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Abstract

We consider two classes of piecewise expanding maps T of [0, 1]: a class of uniformly

expanding maps for which the Perron-Frobenius operator has a spectral gap in the space

of bounded variation functions, and a class of expanding maps with a neutral fixed point

at zero. In both cases, we give a large class of unbounded functions f for which the

partial sums of f ◦ T i satisfy an almost sure invariance principle. This class contains

piecewise monotonic functions (with a finite number of branches) such that:

• For uniformly expanding maps, they are square integrable with respect to the

absolutely continuous invariant probability measure.

• For maps having a neutral fixed point at zero, they satisfy an (optimal) tail condition

with respect to the absolutely continuous invariant probability measure.
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1 Introduction and main results

Our goal in this article is to prove the almost sure invariance principle with error rate

o(
√
n ln lnn) for several classes of one-dimensional dynamical systems, under very weak inte-

grability or regularity assumptions. We will consider uniformly expanding maps, and maps

with an indifferent fixed point, as defined below.

Several classes of uniformly expanding maps of the interval are considered in the literature.

We will use the very general definition of Rychlik (1983) to allow infinitely many branches. For

notational simplicity, we will assume that there is a single absolutely invariant measure and

that it is mixing (the general case can be reduced to this one by looking at subintervals and
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at an iterate of the map). We will also need to impose a nontrivial restriction on the density

of the measure: it should be bounded away from 0 on its support. This is not always the case,

but it is true if there are only finitely many different images (see Zweimüller (1998) for a neat

introduction to such classes of maps, or Broise (1996)).

Definition 1.1. A map T : [0, 1] → [0, 1] is uniformly expanding, mixing and with density

bounded from below if it satisfies the following properties:

1. There is a (finite or countable) partition of T into subintervals In on which T is strictly

monotonic, with a C2 extension to its closure In, satisfying Adler’s condition |T ′′|/|T ′|2 ≤
C, and with |T ′| ≥ λ (where C > 0 and λ > 1 do not depend on In).

2. The length of T (In) is bounded from below.

3. In this case, T has finitely many absolutely continuous invariant measures, and each of

them is mixing up to a finite cycle. We assume that T has a single absolutely continuous

invariant probability measure ν, and that it is mixing.

4. Finally, we require that the density h of ν is bounded from below on its support.

From this point on, we will simply refer to such maps as uniformly expanding. This

definition encompasses for instance piecewise C2 maps with finitely many branches which are

all onto, and with derivative everywhere strictly larger than 1 in absolute values.

We consider now a class of expanding maps with a neutral fixed point at zero, as defined

below.

Definition 1.2. A map T : [0, 1]→ [0, 1] is a generalized Pomeau-Manneville map (or GPM

map) of parameter γ ∈ (0, 1) if there exist 0 = y0 < y1 < · · · < yd = 1 such that, writing

Ik = (yk, yk+1),

1. The restriction of T to Ik admits a C1 extension T(k) to Ik.

2. For k ≥ 1, T(k) is C2 on Ik, and |T ′(k)| > 1.

3. T(0) is C2 on (0, y1], with T ′(0)(x) > 1 for x ∈ (0, y1], T
′
(0)(0) = 1 and T ′′(0)(x) ∼ cxγ−1

when x→ 0, for some c > 0.

4. T is topologically transitive.

For such maps, almost sure invariance principles with good remainder estimates (of the form

O(n1/2−α) for some α > 0) have been established by Melbourne and Nicol (2005) for Hölder

observables, and by Merlevède and Rio (2012) under rather mild integrability assumptions.

For instance, for uniformly expanding maps, Merlevède and Rio (2012) obtain such a result

for a class of observables f in Lp(ν) for p > 2. This leaves open the question of the boundary

case f ∈ L2(ν). In this case, just like in the i.i.d. case, one can not hope for a remainder
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O(n1/2−α) with α > 0, but one might expect to get o(
√
n ln lnn). This would for instance

be sufficient to deduce the functional law of the iterated logarithm from the corresponding

result for the Brownian motion. The corresponding boundary case for GPM maps has been

studied in Dedecker, Gouëzel and Merlevède (2010): we proved a bounded law of the iterated

logarithm (i.e., almost surely, lim sup
∑n−1

i=0 f ◦ T i/
√
n log log n ≤ A < +∞), but we were not

able to obtain the almost sure invariance principle.

Our goal in the present article is to solve this issue by combining the arguments of the

two above papers: we will approximate a function in the boundary case by a function with

better integrability properties, use the almost sure invariance principle of Merlevède and Rio

(2011) for this better function, and show that the bounded law of the iterated logarithm makes

it possible to pass the results from the better function to the original function. This is an

illustration of a general method in mathematics: to prove results for a wide class of systems,

it is often sufficient to prove results for a smaller (but dense) class of systems, and to prove

uniform (maximal) inequalities. This strategy gives the almost sure invariance principle in the

boundary case for GPM maps (see Theorem 1.6 below). In the case of uniformly expanding

maps the almost sure invariance principle for a dense set of functions has been proved by

Hofbauer and Keller (1982) for a smaller class than that given in Definition 1.1, and follows

from Merlevède and Rio (2012) for the class of uniformly expanding maps considered in the

present paper. However, the bounded law of the iterated logarithm for the boundary case is

not available in the literature: we will prove it in Proposition 5.3.

We now turn to the functions for which we can prove the almost sure invariance principle.

The main feature of our arguments is that they work with the weakest possible integrability

condition (merely L2(ν) for uniformly expanding maps), and without any condition on the

modulus of continuity: we only need the functions to be piecewise monotonic. More precisely,

the results are mainly proved for functions which are monotonic on a single interval, and they

are then extended by linearity to convex combinations of such functions. Such classes are

described in the following definition.

Definition 1.3. If µ is a probability measure on R and p ∈ [2,∞), M ∈ (0,∞), let Monp(M,µ)

denote the set of functions f : R→ R which are monotonic on some interval and null elsewhere

and such that µ(|f |p) ≤ Mp. Let Moncp(M,µ) be the closure in L1(µ) of the set of functions

which can be written as
∑L

`=1 a`f`, where
∑L

`=1 |a`| ≤ 1 and f` ∈ Monp(M,µ).

The above definition deals with Lp-like spaces, with an additional monotonicity condition.

In some cases, it is also important to deal with spaces similar to weak Lp, where one only

requires a uniform bound on the tails of the functions. Such spaces are described in the

following definition.

Definition 1.4. A function H from R+ to [0, 1] is a tail function if it is non-increasing, right

continuous, converges to zero at infinity, and x 7→ xH(x) is integrable. If µ is a probability

measure on R and H is a tail function, let Mon(H,µ) denote the set of functions f : R→ R

3



which are monotonic on some interval and null elsewhere and such that µ(|f | > t) ≤ H(t). Let

Monc(H,µ) be the closure in L1(µ) of the set of functions which can be written as
∑L

`=1 a`f`,

where
∑L

`=1 |a`| ≤ 1 and f` ∈ Mon(H,µ).

Our main theorems follow. For uniformly expanding maps, it involves an L2-integrability

condition, while for GPM maps the boundary case is formulated in terms of tails.

Theorem 1.5. Let T be a uniformly expanding map with absolutely continuous invariant

measure ν. Then, for any M > 0 and any f ∈ Monc2(M, ν), the series

σ2 = σ2(f) = ν((f − ν(f))2) + 2
∑
k>0

ν((f − ν(f))f ◦ T k) (1.1)

converges absolutely to some nonnegative number. Moreover,

1. On the probability space ([0, 1], ν), the process

{ 1√
n

[(n−1)t]∑
i=0

(f ◦ T i − ν(f)), t ∈ [0, 1]
}

converges in distribution in the Skorokhod topology to σW , where W is a standard Wiener

process.

