2
.

Hence Proposition 1(a) is an extension of Burkholder’s inequality for martin-

gales (see for instance Hall and Heyde (1980), Theorem 2.10). Note that the

constant
√

p in the above inequality is optimal (see for instance Theorem 4.3

in Pinelis (1994)), and hence it is also optimal for Proposition 1(a). This fact

is essential to derive “good” exponential bounds from these inequalities by

applying first Markov’s inequality of order p and then choosing the optimal

p (cf. Corrolary 3(a) and its proof in Section 5).

Inequality of Proposition 1(b) is comparable to Rosenthal’s inequality:

the first term behaves like a variance term, and the second one involves

moments of order p. However, in the martingale case, our inequality has a

different structure than the classical Rosenthal’s (see again Hall and Heyde

Theorem 2.12). In our case the first term is more precise, since we obtain a

variance term instead of the conditional expectation of the X2
i ’s with respect

to the past σ-algebras. Conversely, the second term cannot reduce to the

sum of the Lp-norm of the variables. Once again, the constant
√

p in the

first term seems to be the good one (see Pinelis (1994), Theorem 4.1). The

second term being distinct from classical Rosenthal-type bounds, it is not

clear whether the constant p2/3 is optimal or not. However, considering the

weaker inequality (5.1) of Section 5, one may think that it has the right

behavior.

Optimizing these inequalities in p provides exponential inequalities for partial

sums of bounded random fields.

Corollary 3 Let (Xi)i∈Zd be a field of bounded and centered random vari-

ables.

13



(a) Set b =
∑

i∈Γ bi,∞(X). For any positive real x,

P(|SΓ(X)| > x) ≤ exp

(
1

e
− x2

4eb

)
.

(b) Let M and V be two positive numbers such that

M3 ≥ 3
∑
i∈Γ

di,∞(X) , and V ≥ 2
∑
i∈Γ

ci(X) .

For any positive real x,

P(|SΓ(X)| > x) ≤ exp

(
3− x2

4e2V + 2exM3V −1

)
.

Remark 7. Corollary 3(a) is an extension of Azuma’s inequality (1967) for

martingales. The next step would be to obtain a Bernstein-type bound under

a projective criterion involving bi,∞(X). Unfortunately, such an inequality

may fail to hold even in the martingale case (see for instance Pinelis (1994)

where optimal bounds for martingales are given). Nevertheless, inequality

of Corollary 3(b) is easily comparable to Bernstein’s. To be precise, setting

v =
∑

i∈Γ ‖Xi‖2
2 and m = max{‖Xi‖∞, i ∈ Γ}, the denominator in the

exponent of Bernstein’s inequality is given by v + xm (up to some positive

constants), whereas in our case it has the form V +xM3V −1. This loss leads

to impose finite fourth moments in order to prove tightness of the partial

sum process under φ-mixing assumptions (cf. Section 2, Theorem 3).

3.1 Exponential inequalities for φ-mixing random fields

Notations 3. Let us introduce more general coefficients than in Section 2.1.

For any (k, l) in (IN∪ {∞})2, the double indexed coefficients φk,l are defined

by:

φk,l(n) = sup{φ(FΓ1 ,FΓ2), |Γ1| ≤ k, |Γ2| ≤ l , d(Γ1, Γ2) ≥ n} .

Note that these new coefficients are related to the single indexed coefficients

of Section 2.1 via the equality φk = φ∞,k. With the help of these coefficients,

we control conditional expectations as well as covariances: From Serfling

(1968), we have the upper bounds

‖Ek(f(Xi))− E(f(Xi))‖∞ ≤ 2‖f(Xi)‖∞φ∞,1(k) (3.2)

‖Ek(g(Xi, Xj))− E(g(Xi, Xj))‖∞ ≤ 2‖g(Xi, Xj)‖∞φ∞,2(k) . (3.3)

14



From the covariance inequality of Peligrad (1983), we have

|Cov(Xi, Xj)| ≤ 2φ1,1(|i− j|)‖Xi‖2‖Xj‖2 . (3.4)

For more about these definitions and the mixing properties of random fields,

we refer to Doukhan (1994), Sections 1.3 and 2.2.

Combining Corollary 3 with inequalities (3.2), (3.3) and (3.4), we obtain the

following corollary for stationary and φ-mixing random fields:

Corollary 4 Let (Xi)i∈Zd be a strictly stationary field of bounded and cen-

tered random variables. Take m ≥ ‖X0‖∞ and v ≥ ‖X0‖2
2. For any (ai)i∈Zd

in [−1, 1]Z
d
, write aX for the random field (aiXi)i∈Zd. Set

B(φ) = 1 +
∑

j∈Zd\0
φ∞,1(|j|) , C(φ) =

∑

j∈Zd

φ1,1(|j|) and

D(φ) =
∑

j∈Zd\0

(
(2|j| − 1)d +

1

2

)
φ∞,1(|j|) + 2

∑

j∈Zd

(2|j|+ 1)dφ∞,2(|j|) .

(a) The following upper bounds hold

bi,∞(aX) ≤ B(φ)|ai|m2, ci(aX) ≤ C(φ)|ai|v, di,∞(aX) ≤ D(φ)|ai|m3.

(b) Set A(Γ) =
∑

i∈Γ |ai|. For any positive real x we have the bounds:

(i) P(|SΓ(aX)| > x) ≤ exp

(
1

e
− x2

4B(φ)A(Γ)em2

)
.

(ii) P(|SΓ(aX)| > x) ≤ exp

(
3− x2

8D(φ)A(Γ)e2v + 3exm3v−1

)
.

Remark 8. Note that inequality (ii) is non-trivial as soon as the series∑
k>0 k2d−1φ∞,2(k) converges (which implies that D(φ) is finite). This as-

sumption is much weaker than the one usually required to obtain a Bernstein-

type inequality under mixing conditions. For instance Lezaud (1998) and

Samson (1998) establish such a bound, respectively for ρ-mixing Markov

chains and uniformly φ-mixing sequences: in both cases they require an ex-

ponential decay of the coefficients.

4 Moment inequality

In this section we prove Proposition 1. We proceed by induction on the

cardinality of the set Γ, which we denote by |Γ|. In each case (a) and (b),
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we verify that the result holds when Γ = {i}. Suppose now that the result is

true for any random field X and any subset of Zd with cardinality n−1, and

let Γ be such that |Γ| = n. To describe Γ we define the one to one map f from

[1, n] ∩ IN∗ to Γ by: f is the unique function such that for 1 ≤ m < n ≤ |Γ|,
we have f(m) <lex f(n). We set Sf(k) =

∑k
i=1 Xf(i).

