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Jérôme Dedecker a and Florence Merlevède b
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Abstract

In this paper, we give rates of convergence for minimal distances between linear statistics of

martingale differences and the limiting Gaussian distribution. In particular the results apply to

the partial sums of (possibly long range dependent) linear processes, and to the least squares

estimator in some parametric regression models.

1 Introduction and Notations

Let (Ω,A,P) be probability space, and let T : Ω 7→ Ω be a bijective bimeasurable transformation

preserving the probability P. For a subfield F0 satisfying F0 ⊆ T−1(F0), let Fi = T−i(F0),

F−∞ =
⋂

n≥0F−n and F∞ =
∨

k∈ZFk. Let ξ0 be a square integrable random variable such that:

ξ0 is F0-measurable, E(ξ0|F−1) = 0, and σ2 = E(ξ0)
2 > 0. Define then ξi = ξ0 ◦ T i, so that

(ξi)i∈Z is a strictly stationary sequence of square integrable martingale differences adapted to

the filtration (Fi)i∈Z.

Let (cn,i)i∈Z,n≥1 be a double indexed sequence of real numbers such that for all n ≥ 1, the

sequence (cn,i)i∈Z is in `2 (i.e.
∑

i∈Z c2
n,i < ∞). For any n ≥ 1 we consider the following linear

statistic

Sn =
∑

i∈Z
cn,iξi . (1.1)
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Many random evolutions and statistical procedures, such as parametric or nonparametric

estimation of non linear regression with fixed design, produce linear statistics of type (1.1) (see

for instance Chapter 9 in Beran (1994) for the case of parametric regression, or the paper by

Robinson (1997) where Kernel estimators are used for nonparametric regression). For instance,

consider the model

Yk = x′kβ + ξk , k = 1, . . . , n (1.2)

where Yk is observed, x′k = (xk1, . . . , xkp) is a 1× p deterministic vector, β := (β1, β2, . . . , βp)
′ is

the parameter of interest, and (ξk)k∈Z is the unobservable error process . Let β̂ the least squares

estimator of β. If we are interested by the asymptotic behavior of β̂ − β, then we are lead to

study statistics of the type (1.1), for which cn,i = 0 if i /∈ {1, . . . , n}.
Let now (Xk)k∈Z be a strictly stationary sequence of square integrable random variables, and

assume that it is regular in the sense that it may be written as

Xk =
∑
j≥0

ajξk−j , (1.3)

where (ξi)i∈Z is a strictly stationary sequence of orthogonal random variables (the innovation

process), and (ai)i≥0 is in `2. Again the partial sum
∑n

i=1 Xi is a linear statistic of the type

(1.1), with cn,i =
∑n

k=1∨i ak−i if i ≤ n and cn,i = 0 elsewhere. In this context, assuming that the

innovation process (ξi)i∈Z is a sequence of independent and identically distributed (iid) random

variables is often too restrictive. For many time series, the assumption that E(ξi|Fi−1) = 0 is

much more realistic (think for instance of ARCH innovations): it means exactly that the best

linear predictor is in in fact the best predictor in the least squares sense (see Hannan and Heyde

(1972)).

Concerning the asymptotic behavior of Sn defined by (1.1), Hannan (1979) showed that if

E(ξ2
0 |F−∞) = σ2 almost surely, (1.4)

and

Bn :=
maxj∈Z |cn,j|

vn

tends to 0 as n tends to infinity, (1.5)

where

v2
n =

∑

j∈Z
c2
n,j , (1.6)

then v−1
n Sn converges in distribution to the normal law N (0, σ2). It is worth noting that the

condition (1.4) cannot even be replaced by ergodicity (see the example 2.1 in Peligrad and Utev

(1997)).

Denoting by PSn/vn the law of Sn/vn and by Gσ2 the normal distribution N (0, σ2), we are

interested in this paper by giving quantitative estimates for the convergence of PSn/vn to Gσ2 .
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We shall consider minimal distances of type W1, which is also called the Kantorovich distance.

If we denote by FSn/vn and Φσ2 the respective distribution functions of PSn/vn and Gσ2 , then

W1(PSn/vn , Gσ2) =

∫
|FSn/vn(t)− Φσ2(t)|dt =

∫ 1

0

|F−1
Sn/vn

(u)− Φ−1
σ2 (u)|du .

As a consequence of our main result, we shall see (cf. Comment (3.2)) that the rate of convergence

of W1(PSn/vn , Gσ2) to zero can be controlled by the rate of convergence of Bn to zero. For instance

if

ξ0 ∈ L3, and
∑
n≥1

1

n1/2
‖E(ξ2

n|F0)− σ2‖3/2 < ∞ , (1.7)

then

W1(PSn/vn , Gσ2) = O(Bn log(1 + B−2
n )) .

As a corollary (see Comment 3.3), we obtain the following upper bound in the Berry-Essen

Theorem: if (1.7) holds then

‖FSn/vn − Φσ2‖∞ = O(B1/2
n

√
log(1 + B−2

n )) .

As we shall see, in many cases Bn = O(n−1/2) leading to the fact that under (1.7),

‖FSn/vn − Φσ2‖∞ = O(n−1/4
√

log(n)) . (1.8)

In the case where cn,i = 1 if i ∈ {1, . . . , n} and cn,i = 0 elsewhere, that is Sn =
∑n

i=1 ξi,

the inequality (1.8) provides the same rate of convergence (up to the
√

log(n) term) as the best

known rate obtained by Jan (2001) under a stronger condition than (1.7). See also Bolthausen

(1982) who gave a counter example (for non stationary ξi’s), showing that the rate n−1/4 in

the Berry-Esseen Theorem cannot be improved when Sn is a martingale. Note also that in

this particular case, the condition (1.7) can be slightly weakened (see Theorem 2.1 in Dedecker,

Merlevède and Rio (2009)).