2. There exists a nonnegative constant A such that

∞∑
n=1

1

n
ν
(

max
1≤k≤n

∣∣∣ k−1∑
i=0

(f ◦ T i − ν(f))
∣∣∣ ≥ A

√
n log log n)

)
<∞ .

3. Enlarging ([0, 1], ν) if necessary, there exists a sequence (Zi)i≥0 of i.i.d. Gaussian random

variables with mean zero and variance σ2 defined by (1.1), such that

∣∣∣ n−1∑
i=0

(f ◦ T i − ν(f)− Zi)
∣∣∣ = o(

√
n log log n) , almost surely. (1.2)

Theorem 1.6. Let T be a GPM map with parameter γ ∈ (0, 1/2) and invariant measure ν.

Let H be a tail function with ∫ ∞
0

x(H(x))
1−2γ
1−γ dx <∞ . (1.3)

Then, for any f ∈ Monc(H, ν), the series σ2 defined in (1.1) converges absolutely to some

nonnegative number, and the asymptotic results 1., 2. and 3. of Theorem 1.5 hold.

In particular, it follows from Theorem 1.6 that, if T is a GPM map with parameter γ ∈
(0, 1/2), then the almost sure invariance principle (1.2) holds for any positive and nonincreasing
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function f on (0,1) such that

f(x) ≤ C

x(1−2γ)/2| ln(x)|b
near 0, for some b > 1/2.

Note that (1.2) cannot be true if f is exactly of the form f(x) = x−(1−2γ)/2. Indeed, in that case,

Gouëzel (2004) proved that the central limit theorem holds with the normalization
√
n ln(n),

and the corresponding almost sure result is

lim
n→0

1√
n(ln(n))b

n−1∑
i=0

(f ◦ T i − ν(f)) = 0 almost everywhere, for any b > 1/2.

We refer to the paper by Dedecker, Gouëzel and Merlevède (2010) for a deeper discussion on

the optimality of the conditions.

The plan of the paper is as follows. In Section 2, we explain how functions in Moncp(M,µ)

or Monc(H,µ) can be approximated by bounded variation functions (to which the results of

Merlevède and Rio (2012) regarding the almost sure invariance principle apply). In Section 3,

we show how an almost sure invariance principle for a sequence of approximating processes

implies an almost sure invariance principle for a given process, if one also has uniform estimates

(for instance, a bounded law of the iterated logarithm). Those two results together with the

bounded law of the iterated logarithm of Dedecker, Gouëzel and Merlevède (2010) readily give

the almost sure invariance principle in the boundary case for GPM maps, as we explain in

Section 4. In Section 5, we prove a bounded law of the iterated logarithm under a polynomial

assumption on mixing coefficients, and we use this estimate in Section 6 to obtain the almost

sure invariance principle in the boundary case for uniformly expanding maps, following the

same strategy as above.

2 Approximation by bounded variation functions

Let us define the variation ‖f‖v of a function f : R → R as the supremum of the quantities

|f(a0)|+
∑k−1

i=0 |f(ai+1 − f(ai)|+ |f(ak)| over all finite sequences a0 < · · · < ak. A function f

has bounded variation if ‖f‖v <∞.

In this section, we want to approximate a function in Monc2(M,µ) or Monc(H,µ) in a

suitable way. For Monc(H,µ), we shall use the following compactness lemma. It is mainly

classical (compare for instance Hofbauer and Keller (1982) Lemma 5), but since we have not

been able to locate a reference with this precise statement we will give a complete proof.

Lemma 2.1. Let µ be a probability measure on R. Let fn be a sequence of functions on R
with ‖fn‖v ≤ C. Then there exists f : R → R with ‖f‖v ≤ C such that a subsequence fϕ(n)

tends to f in L1(µ).

Proof. We will first prove that fn admits a convergent subsequence in L1(µ). By a classical
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diagonal argument, it suffices to show that, for any ε > 0, one can find a subsequence with

lim supn→∞ supm≥n
∥∥fϕ(n) − fϕ(m)

∥∥
L1(µ)

≤ Dε, for some D > 0 not dependending on ε.

We consider a finite number of points a0 < · · · < ak such that (letting a−1 = −∞ and

an+1 = +∞), the measure of every interval (ai, ai+1) is at most ε. One can find a subsequence

of fn such that each fϕ(n)(ai) converges, we claim that it satisfies the desired property. It

suffices to show that a function g with |g(ai)| ≤ ε for all i and ‖g‖v ≤ 2C satisfies

‖g‖L1(µ) ≤ Dε. (2.1)

Consider in each interval (ai, ai+1) a point bi such that sup(ai,ai+1)
|g| ≤ 2|g(bi)|. We have

‖g‖L1(µ) ≤
∑

µ(ai, ai+1) sup
(ai,ai+1)

|g|+
∑

µ{ai}|g(ai)|

≤ 2
∑

µ(ai, ai+1)(|g(bi)− g(ai)|+ |g(ai)|) +
∑

µ{ai}|g(ai)|.

Since |g(ai)| ≤ ε and µ is a probability measure, the contribution of the terms |g(ai)| to this

expression is at most 2ε. Moreover,
∑
µ(ai, ai+1)|g(bi)− g(ai)| ≤ ε

∑
|g(bi)− g(ai)| ≤ ε ‖g‖v.

This proves (2.1).

We have proved that fn admits a subsequence (that we still denote fn) that converges in

L1(µ) to a function f . Extracting further if necessary, we may also assume that it converges

to f on a set Ω with full measure. On Ω − Ω, we define f(x) to be lim sup f(y) where y

tends to x in Ω. Finally, on the open set R− Ω (which may be nonempty if µ does not have

full support), we define f(x) to be max(f(a), f(b)) where a and b are the endpoints of the

connected component of x in R− Ω (if one of those endpoints is −∞ or +∞, we only use the

other endpoint). Then fn converges to f in L1(µ), and we claim that f has variation at most

C.

Indeed, consider a sequence a0 < · · · < ak, we want to estimate |f(a0)| +
∑
|f(ai+1) −

f(ai)| + |f(ak)|. Let bi = ai if ai ∈ Ω. By construction of f , for all ai 6∈ Ω, one may find

a point bi in Ω such that |f(ai) − f(bi)| is small, say < ε/(k + 1), and we may ensure that

b0 ≤ · · · ≤ bk. Then

|f(a0)|+
∑
|f(ai+1)− f(ai)|+ |f(an)| ≤ 4ε+ |f(b0)|+

∑
|f(bi+1)− f(bi)|+ |f(bk)|

= 4ε+ lim
(
|fn(b0)|+

∑
|fn(bi+1)− fn(bi)|+ |fn(bk)|

)
.

Since the variation of fn is at most C, this is bounded by 4ε+ C. Letting ε tend to 0, we get

‖f‖v ≤ C.

Lemma 2.2. Let H be a tail function, and consider f ∈ Monc(H,µ). For any m > 0,

one can write f = f̄m + gm where f̄m has bounded variation and gm ∈ Monc(Hm, µ) where

Hm(x) = min(H(m), H(x)).

Proof. Consider f ∈ Monc(H,µ). By definition, there exists a sequence of functions fL =
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∑L
`=1 a`,Lg`,L with g`,L belonging to Mon(H,µ) and

∑L
`=1 |a`,L| ≤ 1, such that fL converges in

L1(µ) to f . Define then

fL,m =
L∑
`=1

a`,Lg`,L1|g`,L|≤m .

Note that fL,m is such that ‖fL,m‖v ≤ 3m. Applying Lemma 2.1, there exists a subsequence

fϕ(L),m converging in L1(µ) to a limit f̄m such that ‖f̄m‖v ≤ 3m. Hence f − f̄m is the limit in

L1(µ) of

fϕ(L) − fϕ(L),m =

ϕ(L)∑
`=1

a`,ϕ(L)g`,ϕ(L)1|g`,ϕ(L)|>m .