The proof is adapted from Rio (2000). For any real t in [0,1], let

u(t) = |Sf(n−1) + tXf(n)|p and v(t) = E(u(t)) . (4.1)

4.1 Proof of Proposition 1(a)

For the sake of brevity, write bi for bi,p/2(X). Without loss of generality we

may assume that bi is finite for each i in Γ. If Γ = {i} then E|Xi|p ≤ (2pbi)
p/2

and (a) holds.

Define ψp(x) = |x|p(1Ix>0 − 1Ix≤0). Using Taylor’s expansion, we write

u(t) = |Sf(n−1)|p+ptXf(n)ψp−1(Sf(n−1))+p(p−1)

∫ 1

0

(1−s)t2X2
f(n)(u(st))

p−2
p ds,

and consequently

u(t) ≤ |Sf(n−1)|p + ptXf(n)ψp−1(Sf(n−1)) + p2

∫ t

0

X2
f(n)(u(s))

p−2
p ds . (4.2)

To handle the second term on right hand, we proceed as in Dedecker (1998)

Section 5.2. Let m be any one to one map from [1, n− 1] ∩ IN∗ to Γ\{f(n)}
such that|m(k)−f(n)| ≤ |m(k−1)−f(n)|. Set Sm(k) =

∑k
i=1 Xm(i) with the

convention Sm(0) = 0. The above choice of m ensures that Sm(k) and Sm(k−1)

are F
V
|m(k)−f(n)|
f(n)

-measurable. Now

Xf(n)ψp−1(Sf(n−1)) =
n−1∑

k=1

Xf(n)(ψp−1(Sm(k))− ψp−1(Sm(k−1)))

= (p− 1)
n−1∑

k=1

Xf(n)Xm(k)

∫ 1

0

|Sm(k−1) + sXm(k)|p−2 ds .

Taking the conditional expectation of Xf(n) with respect to F
V
|m(k)−f(n)|
f(n)

, and

applying Hölder’s inequality, we obtain

E(Xf(n)ψp−1(Sf(n−1)))

≤ p

n−1∑

k=1

‖Xm(k)E|m(k)−f(n)|(Xf(n))‖ p
2

∫ 1

0

‖Sm(k−1) + sXm(k)‖p−2
p ds .
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Now, our induction hypothesis yields

‖Sm(k−1) + sXm(k)‖p−2
p ≤

(
2p

k∑
i=1

bm(i)

) p
2
−1

≤
(
2p

n−1∑
i=1

bf(i)

) p
2
−1

.

Hence

E(Xf(n)ψp−1(Sf(n−1))) ≤ p

n−1∑

k=1

‖Xm(k)E|m(k)−f(n)|(Xf(n))‖ p
2

(
2p

n−1∑
i=1

bf(i)

) p
2
−1

≤ p
(
bf(n) − ‖X2

f(n)‖ p
2

)(
2p

n−1∑
i=1

bf(i)

) p
2
−1

.

Since p ≥ 2, we infer that

ptE(Xf(n)ψp−1(Sf(n−1)))

≤ (2p)
p
2

(
bf(n) − ‖X2

f(n)‖ p
2

bf(n)

)[(n−1∑
i=1

bf(i) + tbf(n)

) p
2 −

(n−1∑
i=1

bf(i)

) p
2

]
,

which yields via (4.1) and (4.2),

v(t) ≤ −(2p)
p
2

‖X2
f(n)‖ p

2

bf(n)

[(n−1∑
i=1

bf(i) + tbf(n)

) p
2 −

(n−1∑
i=1

bf(i)

) p
2

]

+ (2p)
p
2

(n−1∑
i=1

bf(i) + tbf(n)

) p
2

+ p2‖X2
f(n)‖ p

2

∫ t

0

(v(s))
p−2

p ds . (4.3)

Note that the function

w(t) = (2p)
p
2

(n−1∑
i=1

bf(i) + tbf(n)

) p
2

solves the equation associated to inequality (4.3). The following lemma en-

sures that v(t) ≤ w(t) for any t in [0,1], which completes the proof of Propo-

sition 1(a).

Lemma 1 For any t in [0, 1] and any β > 1, we have v(t) ≤ βw(t).

Proof. If Xi = 0 almost surely for each i in Γ\{f(n)}, then v(t) ≤ w(t) and

the result follows. Else, note that βw(0) > v(0). Set

t0 = sup{t ∈ [0, 1] : v(s) ≤ βw(s) for any s in [0, t]} .
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We have

v(t0)− βw(t0) ≤ p2‖X2
f(n)‖ p

2

∫ t0

0

(v(s))
p−2

p − β(w(s))
p−2

p ds

≤ p2‖X2
f(n)‖ p

2

∫ t0

0

(v(s))
p−2

p − (βw(s))
p−2

p ds . (4.4)

Since v and w are continuous and since βw(0) > v(0), we infer that t0 is

positive, and (4.4) implies that v(t0) < βw(t0). But if t0 < 1 then necessary

v(t0) = βw(t0). Finally t0 = 1 and Lemma 1 is proved.

4.2 Proof of Proposition 1(b)

Instead of Proposition 1(b), we shall prove the following more general result:

Proposition 2 Let (Xi)i∈Zd be a field of centered and square-integrable ran-

dom variables, and N be a fixed positive integer. For any i in Zd, let

γi(X) =
1

2
E(X2

i ) +
∑

j∈V 1
i \V N

i

|E(XiXj)|+
∑

j∈V N
i

‖XjE|j−i|(Xi)‖ p
2

δ
(1)
i (X) =

∑

j∈V 1
i \V N

i

∑

k∈W c
i,j

‖XkXjE|i−j|(Xi)‖ p
3

δ
(2)
i (X) =

∑

j∈V 1
i \V N

i

∑

k∈Wi,j

‖XkEd(k,{i,j})(XjXi − E(XjXi))‖ p
3

δ
(3)
i (X) =

1

2

∑

j∈V 1
i

‖XjE|i−j|(X
2
i − E(X2

i ))‖ p
3

and δi(X) = δ
(1)
i + δ

(2)
i + δ

(3)
i + ‖X3

i ‖ p
3
.

For any p ≥ 3, the following inequality holds:

‖SΓ(X)‖p ≤
(
2p

∑
i∈Γ

γi(X)
) 1

2
+

(
3p2

∑
i∈Γ

δi(X)
) 1

3
. (4.5)

Remark 9. Note that Proposition 1(b) follows by letting N → +∞. Propo-

sition 2 will be used later on to prove Theorem 3 under assumption (ii).