2 Definition of the distances and known results

2.1 Definition of the distances

We first define the distances that we consider in this paper. Let L(µ, ν) be the set of probability

laws on R2 with marginals µ and ν. Let us consider the following minimal distances (sometimes

called Wasserstein distances of order r)

Wr(µ, ν) =





inf
{ ∫

|x− y|rP (dx, dy) : P ∈ L(µ, ν)
}

if 0 < r < 1

inf
{(∫

|x− y|rP (dx, dy)
)1/r

: P ∈ L(µ, ν)
}

if r ≥ 1 .
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It is well known that for two probability measures µ and ν on R with respective distributions

functions (d.f.) F and G,

Wr(µ, ν) =
( ∫ 1

0

|F−1(u)−G−1(u)|rdu
)1/r

for any r ≥ 1. (2.1)

We consider also the following ideal distances of order r (Zolotarev distances of order r). For

two probability measures µ and ν, and r a positive real, let

ζr(µ, ν) = sup
{ ∫

fdµ−
∫

fdν : f ∈ Λr

}
,

where Λr is defined as follows: denoting by l the natural integer such that l < r ≤ l + 1, Λr is

the class of real functions f which are l-times continuously differentiable and such that

|f (l)(x)− f (l)(y)| ≤ |x− y|r−l for any (x, y) ∈ R× R . (2.2)

For r ∈]0, 1], applying the Kantorovich-Rubinstein theorem (see for instance Dudley (1989),

Theorem 11.8.2) to the metric d(x, y) = |x− y|r, we infer that

Wr(µ, ν) = ζr(µ, ν) . (2.3)

For probability laws on the real line, Rio (1998) proved that for any r > 1,

Wr(µ, ν) ≤ cr

(
ζr(µ, ν)

)1/r
, (2.4)

where cr is a constant depending only on r.

2.2 The iid case

Let (Xi)1≤i≤n be n independent and centered random variables in Lp, for some p ∈]2, 3]. Let

µn be the law of
∑n

i=1 Xi/Var(
∑n

i=1 Xi). It follows from the non-uniform estimates of Bikelis

(1966) that

W1(µn, G1) ≤ C(p)
(
Var

( n∑
i=1

Xi

))−p/2
n∑

i=1

E(|Xi|p) . (2.5)

In addition, in the same context, Sakhanenko (1985) proved that

W p
p (µn, G1) ≤ C̃(p)

(
Var

( n∑
i=1

Xi

))−p/2
n∑

i=1

E(|Xi|p) . (2.6)

By Holder’s inequality, we have that for any r ∈ [1, p]: W r
r ≤ W

(p−r)/(p−1)
1 (W p

p )(r−1)/(p−1). Conse-

quently, combining (2.5) and (2.6), we get that for independent and non identically distributed

random variables with moments of order p ∈]2, 3], and for any r ∈ [1, p],

W r
r (µn, G1) ≤ Cp,r

(
Var

( n∑
i=1

Xi

))−p/2
n∑

i=1

E(|Xi|p) . (2.7)

This estimate in the case of linear statistics of type (1.1) leads to the following result
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Corollary 2.1. Let p ∈]2, 3]. Assume that (ξi)i∈Z is a sequence of iid random variables in Lp,

with E(ξ0) = 0 and E(ξ2
0) = σ2. Let Sn be defined by (1.1), and vn be defined by (1.6). For any

r ∈ [1, p], there exists a positive constant C such that for every positive integer n,

W r
r (PSn , Gv2

nσ2) ≤ CLp,r(n) , (2.8)

where

Lp,r(n) :=

∑
j∈Z |cn,j|p
vp−r

n

.

The proof of this result will be given in Subsection 6.1.

3 Main results

In this section we shall give two upper bounds for the quantity ζr(PSn , Gv2
nσ2) when (ξi)i∈Z is

a strictly stationary sequence of martingale differences in Lp for p ∈]2, 3]. The results of this

section are proved in Subsections 6.2 - 6.5.

Theorem 3.1. Let p ∈]2, 3]. Assume that (ξi)i∈Z is a strictly stationary sequence of martingale

differences in Lp, with E(ξ2
0) = σ2. Let r ∈ [p− 2, p] and α ∈ [0, p− 2], and assume that

∑
n≥1

1

n1−β
‖E(ξ2

n|F0)− σ2‖p/2 < ∞ , where β =
α

2
+

(2p− α− r

2

)(p− α− 2

p− α

)
. (3.1)

Let Sn be defined by (1.1), and vn be defined by (1.6). There exists a positive constant C such

that for every positive integer n,

ζr(PSn , Gv2
nσ2) ≤ C

(
max
j∈Z

|cn,j|r + L̃p,r,α(n)
)
, (3.2)

where

L̃p,r,α(n) := max
j∈Z

|cn,j|α
∑

k∈Z

|cn,k|p−α

(
maxj∈Z |cn,j|2 +

∑∞
j=k+1 c2

n,j

)(p−r)/2
. (3.3)

Comment 3.1. In the case where r = p, choosing α = 0 in (3.1), we derive that

ζp(PSn , Gv2
nσ2) ≤ C

∑

j∈Z
|cn,j|p , (3.4)

as soon as ∑
n≥1

1

n2−p/2
‖E(ξ2

n|F0)− σ2‖p/2 < ∞ . (3.5)

Using (2.4), we see that if r = p, we obtain the same upper bound as in (2.8).
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Note that the quantity L̃p,r,α(n) can be bounded in all cases as follows:

Lemma 3.1. Let p ∈]2, 3], r ∈ [p− 2, p] and α ∈ [0, p− 2]. Then there exists a positive constant

C such that for every positive integer n,

L̃p,r,α(n) ≤ CL∗p,r,α(n) , (3.6)

where

L∗p,r,α(n) =





max
j∈Z

|cn,j|r
(
(max

j∈Z
|cn,j|)α−p

∑

j∈Z
|cn,j|p−α

)(2−p+r)/2

if r ∈]p− 2, p]

max
j∈Z

|cn,j|p−2 log
(
1 + 2(max

j∈Z
|cn,j|)α−p

∑

j∈Z
|cn,j|p−α

)
if r = p− 2 .