Now g`,ϕ(L)1|g`,ϕ(L)|>m belongs to Mon(min(H(m), H), µ). It follows that f − f̄m belongs to the

class Monc(Hm, µ).

A similar result holds for the space Monc2(M,µ):

Lemma 2.3. Consider f ∈ Monc2(M,µ). For any m > 0, one can write f = f̄m + gm, where

f̄m has bounded variation and gm ∈ Monc2(1/m, µ).

The above proof does not work to obtain this result (the problem is that the function

g`1|g`|>m usually does not satisfy better L2 bounds than the function g`, at least not uniformly

in g`). To prove this lemma, we will therefore need to understand more precisely the structure

of elements of Monc2(M,µ). We will show that they are extended convex combinations of

elements of Mon2(M,µ), i.e., they can be written as
∫
gdβ(g) for some probability measure β

on Mon2(M,µ) (the case
∑
a`g` corresponds to the case where β is an atomic measure).

To justify this assertion, the first step is to be able to speak of measures on Mon2(M,µ).

We need to specify a topology on Mon2(M,µ). We use the weak topology (inherited from

the space L2(µ), that contains Mon2(M,µ)): a sequence fn ∈ Mon2(M,µ) converges to f if,

for any continuous compactly supported function u : R → R (or, equivalently, for any L2(µ)

function u),
∫
fn(x)u(x)dµ(x)→

∫
f(x)u(x)dµ(x).

Lemma 2.4. The space Mon2(M,µ), with the topology of weak convergence, is a compact

metrizable space.

Proof. Consider a countable sequence of continuous compactly supported functions uk : R→ R,

which is dense in this space for the topology of uniform convergence. We define a distance on

L2(µ) by

d(f1, f2) =
∑

2−k min

(
1,

∣∣∣∣∫ (f1 − f2)ukdµ
∣∣∣∣) .

Convergence for this distance is clearly equivalent to weak convergence.

Let us now prove that Mon2(M,µ) is compact. Consider a sequence fn in this space. In

particular, it is bounded in L2(µ). By weak compactness of the unit ball of a Hilbert space, we

can find a subsequence (still denoted by fn) which converges weakly in L2(µ), to a function f .
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In particular,
∫
fnudµ converges to

∫
fudµ for any continuous compactly supported function

u. Moreover, f is bounded by M in L2(µ). To conclude, it remains to show that f has a

version which is monotonic on an interval, and vanishes elsewhere.

A function in Mon2(M,µ) can be either nonincreasing or nondecreasing, on an interval

which is half-open or half-closed to the left and to the right, there are therefore eight possible

combinatorial types. Extracting a further subsequence if necessary, we may assume that all

the functions fn have the same combinatorial type. For simplicity, we will describe what

happens for one of those types, the other ones are handled similarly. We will assume that all

the functions fn are nondecreasing on an interval (an, bn]. We may also assume that an and bn

are either constant, or increasing, or decreasing (since any sequence in R = R ∪ {±∞} admits

a subsequence with this property). In particular, those sequences converge in R to limits a

and b. Let I be the interval with endpoints a and b, where we include a in I if an is increasing

and exclude it otherwise, and where we include b if bn is decreasing or constant and exclude

it otherwise. The Banach-Saks theorem shows that (extracting further if necessary) we may

ensure that the sequence of functions gN = 1
N

∑N
n=1 fn converges to f in L2(µ) and on a set A

of full measure. It readily follows that f is nondecreasing on A∩ I and vanishes on A∩ (R− I).

Modifying f on the zero measure set R−A, we get a function in Mon2(M,µ) as claimed.

The Borel structure coming from the weak topology on L2(µ) coincides with the Borel

structure coming from the norm topology (since an open ball for the norm topology can be

written as a countable intersection of open sets for the weak topology, by the Hahn-Banach

theorem). Therefore, all the usual functions on Mon2(M,µ) are measurable.

If β is a probability measure on Mon2(M,µ), we can define a function f ∈ L2(µ) by

f(x) =
∫
g(x)dβ(g). We claim that the elements of Monc2(M,µ) are exactly such functions:

Proposition 2.5. We have

Monc2(M,µ) =

{∫
Mon2(M,µ)

gdβ(g) : β probability measure on Mon2(M,µ)

}
.

Proof. We have two inclusions to prove.

Consider first f ∈ Monc2(M,µ), we will show that it can be written as
∫
gdβ(g) for some

measure β. By definition of Monc2(M,µ), there exists a sequence of atomic probability mea-

sures βn on Mon2(M,µ) such that fn =
∫
gdβn(g) converges in L1(µ) to f . Since the space

Mon2(M,µ) is compact, the sequence of measures βn admits a convergent subsequence (that

we still denote by βn), to a measure β. By definition of vague convergence, for any con-

tinuous function Ψ on Mon2(M,µ),
∫

Ψ(g)dβn(g) tends to
∫

Ψ(g)dβ(g). Fix a continuous

compactly supported function u on R. By definition of the topology on Mon2(M,µ), the map

Ψu : g 7→
∫
u(x)g(x)dµ(x) is continuous. Therefore,

∫
Ψu(g)dβn(g) tends to

∫
Ψu(g)dβ(g),

i.e.,
∫
u(x)fn(x)dµ(x) tends to

∫
u(x)fβ(x)dµ(x), where fβ =

∫
gdβ(g). This shows that fn

converges weakly to fβ. However, by assumption, fn converges in L1(µ) to f . We deduce that

f = fβ, as desired.
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Conversely, consider a function fβ for some probability measure β on Mon2(M,µ), let

us show that it belongs to Monc2(M,µ). Let us consider a sequence of atomic probability

measures βn converging vaguely to β. The arguments in the previous paragraph show that the

functions fβn converge weakly to fβ. By Banach-Saks theorem, extracting a subsequence if

necessary, we can ensure that fN = N−1
∑N

n=1 fβn converges almost everywhere and in L2(µ)

to fβ. In particular, it converges to fβ in L1(µ). Since fN can be written as
∑
a`,Nf`,N for

some functions f`,N ∈ Mon2(M,µ) and some coefficients a`,N with sum bounded by 1, this

shows that fβ belongs to Monc2(M,µ).

Proof of Lemma 2.3. Consider f ∈ Monc2(M,µ), and ε > 0. By Proposition 2.5, there exists a

measure β on Mon2(M,µ) such that f =
∫
gdβ(g). For each g ∈ Mon2(M,µ), let K(g) be the

smallest number such that
∫
g21|g|≥K(g) ≤ ε2. Fix some K > 0. We have

f(x) =

∫
K(g)<K

g(x)dβ(g) +

∫
K(g)≥K

g(x)dβ(g)

=

∫
K(g)<K

g(x)1|g(x)|≤K(g)dβ(g) +

∫
K(g)<K

g(x)1|g(x)|>K(g)dβ(g) +

∫
K(g)≥K

g(x)dβ(g).

The first term has variation bounded by 3K. In the second term, each function g1|g|>K(g) is

monotonic on an interval and null elsewhere, with L2(µ) norm bounded by ε. Therefore, the

second term belongs to Monc2(ε, µ). Writing A(K) = {g : K(g) ≥ K} and α(K) = β(A(K)),

the third term is the average overA(K) of the functions α(K)g ∈ Mon2(α(K)M,µ) with respect

to the probability measure 1A(K)dβ(g)/α(K). Therefore, it belongs to Monc2(α(K)M,µ).

Taking K large enough so that α(K)M ≤ ε, we infer that f is the sum of a function of

bounded variation and a function in Monc2(2ε, µ).