For the sake of brevity, write γi for γi(X) and δi for δi(X). Without loss

of generality we may assume that γi and δi are finite for each i in Γ.

If Γ = {i} then E|Xi|p ≤ δ
p/3
i and (4.5) holds.
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Recall that ψp(x) = |x|p(1Ix>0− 1Ix≤0). From Taylor’s expansion, we have

u(t) = |Sf(n−1)|p + ptXf(n)ψp−1(Sf(n−1)) + p(p− 1)t2
X2

f(n)

2
|Sf(n−1)|p−2

+ p(p− 1)(p− 2)

∫ 1

0

(1− s)2

2
t3X3

f(n)ψp−3(Sf(n−1) + stXf(n))ds . (4.6)

Starting from this equality, we control each of the terms by applying the

induction hypothesis.

The second order terms

First, we make the elementary decomposition X2
f(n)|Sf(n−1)|p−2 = I1 + I2,

where I1 and I2 are defined by

I1 = [X2
f(n) − E(X2

f(n))]|Sf(n−1)|p−2 and I2 = E(X2
f(n))|Sf(n−1)|p−2 .

To handle I1, we use the one to one map m as done in Section 5.1.

I1 =
n−1∑

k=1

[X2
f(n) − E(X2

f(n))](|Sm(k)|p−2 − |Sm(k−1)|p−2)

= (p− 2)
n−1∑

k=1

[X2
f(n) − E(X2

f(n))]Xm(k)

∫ 1

0

ψp−3(Sm(k−1) + sXm(k)) ds .

Taking the conditional expectation of [X2
f(n) − E(X2

f(n))] with respect to

F
V
|m(k)−f(n)|
f(n)

and applying Hölder’s inequality, we infer that |E(I1)| is bounded

by

p

n−1∑

k=1

‖Xm(k)E|m(k)−f(n)|([X
2
f(n) − E(X2

f(n))])‖ p
3

∫ 1

0

‖Sm(k−1) + sXm(k)‖p−3
p ds .

(4.7)

Now, our induction hypothesis yields

‖Sm(k−1) + sXm(k)‖p−3
p ≤

[(
2p

k∑
i=1

γm(i)

) 1
2

+
(
3p2

k∑
i=1

δm(i)

) 1
3

]p−3

≤
[(

2p
∑
i∈Γ

γi

) 1
2

+
(
3p2

n−1∑
i=1

δf(i)

) 1
3

]p−3

. (4.8)

Bearing in mind the definition of δ
(3)
i , we infer from (4.7) and (4.8) that

1

2
p2t2|E(I1)| ≤ p3tδ

(3)
f(n)

[(
2p

∑
i∈Γ

γi

) 1
2

+
(
3p2

n−1∑
i=1

δf(i)

) 1
3

]p−3

. (4.9)
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Let y be the function defined by

y(t) =

[(
2p

∑
i∈Γ

γi

) 1
2

+
(
3p2

(n−1∑
i=1

δf(i) + tδf(n)

)) 1
3

]p

. (4.10)

Obvious computations show that

p3δf(n)

[(
2p

∑
i∈Γ

γi

) 1
2

+
(
3p2

(n−1∑
i=1

δf(i) + tδf(n)

)) 1
3

]p−3

≤ y′(t) , (4.11)

which together with (4.9) yields

1

2
p2t2|E(I1)| ≤

δ
(3)
f(n)

δf(n)

(
y(t)− y(0)

)
. (4.12)

The first order terms

Notations 4. For any positive integer N , set

EN
n = Γ ∩ V N

f(n) and SN
f(n) =

∑

i∈EN
n

Xi .

We first make the decomposition Xf(n)ψp−1(Sf(n−1)) = I3 + I4, where

I3 = Xf(n)(ψp−1(Sf(n−1))− ψp−1(S
N
f(n))) and I4 = Xf(n)ψp−1(S

N
f(n)) .

Using again the map m, we have

I3 =
n−1∑

k=|EN
n |+1

Xf(n)(ψp−1(Sm(k))− ψp−1(Sm(k−1))) .

Applying Taylor’s expansion, we write I3 = J1 + J2, where

J1 =
n−1∑

k=|EN
n |+1

(p− 1)Xf(n)Xm(k)|Sm(k−1)|p−2 and

J2 =
n−1∑

k=|EN
n |+1

(p− 1)(p− 2)Xf(n)X
2
m(k)

∫ 1

0

(1− s)ψp−3(Sm(k−1) + sXm(k))ds.

Notation 5. Define the set

Gn,k = {i ∈ m([1, k − 1] ∩ IN∗) : d(i, {f(n),m(k)}) ≥ |f(n)−m(k)|}
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Let hk be a one to one map from [1, k−1]∩IN∗ to m([1, k−1]∩IN∗) such that

d(hk(i), {f(n),m(k)}) ≤ d(hk(i − 1), {f(n),m(k)}). For the sake of brevity,

we write h for hk. Set Sh(i) =
∑i

j=1 Xh(j) and Sh(0) = 0.

Now, write J1 = K1 + K2 + K3, where

K1 = (p− 1)
n−1∑

k=|EN
n |+1

Xf(n)Xm(k)(|Sm(k−1)|p−2 − |Sh(|Gn,k|)|p−2)

K2 = (p− 1)
n−1∑

k=|EN
n |+1

[Xf(n)Xm(k) − E(Xf(n)Xm(k))]|Sh(|Gn,k|)|p−2

K3 = (p− 1)
n−1∑

k=|EN
n |+1

E(Xf(n)Xm(k))|Sh(|Gn,k|)|p−2 .

Control of K2

We have

K2

(p− 1)
=

n−1∑

k=|EN
n |+1

|Gn,k|∑
i=1

[Xf(n)Xm(k)−E(Xf(n)Xm(k))](|Sh(i)|p−2−|Sh(i−1)|p−2) ,

and

|Sh(i)|p−2 − |Sh(i−1)|p−2 = (p− 2)Xh(i)

∫ 1

0

ψp−3(Sh(i−1) + sXh(i))ds . (4.13)

Write d(n, k, i) for the distance d(h(i), {f(n),m(k)}) and W (n, k, i) for the

set W
d(n,k,i)
f(n),m(k) (see Notations 1, Section 3, for the definition of this last set).