(3.7)

Comment 3.2. Using the above lemma, and choosing α = p− 2 in (3.1), we then deduce that

ζr(PSn , Gv2
nσ2) ≤





C max
j∈Z

|cn,j|p−2vr−p+2
n if r ∈]p− 2, p]

C max
j∈Z

|cn,j|p−2 log
(
1 + 2(max

j∈Z
|cn,j|)−2v2

n

)
if r = p− 2 ,

(3.8)

as soon as (3.5) holds.

As we shall see in Section 5, the quantity maxj∈Z |cn,j| in the bound (3.2) can be too big

compared to Lp,r(n) or to L̃p,r,α(n). In the following theorem, we replace maxj∈Z |cn,j| by another

quantity allowing to attain better rates of convergence. As a counterpart, the condition (3.9) we

impose on the sequence (ξi)i∈Z is different than (3.1). Notice however than even if the conditions

(3.1) and (3.9) cannot be compared, the condition (3.1) is usually more flexible in most of the

applications.

Theorem 3.2. Let p ∈]2, 3]. Assume that (ξi)i∈Z is a strictly stationary sequence of martingale

differences in Lp, with E(ξ2
0) = σ2. Assume that

∑
n≥1

‖(|ξ0|p−2 ∨ 1)|E(ξ2
n|F0)− σ2|‖1 < ∞ . (3.9)

Let Sn be defined by (1.1), and vn be defined by (1.6). Then for any r ∈ [p − 2, p] and any

sequence (Mn)n∈Z of positive real numbers, there exits a positive constant C such that for every

positive integer n,

ζr(PSn , Gv2
nσ2) ≤ C(M r

n + L̂p,r(n)) , (3.10)

where

L̂p,r(n) :=
∑

k∈Z

|cn,k|p(
M2

n +
∑∞

j=k+1 c2
n,j

)(p−r)/2
. (3.11)
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Comment 3.3. According to the equality (2.3) and to Remark 2.4 in Dedecker, Merlevède and

Rio (2009), we get that for any p ∈]2, 3],

‖FSn/vn − Φσ2‖∞ ≤ (1 + σ−1(2π)−1/2)
(
ζp−2(PSn/vn , Gσ2))1/(p−1) ,

where FSn/vn is the distribution function of v−1
n Sn and Φσ2 is the distribution function of Gσ2 .

Consequently Theorems 3.1 and 3.2 give also rates of convergence in terms of the uniform

distance.

Comment 3.4. In the case where r = p− 2 and (r, p) 6= (1, 3), we shall prove in Subsection 6.5

that the following bound is also valid: if (3.9) holds, then

ζr(PSn , Gv2
nσ2) ≤ C max

j∈Z
|cn,j|p−2 . (3.12)

4 Application to linear processes

4.1 Linear processes with martingale differences innovations

We consider here the linear process

Xk =
∑

i∈Z
aiξk−i where (ai)i∈Z ∈ `2, (4.1)

and (ξi)i∈Z is a strictly stationary sequence of martingale differences such that σ2 = E(ξ0)
2 > 0.

As already mentioned in the introduction the partial sum Sn =
∑n

i=1 Xi is of the form (1.1)

with

cn,i = a1−i + · · ·+ an−i (4.2)

In general, the covariances of (Xk)k∈Z may not be summable so that the linear process may

exhibit long range dependence, and therefore the variance of Sn may not be linear in n. In fact,

the variance of Sn is equal to σ2v2
n, where vn is defined by (1.6):

v2
n =

∑

j∈Z
c2
n,j =

∑

j∈Z

( n∑

k=1

ak−j

)2

. (4.3)

The following result follows straightforwardly from Theorem 3.1 and Comment 3.2.

Corollary 4.1. Let p ∈]2, 3]. Let (Xk)k∈Z be defined by (4.1), and assume that (ξi)i∈Z satisfies

(3.5). Let cn,i be defined by (4.2) and vn be defined by (4.3). Assume also that there exists a

positive constant K such that for every positive integer n,

max
j∈Z

|cn,j| ≤ K
vn√
n

. (4.4)
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Then there exists a positive constant C such that for every positive integer n,

ζr(PSn/vn , Gσ2) ≤
{

Cn1−p/2 if r ∈]p− 2, p]

Cn1−p/2 log n if r = p− 2 .
(4.5)

This result deserves some comments:

Comment 4.1. In the case where r ∈]p−2, p], under the assumptions of the previous corollary,

we get the same rate of convergence as for a sum of n iid random variables in Lp.

Comment 4.2. Condition (4.4) holds in a lot of situations. Let us briefly describe two of them:

1. Weak dependence: if the spectral density f of (Xk)k∈Z is continuous at 0, then n−1Var(Sn)

converges to 2πf(0) (see Hannan (1970), Corollary 4 page 228). If moreover f(0) > 0, we

infer that vn/
√

n converges to σ−1
√

2πf(0) > 0. In that case Condition (4.4) holds if and

only if

sup
n>0

sup
i∈Z

∣∣∣
i+n∑

k=i+1

ai

∣∣∣ < ∞ .

In particular, Condition (4.4) holds as soon as
∑

i∈Z |ai| < ∞ and
∑

i∈Z ai 6= 0.

2. Long range dependence: for the selection ai = 0 for i < 0 and ai = i−α`(i) for i > 0, where

` is a slowly varying function at infinity and 1/2 < α < 1, then v2
n ∼ καn3−2α`2(n) where κα

is a positive constant depending on α. Using the properties of slowly varying functions, it is

easy to see that Condition (4.4) is verified. To give an example of a linear process satisfying

such assumptions, we mention the fractionally integrated processes. These models play an

important role in financial econometrics, climatology and so on, and are widely studied.