3 Strong invariance principle by approximation

Let (Xi)i≥1 be a sequence of random variables. Assume that

1. For each m ∈ N there exists a sequence (Xi,m)i≥1 such that

lim sup
n→∞

∣∣∣∣∑n
i=1Xi −Xi,m√
n log log n

∣∣∣∣ ≤ ε(m) almost surely,

where ε(m) tends to 0 as m tends to infinity.

2. For each m ∈ N, the sequence (Xi,m)i≥1 satisfies a strong invariance principle: there

exists a sequence (Zi,m)i≥1 of i.i.d. Gaussian random variables with mean 0 and variance

σ2
m such that

lim
n→∞

∑n
i=1Xi,m − Zi,m√
n log log n

= 0 almost surely.

We also assume that σ2
m converges as m→∞ to a limit σ2.
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3. There exists an infinite subset A of N such that, for any A ∈ A, the σ-algebras

σ(Zi,m)i<A,m∈N and σ(Zi,m)i≥A,m∈N are independent.

Proposition 3.1. Under the assumptions 1, 2 and 3, there exists a sequence (Zi)i≥1 of i.i.d.

Gaussian random variables with mean zero and variance σ2 such that

lim
n→∞

∑n
i=1Xi − Zi√
n log log n

= 0 almost surely. (3.1)

Proof. The idea of the proof is to use a diagonal argument: we will use the Zi,0 for some time,

then the Zi,1 for a longer time, and so on, to construct the Zi.

Let Am be a sequence of elements of A tending to infinity fast enough. More precisely, we

choose Am in such a way that there exists a set Ωm with probability greater than 1− 2−m on

which, for any n ≥ Am,∣∣∣∣∑n
i=1Xi,m − Zi,m√
n log log n

∣∣∣∣ ≤ ε(m) and

∣∣∣∣∑n
i=1Xi −Xi,m√
n log log n

∣∣∣∣ ≤ 2ε(m).

The assumptions 1 and 2 ensure that these two properties are satisfied provided Am is large

enough. We also choose Am in a such a way that, for j < m− 1,

ε(j)
√
Aj+1 log logAj+1 < 2−(m−j)ε(m)

√
Am log logAm. (3.2)

Indeed, if the Aj’s have been defined for j < m, it suffices to take Am large enough for (3.2)

to hold.

With this choice of Am, we infer that for any ω ∈ Ωm and any n ≥ Am,∣∣∣∣∣
n∑
i=1

Xi − Zi,m

∣∣∣∣∣ ≤ 3ε(m)
√
n log log n.

Hence, for any ω ∈ Ωm and any n ≥ Am,∣∣∣∣∣
n∑

i=Am

Xi − Zi,m

∣∣∣∣∣ ≤ 6ε(m)
√
n log log n. (3.3)

For i ∈ [Am, Am+1 − 1], let m(i) = m. Let (δk)k≥1 be a sequence of i.i.d. Gaussian random

variables with mean zero and variance σ2, independent of the array (Zi,m)i≥1,m≥1. We now

construct the sequence Zi as follows: if σm(i) = 0, then Zi = δi, else Zi = (σ/σm(i))Zi,m(i). By

construction, thanks to the assumption 3, the Zi’s are i.i.d. Gaussian random variables with

mean zero and variance σ2. Let us show that they satisfy (3.1).

Let Di = Zi −Zi,m(i) and note that (Di)i≥1 is a sequence of independent Gaussian random

variables with mean zero and variances Var(Di) = (σ− σm(i))
2. Since σm(i) converges to σ as i
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tends to infinity, it follows that

letting vn =
1

n
Var

( n∑
i=1

Di

)
, then lim

n→∞
vn = 0.

From the basic inequality

P
(

max
1≤k≤n

∣∣∣ k∑
i=1

Di

∣∣∣ > x
)
≤ 2 exp

(
− x2

2nvn

)
,

it follows that

lim
n→∞

∑n
i=1 Zi,m(i) − Zi√
n log log n

= 0 almost surely.

To conclude the proof, it remains to prove that

lim
n→∞

∑n
i=1Xi − Zi,m(i)√
n log log n

= 0 almost surely. (3.4)

Let B = {ω : ω ∈ lim inf Ωm}. By Borel-Cantelli, P(B) = 1. For ω ∈ B, there exists m0(ω)

such that ω belongs to all the Ωm for m ≥ m0(ω). For n ≥ Am0(ω), we have (denoting by M

the greater integer such that AM ≤ n)∣∣∣∣∣
n∑
i=1

Xi − Zi,m(i)

∣∣∣∣∣ ≤
Am0(ω)

−1∑
i=1

|Xi − Zi,m(i)|+
M−1∑

m=m0(ω)

∣∣∣∣∣
Am+1−1∑
i=Am

Xi − Zi,m

∣∣∣∣∣+

∣∣∣∣∣
n∑

i=AM

Xi − Zi,M

∣∣∣∣∣ .
Taking into account (3.2) and (3.3), we obtain∣∣∣∣∣

n∑
i=1

Xi − Zi,m(i)

∣∣∣∣∣ ≤ C(ω) +
M−1∑
m=1

6ε(m)
√
Am+1 log logAm+1 + 6ε(M)

√
n log log n

≤ C(ω) +
M−2∑
m=1

6ε(M)
√
AM log logAM2−(M−m)

+ 6ε(M − 1)
√
AM log logAM + 6ε(M)

√
n log log n

≤ C(ω) + 9(ε(M − 1) + ε(M))
√
n log log n.

Since ε(M − 1) + ε(M) tends to zero as n tends to infinity, this proves (3.4) and completes the

proof of Proposition 3.1.

Remark 3.2. The proposition would also apply to random variables taking values in Rd or in

Banach spaces (with the same proof), but we have formulated it only for real-valued random

variables in view of our applications. Indeed, the class of functions we consider relies on

monotonicity which is a purely one-dimensional notion.
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4 Proof of Theorem 1.6 on GPM maps

To prove Theorem 1.6, we should establish the convergence of the series (1.1) as well as the

asymptotic results 1., 2. and 3. described in Theorem 1.5. The convergence of (1.1) and the

asymptotics 1. and 2. have been proved in Dedecker, Gouëzel and Merlevède (2010). Therefore

it only remains to prove the almost sure invariance principle.

To do this, we apply Proposition 3.1 to the sequences Xi = f ◦ T i − ν(f) and Xi,m =

f̄m ◦ T i − ν(f̄m), where the function f̄m has been constructed in Lemma 2.2. Let us denote by

Sn(f) =
∑n−1

i=0 (f ◦ T i − ν(f)). To apply Proposition 3.1, we have to check the assumptions 1.,

2. and 3. of Section 3.

The function gm = f − f̄m belongs to Monc(Hm, ν) where Hm = min(H(m), H), by

Lemma 2.2. Therefore, it belongs to the class of functions to which the results of Dedecker,

Gouëzel and Merlevède (2010) apply: Sn(gm) satisfies a central limit theorem and a bounded

law of the iterated logarithm. In particular, applying Theorem 1.5 of this article (and Section

4.5 there to compute the constant M(m)) we get that, almost surely,

lim sup
1√

n log log n

∣∣∣∣∣
n−1∑
i=0

(gm ◦ T i − ν(gm))

∣∣∣∣∣ ≤M(m),

where M(m) = C
∫∞
0
x(Hm(x))

1−2γ
1−γ dx, C being some positive constant. Since M(m) tends to

zero as m tends to infinity, the assumption 1. of Section 3 follows by choosing ε(m) = 2M(m).

Since the function f̄m has bounded variation we can apply Item 2 of Theorem 3.1 of

Merlevède and Rio (2012) to the sequence (Xi,m) (see their Remark 3.1 for the case of GPM

maps). Hence there exists a sequence (Zi,m)i≥1 of i.i.d. Gaussian random variables with mean

0 and variance σ2
m = σ2(f̄m) such that

lim
n→∞

∑n
i=1Xi,m − Zi,m√
n log log n

= 0 almost surely.