The choice of h ensures that Sh(i) and Sh(i−1) are FW (n,k,i)-measurable. Taking

the conditional expectation of [Xf(n)Xm(k) − E(Xf(n)Xm(k))] with respect to

FW (n,k,i) and applying Hölder’s inequality, we infer that

∣∣∣E
(
[Xf(n)Xm(k) − E(Xf(n)Xm(k))]Xh(i)

∫ 1

0

ψp−3(Sh(i−1) + sXh(i))ds
)∣∣∣

is bounded by

‖Xh(i)Ed(n,k,i)([Xf(n)Xm(k) − E(Xf(n)Xm(k))])‖ p
3

∫ 1

0

‖Sh(i−1) + sXh(i)‖p−3
p ds .

Arguing as for I1, we use first the induction hypothesis and second the defi-

nition of δ
(2)
i to conclude that

pt|E(K2)| ≤
δ
(2)
f(n)

δf(n)

(
y(t)− y(0)

)
, (4.14)

where y is the function defined by (4.10). This completes the control of K2.
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Control of K1 and J2

Again, we write

K1

(p− 1)
=

n−1∑

k=|EN
n |+1

k−1∑

i=|Gn,k|+1

Xf(n)Xm(k)(|Sh(i)|p−2 − |Sh(i−1)|p−2) ,

and we use the expansion (4.13). Since the one to one map h describes the set

m([1, k−1]∩ IN∗), the variables Sh(i) and Sh(i−1) are F
V
|m(k)−f(n)|
f(n)

-measurable.

Taking the conditional expectation of Xf(n) with respect to F
V
|m(k)−f(n)|
f(n)

, and

applying Hölder’s inequality, we infer that p−2|E(K1)| is bounded by

n−1∑

k=|EN
n |+1

k−1∑

i=|Gn,k|+1

‖Xm(k)Xh(i)E|m(k)−f(n)|(Xf(n))‖ p
3

∫ 1

0

‖Sh(i−1)+sXh(i)‖p−3
p ds .

(4.15)

In the same way, p−2|E(J2)| is bounded by

n−1∑

k=|EN
n |+1

‖X2
m(k)E|m(k)−f(n)|(Xf(n))‖ p

3

∫ 1

0

‖Sm(k−1) + sXm(k)‖p−3
p ds . (4.16)

Collecting (4.15) and (4.16) and arguing as for I1, we first use the induction

hypothesis and second the definition of δ
(1)
i to conclude that

pt|E(K1 + J2)| ≤
δ
(1)
f(n)

δf(n)

(
y(t)− y(0)

)
, (4.17)

where y is the function defined by (4.10).This completes the control of K1

and J2.

The remainder terms

Collecting (4.12), (4.14) and (4.17), we have shown that

1

2
p2t2|E(I1)|+pt|E(K1 +K2 +J2)| ≤

δf(n) − ‖X3
f(n)‖ p

3

δf(n)

(
y(t)−y(0)

)
. (4.18)

In this section we focus on the remainder terms I2, I4 and K3. We start by

I4. Using again the map m we write

I4 =

|EN
n |∑

k=1

Xf(n)(ψp−1(Sm(k))− ψp−1(Sm(k−1)))

= (p− 1)

|EN
n |∑

k=1

Xf(n)Xm(k)

∫ 1

0

|Sm(k−1) + sXm(k)|p−2 ds .
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Taking the conditional expectation of Xf(n) with respect to F
V
|m(k)−f(n)|
f(n)

, and

applying Hölder’s inequality, we obtain

|E(I4)| ≤ p

|EN
n |∑

k=1

‖Xm(k)E|m(k)−f(n)|(Xf(n))‖ p
2

∫ 1

0

‖Sm(k−1) + sXm(k)‖p−2
p ds .

(4.19)

Next, for |E(I2)| and |E(K3)| we have the upper bounds

|E(I2)| ≤ E(X2
f(n))‖Sf(n−1)‖p−2

p (4.20)

|E(K3)| ≤ p

n−1∑

k=|EN
n |+1

|E(Xf(n)Xm(k))|‖Sh(|Gn,k|)‖p−2
p . (4.21)

From the induction hypothesis, the terms ‖Sm(k−1)+sXm(k)‖p−2
p , ‖Sf(n−1)‖p−2

p

and ‖Sh(|Gn,k|)‖p−2
p are each bounded by

[(
2p

n−1∑
i=1

γf(i)

) 1
2

+
(
3p2

n−1∑
i=1

δf(i)

) 1
3

]p−2

.

Bearing in mind the definition of γi, we infer from (4.19), (4.20) and (4.21)

that

1

2
p2t2|E(I2)|+ pt|E(I4 + K3)|

≤ p2γf(n)

[(
2p

n−1∑
i=1

γf(i)

) 1
2

+
(
3p2

n−1∑
i=1

δf(i)

) 1
3

]p−2

. (4.22)

Define the function z by

z(t) =

[(
2p

(n−1∑
i=1

γf(i) + tγf(n)

)) 1
2

+
(
3p2

n−1∑
i=1

δf(i)

) 1
3

]p

.

Obvious computations show that

p2γf(n)

[(
2p

n−1∑
i=1

γf(i)

) 1
2

+
(
3p2

n−1∑
i=1

δf(i)

) 1
3

]p−2

≤ z′(t) . (4.23)

Note that if y is the function defined by (4.10), we have z(1) = y(0). Conse-

quently we conclude from (4.22) and (4.23) that

1

2
p2t2|E(I2)|+ pt|E(I4 + K3)| ≤ y(0)−

[(
2p

n−1∑
i=1

γf(i)

) 1
2

+
(
3p2

n−1∑
i=1

δf(i)

) 1
3

]p

(4.24)
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which completes the control of the remainder terms.

End of the proof

The induction hypothesis provides the upper bound:

E(|Sf(n−1)|p) ≤
[(

2p
n−1∑
i=1

γf(i)

) 1
2

+
(
3p2

n−1∑
i=1

δf(i)

) 1
3

]p

. (4.25)

Now if v is the function defined by (4.1), we infer from equation (4.6) and

the upper bounds (4.18), (4.24) and (4.25) that

v(t) ≤ y(t)−
‖X3

f(n)‖ p
3

δf(n)

(
y(t)− y(0)

)
+ p3‖X3

f(n)‖ p
3

∫ t

0

(v(s))
p−3

p ds . (4.26)

According to inequality (4.11), the function y satisfies

y(t) ≥ y(t)−
‖X3

f(n)‖ p
3

δf(n)

(
y(t)− y(0)

)
+ p3‖X3

f(n)‖ p
3

∫ t

0

(y(s))
p−3

p ds . (4.27)

Arguing as in Lemma 1, we conclude from (4.26) and (4.27) that v(t) ≤ y(t)

for any t in [0, 1]. This completes the proof of Proposition 1(b).