For 0 < d < 1/2, let

Xk = (1−B)−dξk =
∑
i≥0

aiξk−i where ai =
Γ(i + d)

Γ(d)Γ(i + 1)
, (4.6)

where B is the lag operator. If 0 < d < 1/2, the covariances of (Xk)k∈Z are not summable,

the variance of partial sums is asymptotically proportional to n2d+1 and the linear process

exhibits long range dependence. In addition since ai ∼ καi−α with α = 1 − d, these

processes satisfy (4.4) for any 0 < d < 1/2.

Comment 4.3. Let FSn/vn be the distribution function of v−1
n Sn and Φσ2 be the distribution

function of Gσ2 . According to Comment 3.3, we get the following bound in the Berry-Esseen

Theorem: under the conditions of Corollary 4.1,

‖FSn/vn − Φσ2‖∞ ≤ Cn−
p−2

2(p−1) (log n)1/(p−1) .
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Comment 4.4. If we do not impose the condition (4.4), then under the assumptions of Corollary

4.1 on the sequence (ξi)i∈Z, we derive the following rates of convergence

ζr(PSn/vn , Gσ2) ≤
{

CBp−2
n if r ∈]p− 2, p]

CBp−2
n log(1 + B−2

n ) if r = p− 2 ,
(4.7)

where

Bn =
maxj∈Z |cn,j|

vn

. (4.8)

This still gives rates of convergence as soon as vn tends to infinity, since the following universal

bound is valid for Bn: there exists a positive constant K such that

Bn ≤ K(1 + v1/2
n )v−1

n . (4.9)

The upper bound (4.9) has been proved by Robinson (1997), Lemma 2(ii).

Comment 4.5. Corollary 4.1 applies to the case where (ξi)i∈Z has an ARCH(∞) structure as

described by Giraitis et al. (2000), that is

ξn = σnηn, with σ2
n = c +

∞∑
j=1

cjξ
2
n−j , (4.10)

where (ηn)n∈Z is a sequence of iid centered random variables such that E(η2
0) = 1, and where

c ≥ 0, cj ≥ 0, and
∑

j≥1 cj < 1. In that case, we shall prove in Subsection 6.6 that the condition

(3.5) holds as soon as ‖η0‖p < ∞ and

‖η0‖2
p

∑
j≥1

cj < 1 and
∑
j≥n

cj = O(n−b) for b > p/2− 1 . (4.11)

4.2 Linear processes with dependent innovations

In this section, we no longer assume that E(ξi|Fi−1) = 0, but that ξi can be approximated by

a martingale difference dj satisfying the assumptions of Corollary 4.1. The following result is

proved in Subsection 6.7.

Theorem 4.1. Let p ∈]2, 3]. Let (ξi)i∈Z = (ξ0 ◦ T i)i∈Z be a stationary sequence of centered

random variables in Lp such that
∑

k>0

E(ξk|F0) and
∑

k>0

ξ−k − E(ξ−k|F0) converge in Lp. (4.12)

Let (Xk)k∈Z be defined by (4.1), Sn =
∑n

k=1 Xk, and let vn be defined by (4.3). For any j ∈ Z,

let

dj =
∑

k∈Z
E(ξk|Fj)− E(ξk|Fj−1) .
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Let σ2 = E(d2
0) =

∑
k∈Z E(ξ0ξk) and σ2

n = v−2
n E(Sn)2. If (dj)j∈Z satisfies (3.5), and if there exists

a positive constant C such that for every positive integer n,

|cn,0|+
∑

j∈Z
|an+j − aj| ≤ C

vn√
n

, (4.13)

then

1. ζp−2(PSn/vn , Gσ2) = O(n1−p/2 log n),

2. ζr(PSn/vn , Gσ2) = O(n1−p/2) if r ∈]p− 2, 2],

3. ζr(PSn/vn , Gσ2
n
) = O(n1−p/2) if r ∈]2, p].

Comment 4.6. The results of items 1 and 2 are valid with σn instead of σ. On the contrary, the

result of item 3 is no longer true if σn is replaced by σ, because for r ∈]2, 3], a necessary condition

for ζr(µ, ν) to be finite is that the two first moments of ν and µ are equal. Note that, under the

assumptions of Theorem 4.1, both Wr(PSn/vn , Gσ2
n
) and Wr(PSn/vn , Gσ2) are O(n−(p−2)/2max(1,r))

for r ∈]p− 2, p]. Indeed, for r ∈]2, p], it suffices to note that

Wr(PSn/vn , Gσ2) ≤ Wr(PSn/vn , Gσ2
n
) + Wr(Gσ2

n
, Gσ2) ,

and the second term on right hand is of order |σ − σn| = O(n−1/2) (to see this, use (4.13) and

the inequality (6.44) in Subsection 6.7).

Comment 4.7. Condition (4.13) implies Condition (4.4). As for (4.4), it holds in a lot of

situations. Let us briefly describe two of them:

1. Weak dependence: if
∑

i∈Z |ai| < ∞ and
∑

i∈Z ai 6= 0 then (4.13) holds.

2. Long range dependence: if ai = 0 for i < 0, and ai ∼ i−α as i → ∞, with 1/2 < α < 1,

then (4.13) holds.

Comment 4.8. Let us give some examples of stationary sequences (ξi)i∈Z for which (4.12) holds,

and (dj)j∈Z satisfies (3.5). We follow here the approach of Wu (2007), Section 3.

Let (εi)i∈Z be a sequence of iid random variables, and let Fi = σ(εk, k ≤ i). Let (ε′i)i∈Z be an

independent copy of (εi)i∈Z. Let Yn = (. . . , εn−1, εn), and for n ≥ 0, Y ∗
n = (. . . , ε′−1, ε

′
0, ε1, . . . , εn).

Assume that the random variables ξn = g(Yn) are well defined, centered, and in Lp, and let

β∗(n) = ‖g(Yn)− g(Y ∗
n )‖p .