More precisely, it follows from their construction (see the definition of the variables V ∗k,L in

Section 4.2 of Merlevède and Rio (2010)) that the assumption 3. of Section 3 is satisfied with

A = {2L, L ∈ N∗}.
To check the assumption 2. of Section 3, it remains only to prove that σ2

m converges to σ2

as m tends to infinity. We have f = f̄m + gm, therefore

Sn(f)√
n

=
Sn(f̄m)√

n
+
Sn(gm)√

n
.

The term on the left converges in distribution to a Gaussian with variance σ2, and the terms

on the right converge to

(non-independent) Gaussians with respective variances σ2
m and σ2(gm). To conclude, it

suffices to show that σ2(gm) converges to 0 when m tends to infinity.
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As we have explained above, the results of Dedecker, Gouëzel and Merlevède (2010) apply,

and show that Sn(gm) satisfies a central limit theorem. From the same paper (see Sections 2.2

and 4.1 there), we get the following estimate on the asymptotic variance σ2(gm) of n−1/2Sn(gm) :

there exists a positive constant C such that

σ2(gm) ≤ C

∫ ∞
0

x(Hm(x))
1−2γ
1−γ dx ,

and the second term on right hand tends to zero as m tends to infinity by using (1.3) and the

dominated convergence theorem. The result follows.

Hence, we have checked that the assumptions 1., 2. and 3. of Section 3 are satisfied. This

completes the proof of the almost sure invariance principle.

5 A bounded LIL for φ-dependent sequences

Let (Ω,A,P) be a probability space, and let θ : Ω 7→ Ω be a bijective bimeasurable transfor-

mation preserving the probability P. Let F0 be a sub-σ-algebra of A satisfying F0 ⊆ θ−1(F0).

Definition 5.1. For any integrable random variable X, let us write X(0) = X − E(X). For

any random variable Y = (Y1, · · · , Yk) with values in Rk and any σ-algebra F , let

φ(F , Y ) = sup
(x1,...,xk)∈Rk

∥∥∥∥∥E(
k∏
j=1

(1Yj≤xj)
(0)
∣∣∣F)(0)∥∥∥∥∥

∞

.

For a sequence Y = (Yi)i∈Z, where Yi = Y0 ◦ θi and Y0 is an F0-measurable and real-valued

random variable, let

φk,Y(n) = max
1≤l≤k

sup
n≤i1≤...≤il

φ(F0, (Yi1 , . . . , Yil)).

The interest of those mixing coefficients is that they are not too restrictive, so they can be

used to study several classes of dynamical systems, and that on the other hand they are strong

enough to yield correlation bounds for piecewise monotonic functions (or, more generally,

functions in Moncp(M,µ)). In particular, we have the following:

Lemma 5.2. Let Y = (Yi)i∈Z, where Yi = Y0 ◦ θi and Y0 is an F0-measurable random variable.

Let f and g be two functions from R to R which are monotonic on some interval and null

elsewhere. Let p ∈ [1,∞]. If ‖f(Y0)‖p <∞, then, for any positive integer k,

‖E(f(Yk)|F0)− E(f(Yk))‖p ≤ 2(2φ1,Y(k))(p−1)/p‖f(Y0)‖p .

If moreover p ≥ 2 and ‖g(Y0)‖p <∞, then for any positive integers i ≥ j ≥ k,

‖E(f(Yi)
(0)g(Yj)

(0)|F0)− E(f(Yi)
(0)g(Yj)

(0))‖p/2 ≤ 8(4φ2,Y(k))(p−2)/p‖f(Y0)‖p‖g(Y0)‖p .
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Proof. Note first that, for any positive integers i ≥ j ≥ k,

φ(F0, f(Yk)) ≤ 2φ(F0, Yk) ≤ 2φ1,Y(k),

φ(F0, (f(Yj), g(Yi))) ≤ 4φ(F0, (Yj, Yi)) ≤ 4φ2,Y(k) .

This follows from definition (5.1), by noting that {f ≤ t} (and also {g ≤ s}) is either an

interval or the complement of an interval.

To prove the first inequality of the lemma, let us note that

‖E(f(Yk)|F0)− E(f(Yk))‖p = sup
Z∈Bp/(p−1)(F0)

Cov(Z, f(Yk)) ,

where Bq(F0) is the set of F0-measurable random variables Z such that ‖Z‖q ≤ 1. Proposition

2.1 of Dedecker (2004) states that |Cov(Z, Y )| ≤ 2φ(σ(Z), Y )(p−1)/p‖Y ‖p‖Z‖p/(p−1). Since

φ(σ(Z), f(Yk)) ≤ φ(F0, f(Yk)) ≤ 2φ1,Y(k), we obtain the first inequality of Lemma 5.2 as

desired.

For the second inequality, we note in the same way that

‖E(f(Yi)
(0)g(Yj)

(0)|F0)− E(f(Yi)
(0)g(Yj)

(0))‖p/2 = sup
Z∈Bp/(p−2)(F0)

Cov(Z, f(Yi)
(0)g(Yj)

(0)) .

Proposition 6.1 of Dedecker, Merlevède and Rio (2009) gives a control of the covariance in terms

of φ(F0, (f(Yj), g(Yi))). Since this quantity is bounded by 4φ2,Y(k), the result follows.

The main result of this section is the following proposition, showing that a suitable poly-

nomial assumption on mixing coefficients implies a bounded law of the iterated logarithm for

piecewise monotonic L2 functions.

Proposition 5.3. Let Xi = f(Yi)− E(f(Yi)), where Yi = Y0 ◦ θi and Y0 is an F0-measurable

random variable. Let

Sn = Sn(f) =
n∑
k=1

Xk ,

and let PY0 be the distribution of Y0. Assume that∑
k≥1

k1/
√
3−1/2φ

1/2
2,Y(k) <∞ . (5.1)

If f belongs to Monc2(M,PY0) for some M > 0, then

∑
n>0

1

n
P
(

max
1≤k≤n

|Sk| > 3CM
√
n log log n

)
<∞ , (5.2)

where C = 16
∑

k≥0 φ
1/2
1,Y(k).
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Proof. Let f ∈ Monc2(M,PY0). By definition of Monc2(M,PY0), there exists fL =
∑L

`=1 a`,Lg`,L

with g`,L belonging to Mon2(M,PY0) and
∑L

`=1 |a`,L| ≤ 1, and such that fL converges in L1(PY0)

to f . It follows that Xi,L = fL(Yi) − E(fL(Yi)) converges in L1 to Xi as L tends to infinity.

Extracting a subsequence if necessary, one may also assume that the convergence holds almost

surely.

Hence, for any fixed n, Sn(fL) =
∑n

k=1Xk,L converges almost surely and in L1 to Sn(f).

Assume that one can prove that, for any positive integer L,∑
n>0

1

n
P
(

max
1≤k≤n

|Sk(fL)| > 3CM
√
n log log n

)
< K , (5.3)

for some positive constant K not depending on L. Let us explain why (5.3) implies (5.2). Let

Zn = max1≤k≤n |Sk(f)|/
√
M2n log log n. By Beppo-Levi,

∑
n>0

1

n
P
(

max
1≤k≤n

|Sk(f)| > 3CM
√
n log log n

)
= lim

k→∞
E
(∑
n>0

1

n
1Zn>3C+k−1

)
. (5.4)

Let hk be a continuous function from R to [0, 1], such that hk(x) = 1 if x > 3C + k−1 and

hk(x) = 0 if x < 3C. Let Zn,L = max1≤k≤n |Sk,L|/
√
M2n log log n. By Fatou’s lemma,

E
(∑
n>0

1

n
1Zn>3C+k−1

)
≤ E

(∑
n>0

1

n
hk(Zn)

)
≤ lim inf

L→∞
E
(∑
n>0

1

n
hk(Zn,L)

)
≤ lim inf

L→∞
E
(∑
n>0

1

n
1Zn,L>3C

)
. (5.5)

From (5.3), (5.4) and (5.5), we infer that

∑
n>0

1

n
P
(

max
1≤k≤n

|Sk(f)| > 3C
√
M(f)n log log n

)
≤ lim inf

L→∞
E
(∑
n>0

1

n
1Zn,L>3C

)
≤ K ,

and (5.2) follows.