5 Exponential inequalities

Proof of Corollary 3(a). Without loss of generality, we may assume that b

is finite. Applying Markov’s inequality, we have, for any positive x and any

p ≥ 2,

P(|SΓ(X)| > x) ≤ min
(
1,
E|SΓ(X)|p

xp

)
≤ min

(
1,

(2pb

x2

) p
2
)

.

Obvious computations show that the function p → (2pbx−2)p/2 has an unique

minimum in p0 = (2eb)−1x2 and is increasing on the interval [p0, +∞]. By

comparing p0 and 2, we infer that

P(|SΓ(X)| > x) ≤ h
( x2

4eb

)
,

where h is the function from R+ to R+ defined by

h(y) =





1 if y ≤ e−1

(ey)−1 if e−1 < y ≤ 1

e−y if y > 1
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Finally, Corollary 3(a) follows by noting that h(y) ≤ exp(−y + e−1) for any

positive y.

Proof of Corollary 3(b). Take M and V as in Corollary 3(b). Note that

p2/3M = (pM3V −1)1/3(
√

pV )2/3 and consequently p2/3M ≤ pM3V −1 +
√

pV .

Now, applying Proposition 1(b), we obtain for any real p ≥ 3,

‖SΓ(X)‖p ≤
√

pV + p2/3M ≤ 2
√

pV + pM3V −1 , (5.1)

and Hölder’s inequality yields

P(|SΓ(X)| > x) ≤ min
(
1,
E|SΓ(X)|p

xp

)
≤ min

(
1,

(2
√

pV + pM3V −1

x

)p
)

.

(5.2)

Note that if x =
√

4e2pV + epM3V −1 then p ≥ x2(4e2V + 2exM3V −1)−1.

From this fact and inequality (5.2) we infer that, for any positive x such that

x2(4e2V + 2exM3V −1)−1 ≥ 3,

P(|SΓ(X)| > x) ≤ exp

( −x2

4e2V + 2exM3V −1

)
.

In any cases, we conclude that

P(|SΓ(X)| > x) ≤ exp

( −x2

4e2V + 2exM3V −1
+ 3

)
.

Proof of Corollary 4. First note that Corollary 4(b) follows straightforwardly

from Corollary 4(a) and Corollary 3 (for inequality (ii), take M and V such

that M3 = 3D(φ)A(Γ)m3 and V = 2D(φ)A(Γ)v ).

In order to prove Corollary 4(a), we bound bi,∞(aX), ci(aX) and di,∞(aX)

with the help of the φ-mixing inequalities (3.2), (3.3) and (3.4). From (3.4)

and the fact that (ai)i∈Zd belongs to [−1, 1]Z
d
, we obtain

ci(aX) ≤ |ai|
2

∑

j∈Zd

|E(XiXj)| ≤ |ai|v
∑

j∈Zd

φ1,1(|j|) . (5.3)

This gives the expression of the constant C(φ). In the same way, we obtain

from (3.2) the upper bound

bi,∞(aX) ≤ |ai|
(
m2 +

∑

j∈V 1
i

‖XjE|i−j|(Xi)‖∞
)
≤ |ai|m2

(
1 +

∑

j∈Zd\0
φ∞,1(|j|)

)

(5.4)
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which gives the expression of B(φ). Next, using again (3.2), we get

d
(3)
i,∞(aX) ≤ |ai|

2

∑

j∈V 1
i

‖XjE|i−j|(X
2
i − E(X2

i ))‖∞ ≤ |ai|m3

2

∑

j∈Zd\0
φ∞,1(|j|) .

(5.5)

From (3.2) and the fact that |W c
i,j| ≤ (2|i− j| − 1)d, we obtain

d
(1)
i,∞(aX) ≤ |ai|

∑

j∈V 1
i

∑

k∈W c
i,j

‖XkXjE|i−j|(Xi)‖∞

≤ |ai|m3
∑

j∈Zd\0
(2|j| − 1)dφ∞,1(|j|) . (5.6)

It remains to bound up d
(2)
i,∞(aX). Note that, for a fixed positive integer l

and (i, j) in (Zd)2, there exist at most 2[(2l + 1)d − (2l− 1)d] elements of Zd

such that d(k, {i, j}) = l. From (3.3) and the definition of Wi,j, we write

d
(2)
i,∞(aX) ≤ |ai|

∑

j∈V 1
i

∑

k∈Wi,j

‖XkEd(k,{i,j})(XjXi − E(XjXi))‖α

≤ 4|ai|m3
∑

j∈V 1
i

∑

l>0

1I|i−j|≤l [(2l + 1)d − (2l − 1)d]φ∞,2(l) .

Now, the cardinality of the set {j ∈ V 1
i : |i− j| ≤ l} is less than (2l + 1)d/2,

and we obtain

d
(2)
i,∞(aX) ≤ 2|ai|m3

∑

l>0

(2l + 1)d[(2l + 1)d − (2l − 1)d]φ∞,2(l)

≤ 2|ai|m3
∑

j∈Zd\0
(2|j|+ 1)dφ∞,2(|j|) . (5.7)

Recall that di,∞(aX) = d
(1)
i,∞(aX)+d

(2)
i,∞(aX)+d

(3)
i,∞(aX)+‖(aiXi)

3‖∞. Since

|ai| ≤ 1 it follows that ‖(aiXi)
3‖∞ ≤ 2|ai|m3φ∞,2(0). This inequality to-

gether with (5.5), (5.6) and (5.7) gives the expression of the constant D(φ)

and the proof of Corollary 4 is complete.

6 Finite dimensional convergence

For any subset Γ of Zd we consider

∂Γ = {i ∈ Γ : ∃j /∈ Γ such that |i− j| = 1} .

For any Borel set A of [0, 1]d, we denote by Γn(A) the finite subset of Zd

defined by Γn(A) = nA ∩ Zd.
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Lemma 2 Let A be a regular Borel set of [0, 1]d with λ(A) > 0. We have

(a)

(i) lim
n→+∞

|Γn(A)|
nd

= λ(A) and (ii) lim
n→+∞

|∂Γn(A)|
|Γn(A)| = 0 .

(b) Let (Xi)i∈Zd be a strictly stationary random field with mean zero and

finite variance. Assume that
∑

k∈Zd |E(X0Xk)| < ∞. Then

lim
n→+∞

n−d/2‖Sn(A)− SΓn(A)(X)‖2 = 0 . (6.1)

The finite dimensional convergence follows straightforwardly from Lemma 2

and Theorem 2 in Dedecker (1998).