From Proposition 3 in Wu (2007), we infer that (4.12) holds, and (dj)j∈Z satisfies (3.5) as soon

as ∞∑

k=1

k(p−2)/2β∗(k) < ∞ . (4.14)
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Comment 4.9. Comment 4.8 applies to the causal linear process ξn =
∑

i≥0 biεn−i, but, as we

shall see, the condition (4.14) is suboptimal in that case. Let us consider the general case: (εi)i∈Z
is a sequence of iid random variables with E(ε0) = 0 and ‖ε0‖p < ∞, and

ξn =
∑

i∈Z
biεn−i, where (bi)i∈Z ∈ `2.

Assume that the two series
∑

i≥0 bi and
∑

i<0 bi converge, and that Heyde’s (1975) condition

holds, that is:
∞∑

n=1

( ∑

k≥n

bk

)2

< ∞ and
∞∑

n=1

( ∑

k≤−n

bk

)2

< ∞ . (4.15)

Notice that E(ξk|F0) =
∑

`≥0 bk+`ε−` and that ξ−k−E(ξ−k|F0) =
∑

`≥1 b−k−`ε`. From Burkholder’s

inequality, there exists a constant C such that for any positive integers m and n with m < n,

∥∥∥
n∑

k=m+1

E(ξk|F0)
∥∥∥

2

p
≤ C‖ε0‖2

p

∞∑

`=0

( n∑

k=m+1

bk+`

)2

≤ 2C‖ε0‖2
p

( ∞∑

`=m+1

( ∑

k≥`

bk

)2

+
∞∑

`=n+1

( ∑

k≥`

bk

)2)
,

which converges to zero under the first part of (4.15) as m and n tend to infinity. Similarly we

derive that there exists a constant C such that for any positive integers m and n with m < n,

∥∥∥
n∑

k=m+1

(
ξ−k − E(ξ−k|F0)

)∥∥∥
2

p
≤ 2C‖ε0‖2

p

( ∞∑

`=m+2

( ∑

k≤−`

bk

)2

+
∞∑

`=n+2

( ∑

k≤−`

bk

)2)
,

which converges to zero under the second part of (4.15) as m and n tend to infinity. From these

considerations, we derive that (4.12) holds. Now dj = εj

∑
`∈Z b` and the εi’s are iid, so that

(3.5) is satisfied.

Notice that (4.15) holds if either
∑

i∈Z i2b2
i < ∞ or

∑
i∈Z

√
|i||bi| < ∞. By contrast, if bi = 0

for i < 0, the condition (4.14) is true as soon as

∞∑
n=1

n(p−2)/2
( ∑

k≥n

b2
k

)1/2

< ∞ ,

which is always stronger than (4.15), since it implies that
∑

i>0 i2b2
i < ∞.

5 Application to parametric regression

Let us consider the simple parametric regression model

Yi = βαi + ξi ,
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where (ξi)i∈Z is a stationary sequences of martingale differences such that E(ξ2
0) = σ2, (αi)i≥1

is a sequence of real numbers such that
∑n

i=1 α2
i tends to infinity, and β is the parameter of

interest. The least squares estimator β̂ of β satisfies

Sn = β̂ − β =

∑n
i=1 αiξi∑n
j=1 α2

j

.

Consequently, if (maxi∈[1,n] |αi|)(
∑n

j=1 α2
j )
−1 tends to 0, Theorem 3.1 (resp. Theorem 3.2) applied

with

cn,i =
αi∑n

j=1 α2
j

11≤i≤n (5.1)

gives rates of convergence for the normal approximation of Sn = β̂ − β in terms of minimal

distances, as soon as (ξi)i∈Z satisfies (3.1) (resp. (3.9)).

For instance, the following corollary holds

Corollary 5.1. Let p ∈]2, 3]. Let cn,j be defined by (5.1) and vn be defined by (1.6). Assume

that |αn| is non-decreasing, and satisfies

lim sup
n→∞

|αn|
|α[n/2]| ≤ C .

If (ξi)i∈Z satisfies (3.5), then

ζr(PSn/vn , Gσ2) ≤
{

Cn1−p/2 if r ∈]p− 2, p]

Cn1−p/2 log(n) if r = p− 2 .

Comment 5.1. Note that, if αn satisfies the conditions of the above corollary, then the Lyapunov

coefficient v−r
n Lp,r(n) defined in (2.8) is such that

C1n
1−p/2 ≤ v−r

n Lp,r(n) ≤ C2n
1−p/2 .

It follows from Corollary 2.1 and (2.4) that for r ∈ [1, p] and (r, p) 6= (1, 3) we obtain the same

rate of convergence for Wr(PSn/vn , Gσ2) as in the case where (ξi)i∈Z is iid.

Now if |αn| decreases to zero, the quantity v−r
n Lp,r(n) given in Corollary 2.1 depends on the

rate of convergence of αn to zero. For instance, if αi = i−γ with 0 < γ < 1/2, we have

v−r
n Lp,r(n) ≤





Cn(2γ−1)p/2 if γp > 1

Cn1−p/2 log(n) if γp = 1

Cn1−p/2 if γp < 1.

(5.2)

In the case γp > 1, the rate given above can never be attained by applying Theorem 3.1, except

if r = p. This is mainly due to the fact that the rate given by Theorem 3.1 cannot be better

than vr
n ∼ Cn(2γ−1)r/2.

12



In Subsection 6.8, we shall prove the following corollary. It shows that, choosing Mn =

αn(
∑n

i=1 α2
i )
−1 in Theorem 3.2, one recovers the rates given in (5.2) in the case where r > p− 2

and also in the case where r = p− 2 and γp ≥ 1.

Corollary 5.2. Let p ∈]2, 3]. Let cn,j be defined by (5.1) and vn be defined by (1.6). Let αi = i−γ

for 0 < γ < 1/2 and assume that (ξi)i∈Z satisfies (3.9). If r ∈]p − 2, p], there exists a positive

constant C such that for every positive integer n,

ζr(PSn/vn , Gσ2) ≤





Cn(2γ−1)p/2 if γp > 1

Cn1−p/2 log(n) if γp = 1

Cn1−p/2 if γp < 1.