Hence, it remains to prove (5.3), or more generally that: if f =
∑L

`=1 a`f` with f` belonging

to Mon2(M,PY0) and
∑L

`=1 |a`| ≤ 1, then

∑
n>0

1

n
P
(

max
1≤k≤n

|Sk(f)| > 3CM
√
n log log n

)
< K , (5.6)

for some positive constant K not depending on f .

We now prove (5.6). We will need to truncate the functions. It turns out that the optimal

truncation level is at
√
n/
√

log log n: the large part can then be controlled by a simple L1

estimate, while the truncated part can be estimated thanks to a maximal inequality of Pinelis

(1994) (after a reduction to a martingale). Let gn(x) = x1|x|≤Mn1/2/
√
log logn. For any i ≥ 0, we
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first define

X ′i,n =
L∑
`=1

a` gn ◦ f`(Yi)−
L∑
`=1

a`E(gn ◦ f`(Yi)) and X ′′i,n = Xi −X ′i,n .

Let

di,n =
∑
j≥i

E(X ′j,n|Fi)− E(X ′j,n|Fi−1) and Mk,n =
k∑
i=1

di,n .

The following decomposition holds

X0 = d0,n +
∑
k≥0

E(X ′k,n|F−1)−
∑
k≥0

E(X ′k+1,n|F0) +X ′′0,n .

Let hn =
∑

k≥0 E(X ′k,n|F−1). One can write

Xi = d0,n ◦ θi + hn ◦ θi − hn ◦ θi+1 +X ′′0,n ◦ θi ,

and consequently

Sk = Mk,n + hn ◦ θ − hn ◦ θk+1 + S ′′k,n ,

with S ′′k,n =
∑k

i=1X
′′
0,n ◦ θi. Hence, for any x > 0,

P( max
1≤k≤n

|Sk| ≥ 3x) ≤ P( max
1≤k≤n

|Mk,n| ≥ x)

+ P( max
1≤k≤n

|hn ◦ θ − hn ◦ θk+1| ≥ x) + P( max
1≤k≤n

|S ′′k,n| ≥ x) . (5.7)

Let us first control the coboundary term. We have

‖E(X ′k,n|F0)‖∞ ≤
L∑
`=1

|a`|‖E(gn ◦ f`(Yk)|F0)− E(gn ◦ f`(Yk))‖∞ .

Applying Lemma 5.2, ‖E(gn ◦ f`(Yk)|F0) − E(gn ◦ f`(Yk))‖∞ ≤ 4Mφ1,Y(k)
√
n/
√

log log n. It

follows that

‖hn‖∞ ≤ 4M
( ∞∑
k=1

φ1,Y(k)
) √

n√
log log n

.

Hence, there exists a positive constant K1 such that∑
n>0

1

n
P
(

max
1≤k≤n

|hn ◦ θ − hn ◦ θk+1| ≥ CM
√
n log log n

)
< K1 . (5.8)

Let us now control the large part X ′′. We will prove the existence of a positive constant

K2 such that ∑
n>0

1

n
P
(

max
1≤k≤n

|S ′′k,n| ≥ CM
√
n log log n

)
< K2 . (5.9)
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We shall use the following lemma, whose proof is straightforward:

Lemma 5.4.

P
(

max
1≤k≤n

|S ′′k,n| ≥ x
)
≤ 2n

x

L∑
`=1

|a`|E(|f`(Y0)|1|f`(Y0)|>Mn1/2/
√
log logn) .

Applying Lemma 5.4 with x = CM
√
n log log n, we obtain that

P
(

max
1≤k≤n

|S ′′k,n| ≥ CM
√
n log log n

)
≤ 2n

CM
√
n log log n

L∑
`=1

|a`|E(|f`(Y0)|1|f`(Y0)|>Mn1/2/
√
log logn).

Now, via Fubini, there exists a positive constant A1 such that∑
n>0

1

n

n√
n log log n

E(|f`(Y0)|1|f`(Y0)|>Mn1/2/
√
log logn) < A1‖f`(Y0)‖22 ≤ A1M

2 ,

and (5.9) follows with K2 = (2A1M)/C.

Next, we turn to the main term, that is the martingale term. We will prove that there

exists a positive constant K3 such that∑
n>0

1

n
P
(

sup
1≤j≤n

|Mj,n| ≥ CM
√
n log log n

)
< K3 . (5.10)

The main contribution will be controlled through the following maximal inequality.

Lemma 5.5. Let

cn =
8M
√
n√

log log n

∑
k≥0

φ
1/2
1,Y(k) .

The following upper bound holds: for any positive reals x and y,

P
(

sup
1≤j≤n

|Mj,n| ≥ x,

n∑
j=1

E(d2j,n|Fj−1) ≤ 2y
)
≤ 2 exp

(
−2y

c2n
h
(xcn

2y

))
,

where h(u) = (1 + u) ln(1 + u)− u ≥ u ln(1 + u)/2.

Proof. Note first that

‖d0,n‖∞ ≤ 2
∑
k≥0

‖E(X ′k,n|F0)‖∞ ≤ 2
∑
k≥0

L∑
`=1

|a`|‖E(gn ◦ f`(Yk)|F0)− E(gn ◦ f`(Yk))‖∞ .
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Now, applying Lemma 5.2,

‖E(gn ◦ f`(Yk)|F0)− E(gn ◦ f`(Yk))‖∞ ≤
4M
√
n√

log log n
φ1,Y(k) ,

so that

‖d0,n‖∞ ≤
8M
√
n√

log log n

(∑
k≥0

φ1,Y(k)
)
≤ cn .

Proposition A.1 in Dedecker, Gouëzel and Merlevède (2010) shows that any sequence of

martingale differences dj which is bounded by a constant c satisfies

P
(

sup
1≤j≤n

|Mj| ≥ x,
n∑
j=1

E(d2j |Fj−1) ≤ 2y
)
≤ 2 exp

(
−2y

c2
h
(xc

2y

))
.

The sequence dj = dj,n satisfies the assumptions of this proposition for c = cn. Therefore,

Lemma 5.5 follows.

Notice that
n∑
j=1

E(d2j,n) = nE(d21,n) ≤ 4n
∥∥∥∑
j≥0

E(X ′j,n|F0)
∥∥∥2
2
.

Now,

‖E(X ′k,n|F0)‖2 ≤
L∑
`=1

|a`|‖E(gn ◦ f`(Yk)|F0)− E(gn ◦ f`(Yk))‖2 .

Applying Lemma 5.2, ‖E(gn ◦ f`(Yk)|F0)− E(gn ◦ f`(Yk))‖2 ≤ 2
√

2φ
1/2
1,Y(k)‖f`(Y0)‖2. It follows

that

‖E(X ′k,n|F0)‖2 ≤ 2
√

2φ
1/2
1,Y(k)M

and consequently
n∑
j=1

E(d2j,n) ≤ 32n
(∑
k≥0

φ
1/2
1,Y(k)

)2
M2 .