Proof of Lemma 2. We start by proving (a). We introduce the subsets of Zd

A1 = {i : Ri ⊂ nA}, A2 = {i : Ri∩nA 6= ∅}, A3 = A2∩{i : Ri∩(nA)c 6= ∅}

and for any positive real ε, we set

(∂A)ε = {x ∈ Rd : sup
1≤k≤d

|xk − yk| ≤ ε for some y ∈ ∂A} .

Clearly |A1| ≤ |Γn(A)| ≤ |A2| and consequently

|A2| − |A3| ≤ |Γn(A)| ≤ |A1|+ |A3|.

First, note that |A2| ≥ ndλ(A) and |A1| ≤ ndλ(A). Since A3 is included in

the set {i : Ri ⊂ (∂nA)1} we infer that |A3| ≤ ndλ((∂A)1/n) and therefore

ndλ(A)− ndλ((∂A)1/n) ≤ |Γn(A)| ≤ ndλ(A) + ndλ((∂A)1/n) . (6.2)

By assumption the set A is regular, and hence λ((∂A)1/n) tends to zero as n

tends to infinity. This fact together with (6.2) imply Lemma 2(a)(i).To prove

(a)(ii), note that ∂Γn(A) is included in the set {i : Ri ⊂ (∂nA)2}. Hence

|∂Γn(A)| ≤ ndλ((∂A)2/n), and we conclude as in the proof of (i).

It remains to prove (b). Set ai = λ(nA ∩ Ri) − 1Ii∈Γn(A). Since ai equals

zero if i belongs to A1, we have

Sn(A)− SΓn(A)(X) =
∑
i∈A3

aiXi .
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Using both the fact that |ai| ≤ 1 and the stationarity of the random field,

we obtain

‖Sn(A)− SΓn(A)(X)‖2
2 ≤

∑

(i,j)∈A3×A3

|E(XiXj)|

≤ |A3|
∑

k∈Zd

|E(X0Xk)|

From the proof of (a) we know that n−d|A3| tends to zero as n tends to

infinity, and finally (6.1) holds.

7 Tightness

To complete the proof of Theorems 1, 2 and 3, we shall prove as usual that

the sequence {n−d/2Sn(A) : A ∈ A} is tight in C(A).

7.1 End of the proof of Theorem 1

According to the assumptions of Theorem 1, there exists p > 1 such that

b0,p(X) is finite. For such a p, define the measure µ on [0, 1]d by

µ = 4pb0,p(X)λ .

In this section we shall prove that (n−d/2Sn, µ) belongs to the class C(p, 2p),

where C(β, γ) has been defined by Bickel and Wichura (1971) for any β > 1

and γ > 0. The tightness of the sequence{n−d/2Sn(t) : t ∈ [0, 1]d} will then

follow by applying Theorem 3 of the above paper. For any s and t in [0, 1]d

such that sk ≤ tk for all k, define the subset B =]s1, t1] × · · ·×]sd, td]. Let

ai = λ(nB ∩Ri)and write aX for the random field (aiXi)i∈Zd .

Now from Proposition 1(a), we have

E(|n−d/2Sn(B)|2p) ≤
(
4p

∑

i∈Zd

n−dbi,p(aX)
)p

≤
(
4pb0,p(X)

∑

i∈Zd

n−d|ai|
)p

≤ (µ(B))p .

From inequality (3) in Bickel and Wichura, this implies that (n−d/2Sn, µ)

belongs to the class C(p, 2p) and the proof of Theorem 1 is complete.
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7.2 End of the proof of Theorem 2

For any A and B in A, define ai = λ(nA ∩ Ri) − λ(nB ∩ Ri) and write aX

for the random field (aiXi)i∈Zd . Set M = ‖X2
0‖∞ +

∑
k∈V 1

0
‖XkE|k|(X0)‖∞.

We have ∑

i∈Zd

bi,∞(aX) ≤ M
∑

i∈Zd

|ai| ≤ ndMλ(A∆B)

Applying Corollary 3(a) to the random fields aX, we obtain

P(|Sn(A)− Sn(B)| > nd/2x) ≤ exp

( −x2

4eMλ(A∆B)
+

1

e

)
.

This means that for each n the process {n−d/2Sn(A) : A ∈ A} is subgaussian

(cf Ledoux and Talagrand (1991) page 322). Now suppose that (2.1) holds.

Applying Theorem 11.6 in Ledoux and Talagrand (1991), we infer that the

sequence {n−d/2Sn(A) : A ∈ A} satisfies the following property: for each

positive ε there exists a positive real δ, depending only on ε and of the value

of the entropy integral, such that

E
(

sup
d(A,B)<δ

|Sn(A)− Sn(B)|
)
< nd/2ε .

This proves that the sequence {n−d/2Sn(A) : A ∈ A} is tight in C(A), and

the proof of Theorem 2 is complete.

7.3 End of the proof of Theorem 3

In Lemma 3 below, we establish an upper bound on the maximum of SΓ(aX)

when a describes a finite collection of elements of [−1, 1]Z
d
. Next, we adapt

the chaining method of Bass (1985) and we use the upper bound of Lemma

3 to control each terms of the decomposition.

Maximal inequalities for partial sums

Lemma 3 Let X, a, A(Γ), v and m be defined as in Corollary 4. Let G be

any finite collection of elements of [−1, 1]Z
d
, denote by |G| its cardinality and

set H = log(|G|). Assume that H ≥ 1 and take δ such that for any a in G
we have

√
A(Γ) ≤ δ.

(i) If
∑

k>0 k2d−1φ∞,2(k) < ∞, then

E
(
max
a∈G

|SΓ(aX)|
)
≤ K1

(√
Hvδ + Hm3v−1

)
.
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(ii) If φ∞,2(k) = O(k−b) for some b in ]d, 2d[, then

E
(
max
a∈G

|SΓ(aX)|
)
≤ K2

(√
Hvδ + H(m3v−1 ∨m

b+d
b−d v

d
d−b )

)
.