(5.3)

For r = p− 2, there exists a positive constant C such that for every positive integer n,

ζp−2(PSn/vn , Gσ2) ≤
{

Cn(2γ−1)p/2 if γp > 1

Cn1−p/2 log(n) if γp ≤ 1.
(5.4)

6 Proofs

From now on, we denote by C a numerical constant which may vary from line to line. Let us

introduce the following notation:

Notation 6.1. For l integer, q in ]l, l + 1] and f l-times continuously differentiable, we set

|f |Λq = sup{|x− y|l−q|f (l)(x)− f (l)(y)| : (x, y) ∈ R× R}.

6.1 Proof of Corollary 2.1.

For two positive integer L and K, we set Sn,K,L =
∑L

j=−K cn,jξj and v2
n,K,L =

∑L
j=−K c2

n,j. We

have that

Wr(PSn , Gv2
nσ2) ≤ lim inf

K,L→∞

(
Wr(PSn , PSn,K,L

) + Wr(PSn,K,L
, Gv2

n,K,Lσ2) + Wr(Gv2
n,K,Lσ2 , Gv2

nσ2)
)
.

Using (2.7), we get that W r
r (PSn,K,L

, Gv2
n,K,Lσ2) ≤ Cp,rv

r−p
n,K,L

∑L
j=−K |cn,j|p. Hence

lim inf
K,L→∞

W r
r (PSn,K,L

Gv2
n,K,Lσ2) ≤ Cp,rLp,r(n) .

Hence the result will follow if we can prove that

lim
K,L→∞

Wr(PSn , PSn,K,L
) = 0, and lim

K,L→∞
Wr(Gv2

n,K,Lσ2 , Gv2
nσ2) = 0 . (6.1)
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Since for r ∈ [1, p],

Wr(Gv2
n,K,Lσ2 , Gv2

nσ2) ≤ Cσ|vn,K,L − vn| ≤ Cσ
( ∑

j>L

c2
n,j +

∑
j<−K

c2
n,j

)1/2

,

the second part of (6.1) holds. To prove the first part, we write that

Wr(PSn , PSn,K,L
) ≤ ‖Sn − Sn,K,L‖r .

Hence from Burkholder inequality

Wr(PSn , PSn,K,L
) ≤ C‖ξ0‖r∨2

( ∑
j>L

c2
n,j +

∑
j<−K

c2
n,j

)1/2

,

proving the first part of (6.1).

6.2 Proof of Theorem 3.1.

For a positive integer N let Sn,N =
∑N

j=1 cn,jξj and let v2
n,N =

∑N
j=1 c2

n,j. We first show that

without restricting the generality, it suffices to prove that for any positive integer N ,

ζr(PSn,N
, Gv2

n,Nσ2) ≤ C
(
max
j∈Z

|cn,j|r + Kp,r,α(n,N)
)
, (6.2)

where

Kp,r,α(n,N) = max
j∈Z

|cn,j|α
N∑

k=1

|cn,k|p−α

(
maxj∈Z |cn,j|2 +

∑N
j=k+1 c2

n,j

)(p−r)/2
.

With this aim, for two positive integer L and K, we set Sn,K,L =
∑L

j=−K cn,jξj and v2
n,K,L =∑L

j=−K c2
n,j. By Burkholder inequality for any r ∈ [p− 2, p],

‖Sn − Sn,K,L‖r ≤ C‖ξ0‖r∨2

( ∑
j>L

c2
n,j +

∑
j<−K

c2
n,j

)1/2

and ‖Sn‖r ≤ C‖ξ0‖r∨2vn .

Following the arguments given in the proof of Lemma 5.2 in Dedecker, Merlevède and Rio (2009),

we get that

lim
K,L→∞

ζr(PSn , PSn,K,L
) = 0

and similarly

lim
K,L→∞

ζr(Gv2
nσ2 , Gv2

n,K,Lσ2) = 0 ,

by writing that Gv2
nσ2 = PTn and Gv2

n,K,Lσ2 = PTn,K,L
where Tn =

∑
j∈Z cn,jYj and Tn,K,L =∑L

j=−K cn,jYj with (Yi)i∈Z a sequence of N (0, σ2)-distributed independent random variables. It

follows that for r ∈ [p− 2, 2],

ζr(PSn , Gv2
nσ2) ≤ lim inf

K,L→∞
ζr(PSn,K,L

, Gv2
n,K,Lσ2) . (6.3)
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Consider now the case where r ∈]2, p]. Let

αn,K,L =
‖Sn‖2

‖Sn,K,L‖2

and Rn,K,L = Sn − Sn,K,L + (1− αn,K,L)Sn,K,L .

Following the arguments of the proof of Item 3 of Lemma 5.2 in Dedecker, Merlevède and Rio

(2009) and using the fact that by Burkholder inequality ‖Sn,K,L‖r ≤ ‖ξ0‖rvn, we derive that for

f ∈ Λr,

E(f(Sn)− f(αn,K,LSn,K,L)) ≤ 1

r − 1
αr−1

n,K,L‖Rn,K,L‖rv
r−1
n +

1

2
αr−2

n,K,L‖Rn,K,L‖2
rv

r−2
n +

1

2
‖Rn,K,L‖r

r .

Since limK,L→∞ αn,K,L = 1 and limK,L→∞ ‖Sn−Sn,K,L‖r = 0, we get that limK,L→∞ ‖Rn,K,L‖r = 0.

Consequently, for any r ∈]2, p], we get that

lim
K,L→∞

ζr(PSn , Pαn,K,LSn,K,L
) = 0 . (6.4)

Similarly, we derive that

lim
K,L→∞

ζr(Gv2
nσ2 , Gα2

n,K,Lv2
n,K,Lσ2) = 0 . (6.5)

Now notice that

ζr(Pαn,K,LSn,K,L
, Gα2

n,K,Lv2
n,K,Lσ2) = αr

n,K,Lζr(PSn,K,L
, Gv2

n,K,Lσ2) .