We apply Lemma 5.5 with

y = yn = 32n
(∑
k≥0

φ
1/2
1,Y(k)

)2
M2 . (5.11)

Letting xn = CM
√
n log log n, we have

∑
n>0

1

n
P
(

sup
1≤j≤n

|Mj,n| ≥ xn,

n∑
j=1

E(d2j,n|Fj−1) ≤ 2yn

)
≤ 2

∑
n>0

1

n
exp

(
− xn

2cn
ln(1 + xncn/(2yn))

)
.
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Now, the choice of C imply that xn = 4yn/cn and 2yn = c2n(log log n). It follows that

∑
n>0

1

n
exp

(
− xn

2cn
ln(1 + xncn/(2yn))

)
=
∑
n>0

1

n
exp

(
− (log log n) log 3

)
<∞ .

To prove (5.10), it remains to prove that there exists a positive constant K4 such that

∑
n≥1

1

n
P
( n∑
j=1

E(d2j,n|Fj−1) ≥ 2yn

)
< K4 .

Since
∑n

j=1 E(d2j,n) ≤ yn, it suffices to prove that

∑
n≥1

1

n
P
(∣∣∣ n∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣∣∣ ≥ yn

)
< K4 . (5.12)

To prove (5.12), we shall use the following lemma:

Lemma 5.6. If (5.1) holds, there exists a positive constant C2(φ) such that for any y > 0,

P
(∣∣∣ n∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣∣∣ ≥ y

)
≤ nC2(φ)

y2

L∑
`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤Mn1/2) .

Before proving Lemma 5.6, let us complete the proof of (5.12), (5.10) and (5.2). Since yn

is given by (5.11), we infer from Lemma 5.6 that there exists a positive constant C3(φ) such

that

∑
n>0

1

n
P
(∣∣∣ n∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣∣∣ ≥ yn

)
≤ C3(φ)

M4

L∑
`=1

|a`|
∑
n>0

1

n2
E(f`(Y0)

41|f`(Y0)|≤Mn1/2) .

By Fubini, the last sum in this equation is bounded by 4M2‖f`(Y0)‖22 ≤ 4M4. Therefore, (5.12)

follows with K4 = 4C3(φ). This completes the proof of (5.10). Now, the proof of (5.6) follows

from (5.7), (5.8), (5.9) and (5.10). The inequality (5.2) of Proposition 5.3 is proved.

It remains to prove Lemma 5.6.

Proof of Lemma 5.6. In a sense, the contribution coming from Lemma 5.6 is less essential

than the contribution we estimated thanks to the maximal inequality. However, it is rather

technical to estimate. To handle this term, we will argue in the other direction, and go from

the martingale to the partial sums of the original random variables.
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We apply Theorem 3 in Wu and Zhao (2008): for any q ∈ (1, 2] there exists a positive

constant Cq such that

E
(∣∣∣ n∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣∣∣q) ≤ CqnE(|d1,n|2q) + Cqn∆∗n,q

where

∆∗n,q =
( n∑
k=1

1

k1+1/q
‖E(M2

k,n|F0)− E(M2
k,n)‖q

)q
.

Hence, by Markov’s inequality with q = 2, one has

P
(∣∣∣ n∑

j=1

(E(d2j,n|Fj−1)− E(d2j,n))
∣∣∣ ≥ y

)
≤ C2n

y2

(
E(|d1,n|4) + ∆∗n,2

)
.

Note first that

E(|d1,n|4) ≤ 16
(∑
j≥0

‖E(X ′j,n|F0)‖4
)4
.

Now

‖E(X ′k,n|F0)‖4 ≤
L∑
`=1

|a`|‖E(gn ◦ f`(Yk)|F0)− E(gn ◦ f`(Yk))‖4 .

Applying Lemma 5.2, ‖E(gn ◦ f`(Yk)|F0)− E(gn ◦ f`(Yk))‖4 ≤ 2(2φ1,Y(k))3/4‖gn ◦ f`(Y0)‖4. It

follows that

E(|d1,n|4) ≤ 211
(∑
k>0

φ1,Y(k)3/4
)4( L∑

`=1

|a`|‖gn ◦ f`(Y0)‖4
)4
.

Applying Jensen’s inequality,

E(|d1,n|4) ≤ 211
(∑
k>0

φ1,Y(k)3/4
)4 L∑

`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤Mn1/2) . (5.13)

Now, letting S ′k,n =
∑k

i=1X
′
i,n, one has Mk,n = S ′k,n −Rk,n, with

Rk,n =
∑
i≥1

E(X ′i,n|F0)−
∑
i≥k+1

E(X ′i,n|Fk) .

Hence

∆∗n,2 ≤ 3
( n∑
k=1

1

k3/2
‖E(S ′2k,n|F0)− E(S ′2k,n)‖2

)2
+ 3
( n∑
k=1

1

k3/2
‖R2

k,n‖2
)2

+ 12
( n∑
k=1

1

k3/2
‖E(S ′k,nRk,n|F0)− E(S ′k,nRk,n)‖2

)2
.
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Arguing as for the proof of (5.13), we obtain that

‖R2
k,n‖2 ≤ 4

∥∥∥∑
i≥1

E(X ′i,n|F0)
∥∥∥2
4

≤ 32
√

2
(∑
k>0

φ1,Y(k)3/4
)2( L∑

`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤Mn1/2)

)1/2
.

From the proof of Corollary 2.1 in Dedecker, Doukhan and Merlevède (2011), for any

γ ∈ (0, 1] (to be chosen later), there exists a positive constant B such that

( n∑
k=1

1

k3/2
‖E(S ′2k,n|F0)− E(S ′2k,n)‖2

)2
≤ BI21 +BI22 (5.14)

where

I1 =
∑
m>0

mγ

m1/2
sup
i≥j≥m

‖E(X ′i,nX
′
j,n|F0)− E(X ′i,nX

′
j,n)‖2

I2 =
(∑
k>0

k1/(2γ)

k1/4
‖E(X ′k,n|F0)‖4

)2
.

Arguing as for the proof of (5.13), we obtain that

I2 ≤ 8
√

2
(∑
k>0

k1/(2γ)

k1/4
φ1,Y(k)3/4

)2( L∑
`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤Mn1/2)

)1/2
. (5.15)

To bound I1, note that

‖E(X ′i,nX
′
j,n|F0)− E(X ′i,nX

′
j,n)‖2

≤
L∑
k=1

L∑
`=1

|ak||a`|‖E((gn ◦ fk(Yi))(0)(gn ◦ f`(Yj))(0)|F0)− E((gn ◦ fk(Yi))(0)(gn ◦ f`(Yj))(0))‖2 .

Applying Lemma 5.2, for i ≥ j ≥ m,

‖E((gn ◦ fk(Yi))(0)(gn ◦ f`(Yj))(0)|F0)− E((gn ◦ fk(Yi))(0)(gn ◦ f`(Yj))(0))‖2
≤ 16φ2,Y(m)1/2‖gn ◦ fk(Y0)‖4‖gn ◦ f`(Y0)‖4 .

It follows that

I1 ≤
(

16
∑
m>0

mγ

m1/2
φ2,Y(m)1/2

)( L∑
`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤Mn1/2)

)1/2
. (5.16)
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Let γ = 1/
√

3. If the condition (5.1) holds, then

∑
k>0

k
√
3/2

k1/4
φ1,Y(k)3/4 <∞ and

∑
m>0

m1/
√
3

m1/2
φ2,Y(m)1/2 <∞.

To see that the convergence of the second series implies the convergence of the first series, it

suffices to note that φ1,Y(n) ≤ φ2,Y(n) and that, since φ2,Y(n) is nonincreasing, φ2,Y(n) =

o(n−(2+
√
3)/
√
3).

We infer from (5.14), (5.15) and (5.16) that, if (5.1) holds, there exists a positive constant

C4(φ) such that

( n∑
k=1

1

k3/2
‖E(S ′2k,n|F0)− E(S ′2k,n)‖2

)2
≤ C4(φ)

L∑
`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤Mn1/2) . (5.17)

Let us consider now the term( n∑
k=1

1

k3/2
‖E(S ′k,nRk,n|F0)− E(S ′k,nRk,n)‖2

)2
.