Proof. Assume that
∑

k>0 k2d−1φ∞,2(k) < ∞. From inequality (5.1) and

Corollary 4(a), we infer that there exists a constant C1 such that, for any

p ≥ 3,

‖SΓ(aX)‖p ≤ C1

(√
pvδ + pm3v−1

)
. (7.1)

Now, if we only assume that φ∞,2(k) = O(k−b) for some b in ]d, 2d[, we can

obtain from Proposition 2 an inequality similar to (7.1) by providing upper

bounds for γi(aX) and δi(aX). Let N be a positive integer. From inequality

(5.3) and the fact that

∑

j∈V N
i

‖XjE|j−i|(Xi)‖ p
2
≤ m2

2

∑

j∈Zd, |j|≥N

φ∞,1(|j|) ,

we infer that there exists a constant D1 such that

(
2p

∑
i∈Γ

γi(aX)
) 1

2 ≤ D1

(√
pvδ +

√
pN

d−b
2 mδ

)
. (7.2)

The term δ
(3)
i (aX) is controlled by (5.4). Next arguing as for inequalities

(5.5) and (5.6), we have

δ
(1)
i (aX) ≤ |ai|m3

∑

j∈Zd, |j|<N

(2|j| − 1)dφ∞,1(|j|)

δ
(2)
i (aX) ≤ 2|ai|m3

∑

j∈Zd

(2(|j| ∧N) + 1)dφ∞,2(|j|).

This implies that there exists a constant D2 such that

(
3p2

∑
i∈Γ

δi(aX)
) 1

3 ≤ D2

(
p2/3N

2d−b
3 mδ2/3

)
(7.3)

Taking N = [(δ2/p)1/(b+d)] + 1 in (7.2) and (7.3) yields

(
2p

∑
i∈Γ

γi(aX)
) 1

2 ≤ D1

(√
pvδ + mp

b
b+d δ

2d
b+d

)
(7.4)

(
3p2

∑
i∈Γ

δi(aX)
) 1

3 ≤ D3

(
mp2/3δ2/3 + mp

b
b+d δ

2d
b+d

)
(7.5)
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for a certain constant D3. Now

mp
b

b+d δ
2d

b+d =
(
pm

b+d
b−d v

d
d−b

) b−d
b+d

(√
pvδ

) 2d
b+d

≤ pm
b+d
b−d v

d
d−b +

√
pvδ , (7.6)

and (7.6) remains valid with b = 2d. From Proposition 2 and the upper

bounds (7.4), (7.5) and (7.6), we infer that there exists a constant C2 such

that, for any p ≥ 3,

‖SΓ(aX)‖p ≤ C2

(√
pvδ + p(m3v−1 ∨m

b+d
b−d v

d
d−b )

)
. (7.7)

Now we are in position to prove Lemma 3. Write

E
(
max
a∈G

|SΓ(aX)|
)

≤ ‖max
a∈G

|SΓ(aX)|‖p

≤
(∑

a∈G
E|SΓ(aX)|p

) 1
p

≤ |G| 1p max
a∈G

‖SΓ(aX)‖p . (7.8)

Combining (7.8) with (7.1) (resp. (7.7)) and taking p = 3H, we obtain

Lemma 3(i) (resp. Lemma 3(ii)).

Chaining

In the sequel, we write H(x) for H(A, x) and we assume (without loss of

generality) that X0 has variance 1.

Following Bass (1985), we introduce the notations:

Notations 6. For b in ]d, 2d] and 0 ≤ a ≤ c ≤ ∞, let

Xi(n, a, c) =





Xi if 2n
d(b−d)
2(b+d) a ≤ |Xi| < 2n

d(b−d)
2(b+d) c

0 otherwise

and for any Borel set A of [0, 1]d, define

Zn(A, a, c) = n−d/2
∑

i∈Zd

λ(nA ∩Ri) (Xi(n, a, c)− E (Xi(n, a, c)))

Un(A, a, c) = n−d/2
∑

i∈Zd

λ(nA ∩Ri)|Xi(n, a, c)| .

Now from the basic inequality

n−d/2|Sn(A)− Sn(B)| ≤ |Zn(A, 0, a0)− Zn(B, 0, a0)|
+ 2Un

(
[0, 1]d, a0,∞

)
+ 2E

(
Un

(
[0, 1]d, a0,∞

))
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we infer that

n−d/2E
(

sup
(A,B)∈A2, d(A,B)≤δ

|Sn(A)− Sn(B)|
)
≤ E1 + E2, (7.9)

where E1 and E2 are defined by

E1 = E
(

sup
(A,B)∈A2, d(A,B)≤δ

|Zn(A, 0, a0)− Zn(B, 0, a0)|
)

E2 = 4E
(
Un

(
[0, 1]d, a0,∞

))
.

Control of E1

Let δi = 2−iδ. If A and B are any sets in A, there exists sets Ai, A
+
i , Bi, B

+
i

in A(δi) such that Ai ⊆ A ⊆ A+
i and d(Ai, A

+
i ) ≤ δi, and similarly for

B, Bi, B
+
i . For any sequence (ai)i∈IN of positive numbers decreasing to 0, we

have

Zn(A, 0, a0) = Zn(A0, 0, a0) +
+∞∑
i=0

(Zn(Ai+1, 0, ai)− Zn(Ai, 0, ai))

+
+∞∑
i=1

(Zn(A, ai, ai−1)− Zn(Ai, ai, ai−1)) (7.10)

From (7.10) we obtain the bound E1 ≤ F1 + F2 + F3, where

F1 = E
(

max
(A0,B0)∈(A(δ0))2

d(A0,B0)≤3δ0

|Zn(A0, 0, a0)− Zn(B0, 0, a0)|
)

F2 = 2
+∞∑
i=0

E
(

max
Ai∈A(δi), Ai+1∈A(δi+1)

d(Ai,Ai+1)≤2δi

|Zn(Ai+1, 0, ai)− Zn(Ai, 0, ai)|
)

F3 = 2
+∞∑
i=1

E
(

max
(Ai,A

+
i )∈(A(δi))

2

d(Ai,A
+
i )≤δi

sup
Ai⊆A⊆A+

i

|Zn(A, ai, ai−1)− Zn(Ai, ai, ai−1)|
)

.

To control F1, we apply Lemma 3. Set Λn = [1, n]d ∩Zd, and for any i in Zd,

αi = λ(nA0 ∩Ri)− λ(nB0 ∩Ri) and Yi = Xi(n, 0, a0)− E(Xi(n, 0, a0)) .

With those notations, we have

nd/2|Zn(A0, 0, a0)− Zn(B0, 0, a0)| = |SΛn(αY )| .
Since A0 and B0 belong to A(δ0), α describes a set whose log-cardinality is

less than 2H(δ0). Moreover it is clear that for each α in that set, we have
∑
i∈Λn

|αi| ≤ ndλ(A0∆B0) ≤ 9δ2
0n

d .
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Consequenlty, Lemma 3 with v = 1, m = nd(b−d)/2(b+d)a0, H = 2H(δ0), and

δ = 3δ0n
d/2 gives

F1 ≤ K

(
3
√

2H(δ0)δ0 + 2H(δ0)

(
a3

0n
d(b−2d)

b+d ∨ a
b+d
b−d

0

))
, (7.11)

where the constant K is equal either to K1 when b = 2d and we assume that∑
k>0 k2d−1φ∞,2(k) < ∞ or to K2 when b belongs to ] d, 2d [ and we assume

that φ∞,2(k) = O(k−b).