Since limK,L→∞ αn,K,L = 1, it follows that (6.3) also holds for r ∈]2, p]. Let now

Kp,r,α(n, K, L) = max
j∈Z

|cn,j|α
L∑

k=−K

|cn,k|p−α

(
maxj∈Z |cn,j|2 +

∑L
j=k+1 c2

n,j

)(p−r)/2
.

Since limK,L→∞ Kp,r,α(n,K, L) = L̃p,r,α(n), the theorem will be proven if we can show that for

any positive integers K and L,

ζr(PSn,K,L
, Gv2

n,K,Lσ2) ≤ C
(
max
j∈Z

|cn,j|r + Kp,r,α(n,K, L)
)
. (6.6)

Since by the strict stationarity of (ξi), Sn,K,L has the same distribution as
∑N

j=1 cn,j−K+1ξj where

N = L + K + 1, it follows that ζr(PSn,K,L
, Gv2

n,K,Lσ2) will satisfy (6.6) as soon as (6.2) holds for

any positive integer N .

We turn now to the proof of (6.2). Without loss of generality we assume that σ = 1. The

general case follows by dividing the random variables by σ.

Let (Yi)i∈N be a sequence of N (0, 1)-distributed independent random variables, independent

of the sequence (ξi)i∈Z. For m > 0, let Tn,m =
∑m

j=1 cn,jYj and Sn,m =
∑m

j=1 cn,jξj. Set
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Sn,0 = Tn,0 = 0. Let also Zn be a N (0, maxj∈Z |cn,j|2)-distributed random variable independent

of (ξi)i∈Z and (Yi)i∈Z. Using Lemma 5.1 in Dedecker, Merlevède and Rio (2009) together with

the fact that ζr(PaX , PaY ) = |a|rζr(PX , PY ), we derive that for any r in ]0, p],

ζr(PSn,N
, PTn,N

) ≤ 2ζr(PSn,N
∗ PZn , PTn,N

∗ PZn) + 4
√

2 max
j∈Z

|cn,j|r . (6.7)

Consequently it remains to bound up

ζr(PSn,N
∗ PZn , PTn,N

∗ PZn) = sup
f∈Λr

E(f(Sn,N + Zn)− f(Tn,N + Zn)) .

For any m ≤ N , set

fN−m,n(x) = E(f(x + Tn,N − Tn,m + Zn)).

Then, from the independence of the above sequences,

E(f(Sn,N + Zn)− f(Tn,N + Zn)) =
N∑

m=1

Dm , (6.8)

where

Dm = E
(
fN−m,n(Sn,m−1 + cn,mξm)− fN−m,n(Sn,m−1 + cn,mYm)

)
.

For any two-times differentiable function g, the Taylor integral formula at order two writes

g(x + h)− g(x) = g′(x)h +
1

2
h2g′′(x) + h2

∫ 1

0

(1− t)(g′′(x + th)− g′′(x))dt.

Hence, for any q in ]2, 3],

|g(x + h)− g(x)− g′(x)h− 1

2
h2g′′(x)| ≤ h2

∫ 1

0

(1− t)|th|q−2|g|Λqdt ≤ 1

q(q − 1)
|h|q|g|Λq . (6.9)

Let

D′
m = c2

n,mE(f ′′N−m,n(Sn,m−1)(ξ
2
m − 1)) = c2

n,mE(f ′′N−m,n(Sn,m−1)(ξ
2
m − Y 2

m)) (6.10)

From (6.9) applied twice to g = fN−m,n, x = Sn,m−1 and h = cn,mξm or h = cn,mYm together

with the martingale property,

∣∣∣Dm − 1

2
D′

m

∣∣∣ ≤ |cn,m|p
p(p− 1)

|fN−m,n|ΛpE(|ξm|p + |Ym|p).

Now E(|Ym|p) ≤ p− 1 ≤ (p− 1)E|ξ0|p. Hence

Rm := |Dm − (D′
m/2)| ≤ |cn,m|pE|ξ0|p|fN−m,n|Λp . (6.11)
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We notice now that |fN−m,n|Λp = |f ∗ φδn |Λp where φt be the density of the law N (0, t2) and

δ2
n = E(Zn + Tn,N − Tn,m)2 = maxj∈Z |cn,j|2 +

∑N
j=m+1 c2

n,j. Then, from Lemma 6.1 in Dedecker,

Merlevède and Rio (2009), since p ≥ r and f belongs to Λr (i.e. |f |Λr ≤ 1),

|fN−m,n|Λp = |f ∗ φδn |Λp ≤ Cδr−p
n = C

(
max
j∈Z

|cn,j|2 +
N∑

j=m+1

c2
n,j

)(r−p)/2

. (6.12)

Consequently,

N∑
m=1

Rm ≤ CKp,r,α(n,N) . (6.13)

We now bound up D′ = D′
1 + D′

2 + · · ·+ D′
N . For any m = 1, · · · , N ,

f ′′N−m,n(Sn,m−1) =

[log2 m]∑

`=1

(
f ′′N−(m−2`−1)−1,n(Sn,m−2`−1)− f ′′N−(m−2`)−1,n(Sn,m−2`)

)

+f ′′
N−(m−2[log2 m])−1,n

(Sn,m−2[log2 m]) .

For any ` = 1, . . . , [log2 m],

E
((

f ′′N−(m−2`−1)−1,n(Sn,m−2`−1)− f ′′N−(m−2`)−1,n(Sn,m−2`)
)
(ξ2

m − 1)
)

= E
((

f ′′N−(m−2`−1)−1,n(Sn,m−2`−1)− f ′′N−(m−2`)−1,n(Sn,m−2`)
)
E

(
ξ2
m − 1|Fm−2`−1

))

= E
((

f ′′N−(m−2`−1)−1,n(Sn,m−2`−1)− f ′′N−(m−2`−1)−1,n(Sn,m−2` + Tn,m−2`−1+1 − Tn,m−2`+1)
)

×E(
ξ2
m − 1|Fm−2`−1

))
.