As for the proof of (5.13), one has∥∥∥E(S ′k,n|F0)
∑
i≥1

E(X ′i,n|F0)
∥∥∥2
2
≤
(∑
i≥1

‖E(X ′i,n|F0)‖4
)2

≤ 8
√

2
(∑
i≥1

φ
3/4
1,Y(i)

)2( L∑
`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤Mn1/2)

)1/2
.

Next, we need to bound

( n∑
k=1

1

k3/2

∥∥∥E(S ′k,n
∑
i≥k+1

E(X ′i,n|Fk)|F0)− E(S ′k,n
∑
i≥k+1

E(X ′i,n|Fk))
∥∥∥
2

)2
.

First, we see that ∑
i≥k+1

E(X ′i,n|Fk) = E(S ′2k,n − S ′k,n|Fk) +
∑

j≥2k+1

E(X ′j,n|Fk) .

Since S ′k,n is Fk-measurable, we get that

‖E(S ′k,nE(S ′2k,n − S ′k,n|Fk)|F0)− E(S ′k,nE(S ′2k,n − S ′k,n|Fk))‖2
= ‖E(S ′k,n(S ′2k,n − S ′k,n)|F0)− E(S ′k,n(S ′2k,n − S ′k,n))‖2 .
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Next using the identity 2ab = (a+ b)2 − a2 − b2 and the stationarity, we obtain that

2‖E(S ′k,nE(S ′2k,n − S ′k,n|Fk)|F0)− E(S ′k,nE(S ′2k,n − S ′k,n|Fk))‖2
≤ ‖E(S ′22k,n|F0)− E(S ′22k,n)‖2 + 2‖E(S ′2k,n|F0)− E(S ′2k,n)‖2 ,

which combined with (5.17) implies that

( n∑
k=1

1

k3/2
‖E(S ′k,nE(S ′2k,n − S ′k,n|Fk)|F0)− E(S ′k,nE(S ′2k,n − S ′k,n|Fk))‖2

)2
≤ 6C4(φ)

L∑
`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤bn1/2) .

It remains to bound ( n∑
k=1

1

k3/2

∥∥∥E(S ′k,n ∑
j≥2k+1

E(X ′j,n|Fk)
∣∣∣F0

)∥∥∥
2

)2
.

By stationarity, ∑
j≥2k+1

‖E(S ′k,nE(X ′j,n|Fk))|F0)‖2 ≤ k
∑
j≥k+1

‖X ′0,nE(X ′j,n|F0)‖2 .

Now, as for the proof of (5.13),∑
j≥k+1

‖X ′0,nE(X ′j,n|F0)‖2 ≤ ‖X ′0,n‖4
∑
j≥k+1

‖E(X ′j,n|F0)‖4

≤ 2
(

2
∑
j≥k+1

(2φ1,Y(j))3/4
)( L∑

`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤bn1/2)

)1/2
,

and consequently, there exists a positive constant D such that

( n∑
k=1

1

k3/2

∥∥∥E(S ′k,n ∑
j≥2k+1

E(X ′j,n|Fk)
∣∣∣F0

)∥∥∥
2

)2
≤ D

(∑
j≥2

j1/2φ1,Y(j)3/4
)2 L∑

`=1

|a`|E(f`(Y0)
41|f`(Y0)|≤Mn1/2) .

The lemma is proved.
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6 Proof of Theorem 1.5 on uniformly expanding maps

Let (Yi)i≥0 be the stationary Markov chain with transition kernel K corresponding to the

iteration of the inverse branches of T , and let Xn = f(Yn) − ν(f). Concerning Item 1 in

Theorem 1.5, it is well known that it is equivalent to prove it for the iteration of the map or of

the Markov chain, since the distributions are the same (see for instance the proof of Theorem

2.1 in Dedecker and Merlevède (2009)). Therefore, it is enough to show that the process

{ 1√
n

[nt]∑
i=1

Xi, t ∈ [0, 1]
}

converges in distribution in the Skorokhod topology to σW , where W is a standard Wiener

process. Now, as shown by Heyde (1975), this property as well as the absolute convergence of

the series (1.1) will be true provided that Gordin’s condition (1969) holds, that is

∞∑
n=0

‖Kn(f)− ν(f)‖L2(ν) <∞ . (6.1)

By definition of Monc2(M, ν), there exists a sequence of functions fL =
∑L

`=1 a`,Lg`,L with

g`,L belonging to Mon2(M, ν) and
∑L

`=1 |a`,L| ≤ 1, such that fL converges in L1(ν) to f . It

follows that, for any nonnegative integer n, Kn(fL)−ν(fL) converges to Kn(f)−ν(f) in L1(ν).

Hence, there exists a subsequence Kn(fϕ(L)) − ν(fϕ(L)) converging to Kn(f) − ν(f) almost

surely and in L1(ν). Applying Fatou’s lemma, we infer that

‖Kn(f)− ν(f)‖L2(ν) ≤ lim inf
L→∞

‖Kn(fϕ(L))− ν(fϕ(L))‖L2(ν) . (6.2)

Applying Lemma 5.2, for any g in Mon2(M, ν), ‖Kn(g)− ν(g)‖L2(ν) ≤ 2
√

2φ
1/2
1,Y(n)M . Hence

‖Kn(fϕ(L))− ν(fϕ(L))‖L2(ν) ≤
L∑
`=1

|a`,L|‖Kn(g`,ϕ(L))− ν(g`,ϕ(L))‖L2(ν) ≤ 2
√

2φ
1/2
1,Y(n)M .

From (6.2), it follows that ‖Kn(f)−ν(f)‖L2(ν) ≤ 2
√

2φ
1/2
1,Y(n)M , and (6.1) holds provided that∑

n>0 φ
1/2
1,Y(n) <∞. Now, if T is uniformly expanding, it follows from Section 6.3 in Dedecker

and Prieur (2007) that φ2,Y(n) = O(ρn) for some ρ ∈ (0, 1), and Item 1 is proved.

According to the inequality (4.1) in Dedecker, Gouëzel and Merlevède (2010), we have

ν
(

max
1≤k≤n

∣∣∣ k−1∑
i=0

(f ◦ T i − ν(f))
∣∣∣ > x

)
≤ ν

(
2 max
1≤k≤n

∣∣∣ k∑
i=1

Xi

∣∣∣ > x
)
.

Therefore, Item 2 follows from Proposition 5.3 applied to the sequences (Xi)i≥1 as soon as

(5.1) holds, which is clearly true.
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For Item 3, we proceed exactly as in the case of GPM maps, relying on the approximation

f = f̄m + gm given by Lemma 2.3 to apply Proposition 3.1. Since gm ∈ Monc2(1/m, ν),

Proposition 5.3 shows that almost surely

lim sup
1√

n log log n

∣∣∣∣∣
n−1∑
i=0

(gm ◦ T i − ν(gm))

∣∣∣∣∣ ≤ C/m ,

for some constant C. Moreover, the proof of Theorem 3.1 in Merlevède and Rio (2012) shows

that the sequence f̄m ◦ T i − ν(fm) satisfies an almost sure principle, towards a Gaussian with

variance σ2
m. It only remains to show that σ2

m converges to σ2. We start from the basic

inequality

σ2(gm) ≤ 2‖gm‖L2(ν)

∞∑
n=0

‖Kn(gm)− ν(gm)‖L2(ν) .

Arguing as in (6.2), we infer that

σ2(gm) ≤ 16m−2
∞∑
k=0

φ
1/2
1,Y(k)

and the series on the right hand side is finite since φ1,Y(n) = O(ρn) for some ρ ∈ (0, 1).

Therefore, σ2(gm) converges to 0.
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