In the same way, we get

F2 ≤
+∞∑
i=0

2K

(
2
√

2H(δi+1)δi + 2H(δi+1)

(
a3

0n
d(b−2d)

b+d ∨ a
b+d
b−d

0

))
. (7.12)

To control F3, note that

sup
Ai⊆A⊆A+

i

|Zn(A, ai, ai−1)− Zn(Ai, ai, ai−1)| ≤ Un(A+
i \ Ai, ai, ai−1)

+ E(Un(A+
i \ Ai, ai, ai−1)) ,

and consequently

sup
Ai⊆A⊆A+

i

|Zn(A, ai, ai−1)− Zn(Ai, ai, ai−1)| ≤ G1(i) + G2(i) , (7.13)

where

G1(i) = |Un(A+
i \ Ai, ai, ai−1)− E(Un(A+

i \ Ai, ai, ai−1))|
G2(i) = 2E(Un(A+

i \ Ai, ai, ai−1))

Arguing as for F1 and F2, we have

E
(

max
(Ai,A

+
i )∈(A(δi))

2

d(Ai,A
+
i )≤δi

G1(i)
)
≤ K

(
2
√

2H(δi)δi + 2H(δi)

(
a3

i−1n
d(b−2d)

b+d ∨ a
b+d
b−d

i−1

))
.

(7.14)

On the other hand, since

E|Xj(n, ai, ai−1)| ≤ inf
(
E|X0|4n−

3d(b−d)
b+d a−3

i , E|X0|
2b

b−d n−
d
2 a

b+d
d−b

i

)
,

we infer that, setting M = E|X0|4 ∨ E|X0|2b/(b−d),

G2(i) ≤ 2δ2
i M

a3
i n

d(b−2d)
b+d ∨ a

b+d
b−d

i

. (7.15)
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Collecting (7.13), (7.14) and (7.15), we obtain

F3 ≤
+∞∑
i=1

4K

(√
2H(δi)δi +H(δi)

(
a3

i−1n
d(b−2d)

b+d ∨ a
b+d
b−d

i−1

))
+

4δ2
i M

a3
i n

d(b−2d)
b+d ∨ a

b+d
b−d

i

.

(7.16)

From inequalities (7.11), (7.12), (7.16) and the facts that H(δ0) ≤ H(δ1) and

δi = 2δi−1, we conclude that there exists a constant C such that

E1 ≤ C

+∞∑
i=1

√
H(δi)δi−1 +H(δi)

(
a3

i−1n
d(b−2d)

b+d ∨ a
b+d
b−d

i−1

)
+

δ2
i−1

a3
i−1n

d(b−2d)
b+d ∨ a

b+d
b−d

i−1

.

(7.17)

We now choose the sequence (ai)i∈IN by setting

for i ≥ 1, a3
i−1n

d(b−2d)
b+d ∨ a

b+d
b−d

i−1 =
δi−1√
H(δi)

, (7.18)

so that

√
H(δi)δi−1 = H(δi)

(
a3

i−1n
d(b−2d)

b+d ∨ a
b+d
b−d

i−1

)
=

δ2
i−1

a3
i−1n

d(b−2d)
b+d ∨ a

b+d
b−d

i−1

. (7.19)

According to (7.17), (7.19) and the decrease of the function H, we have

E1 ≤ 12C
+∞∑
i=1

√
H

(
δ

2i

)
δ

2i+1
≤ 12C

∫ δ

0

√
H(x)dx . (7.20)

Recall that one of the assumptions of Theorem 1 is that the collection A
has a convergent entropy integral (i.e (4.7) holds). Therefore, it follows from

(7.20) that

lim
δ→0

lim sup
n→+∞

E
(

sup
(A,B)∈A2, d(A,B)≤δ

|Zn(A, 0, a0)− Zn(B, 0, a0)|
)

= 0 (7.21)

Control of E2

The proof is adapted from Bass (1985), Proposition 4.1. We first state the

following lemma:

Lemma 4 Assume that E(|X0|2b/(b−d)) < ∞ for some b in ] d, 2d ]. For any

positive real a, let X0(|k|, a,∞) be defined as in Notations 6. We have

∑

k∈Zd\0
|k|−d/2E|X0(|k|, a,∞)| < ∞ .
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Now to control E2 we write, for any positive integer N ,

E
(
Un

(
[0, 1]d, a0,∞

)) ≤
∑

k∈Zd, |k|≤N

n−d/2E|X0(n, a0,∞)|

+
∑

k∈Zd, |k|>N

|k|−d/2E|X0(|k|, a0,∞)| , (7.22)

where we use the stationarity of the random field X.

From (7.18) we know that, for n large enough, a0 = (δ0/
√
H(δ1))

(b−d)/(b+d)

(in particulary, it does not depend on n). Therefore, according to (7.22), we

have

lim sup
n→+∞

E
(
Un

(
[0, 1]d, a0,∞

))≤
∑

k∈Zd, |k|>N

|k|−d/2E
∣∣∣X0

(
|k|,

( δ0√
H(δ1)

) (b−d)
(b+d)

,∞
)∣∣∣

which together with Lemma 4 yields

lim sup
n→+∞

E
(
Un

(
[0, 1]d, a0,∞

))
= 0 . (7.23)

From inequalities (7.9), (7.21) and (7.23) we infer that the sequence of

processes {n−d/2Sn(A) : A ∈ A} is tight in the space C(A), and the proof

of Theorem 3 is complete.

Proof of Lemma 4. Since the number of k in Zd with |k| = i is less than cid−1

for a constant c, we have

∑

k∈Zd\0
|k|−d/2E|X0(|k|, a,∞)| ≤ c

+∞∑
i=1

i
d
2
−1E|X0(i, a,∞)| ,

and the definition of X0(i, a,∞) leads to

∑

k∈Zd\0
|k|−d/2E|X0(|k|, a,∞)| ≤ cE

(
|X0|

+∞∑
i=1

i
d
2
−11Iid(b−d)≤(|X0|/2a)2(b+d)

)

≤ cE(|X0|
2b

b−d )(2a)
b−d
b+d ,

which concludes the proof of Lemma 4.
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dépendantes, Collection Mathématiques & Apllications 31. (Springer, Berlin,
2000).

37
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