Now (6.12) means that for any real x and y,

|f ′′N−i,n(x)− f ′′N−i,n(y)| ≤ C
( N∑

j=i+1

c2
n,j + max

j∈Z
|cn,j|2

)(r−p)/2

|x− y|p−2 . (6.14)

In addition, by Burkholder inequality,

‖(Sn,m−2`−1 − Sn,m−2`)− (Tn,m−2`−1+1 − Tn,m−2`+1)‖p ≤ C(‖ξ0‖p + ‖Y1‖p)
( m−2`−1+1∑

j=m−2`+1

c2
n,j

)1/2

.

Consequently by stationarity,

E
(∣∣∣(Sn,m−2`−1 − Sn,m−2`)− (Tn,m−2`−1+1 − Tn,m−2`+1)

∣∣∣
p−2∣∣∣E

(
ξ2
m − 1|Fm−2`−1

)∣∣∣
)

≤ ‖(Sn,m−2`−1 − Sn,m−2`)− (Tn,m−2`−1+1 − Tn,m−2`+1)‖p−2
p ‖E(

ξ2
2`−1 − 1|F0

)‖p/2

≤ C
( m−2`−1+1∑

j=m−2`+1

c2
n,j

)(p−2)/2

‖E(
ξ2
2`−1 − 1|F0

)‖p/2 .
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Setting

B(m, k) :=
(

max
j∈Z

c2
n,j +

N∑

j=m−k+2

c2
n,j

)(p−r)/2

, (6.15)

it follows that for any α ∈ [0, p− 2],

N∑
m=1

c2
n,m

[log2 m]∑

`=1

E
((

f ′′N−(m−2`−1)−1,n(Sn,m−2`−1)− f ′′N−(m−2`)−1,n(Sn,m−2`)
)
(ξ2

m − 1)
)

≤ C

N∑
m=1

c2
n,m

[log2 m]∑

`=1

‖E(
ξ2
2`−1 − 1|F0

)‖p/2

B(m, 2`−1)

( m−2`−1+1∑

j=m−2`+1

c2
n,j

)(p−2)/2

≤ C max
j∈Z

|cn,j|α
[log2 N ]−1∑

`=0

2α`/2‖E(
ξ2
2` − 1|F0

)‖p/2

N∑

m=2`+1

c2
n,m

B(m, 2`)

( m−2`+1∑

j=m−2`+1+1

c2
n,j

)(p−2−α)/2

.

Applying Hölder’s inequality we get that

N∑

m=2`+1

c2
n,m

B(m, 2`)

( m−2`+1∑

j=m−2`+1+1

c2
n,j

)(p−2−α)/2

≤
(

N∑

m=2`+1

|cn,m|p−α

B(m, 2`)

)2/(p−α) (
N∑

m=2`+1

( ∑m−2`+1
j=m−2`+1+1 c2

n,j

)(p−α)/2

B(m, 2`)

)(p−α−2)/(p−α)

≤
(

N∑

m=2`+1

|cn,m|p−α

B(m, 1)

)2/(p−α) (
(2` + 1)(p−α−2)/2

N∑

m=2`+1

∑m−2`+1
j=m−2`+1+1 |cn,j|p−α

B(m, 2`)

)(p−α−2)/(p−α)

.

Since
∑m−2`+1

j=m−2`+1+2 c2
n,j ≤ 2` maxj∈Z c2

n,j, we clearly have

(2` + 1)
(

max
j∈Z

c2
n,j +

N∑

j=m−2`+2

c2
n,j

)
≥ max

j∈Z
c2
n,j +

N∑

j=m−2`+1+2

c2
n,j .

Whence

N∑

m=2`+1

∑m−2`+1
j=m−2`+1+1 |cn,j|p−α

B(m, 2`)
≤ (2` + 1)(p−r)/2

N∑

m=2`+1

∑m−2`+1
j=m−2`+1+1 |cn,j|p−α

B(m, 2`+1)

≤
N∑

j=1

(2` + 1)(p−r)/2|cn,j|p−α

N∑
m=1

1Ij+2`−1≤m≤j+2`+1−1

B(m, 2`+1)

≤ (2` + 1)(p−r+2)/2

N∑
j=1

|cn,j|p−α

B(j, 1)
.
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Taking into account all the above considerations we derive that for any α ∈ [0, p− 2],

N∑
m=1

c2
n,m

[log2 m]∑

`=1

E
((

f ′′N−(m−2`−1)−1,n(Sn,m−2`−1)− f ′′N−(m−2`)−1,n(Sn,m−2`)
)
(ξ2

m − 1)
)

≤ C
∑

`≥0

2`β‖E(
ξ2
2` − 1|F0

)‖p/2Kp,r,α(n,N) .

Since (‖E(
ξ2
m − 1|F0

)‖p/2)m≥0 is a decreasing sequence, Condition (3.1) implies that

∞∑

`=0

2`β‖E(
ξ2
2` − 1|F0

)‖p/2 < ∞ . (6.16)

Whence

N∑
m=1

c2
n,m

[log2 m]∑

`=1

E
((

f ′′N−(m−2`−1)−1,n(Sn,m−2`−1)− f ′′N−(m−2`)−1,n(Sn,m−2`)
)
(ξ2

m − 1)
)

≤ CKp,r,α(n,N) . (6.17)

It remains to bound up

N∑
m=2

c2
n,mE

(
f ′′

N−(m−2[log2 m])−1,n
(Sn,m−2[log2 m])(ξ2

m − 1)
)

.

We first use the inequality (6.14), and the fact that E
(
f ′′

N−(m−2[log2 m])−1,n
(0)(ξ2

m− 1)
)

= 0. Using

the notation (6.15), we get

N∑
m=2

c2
n,mE

(
f ′′

N−(m−2[log2 m])−1,n
(Sn,m−2[log2 m])(ξ2

m − 1)
)

≤ C

N∑
m=2

c2
n,m

B(m, 2[log2 m])
‖Sn,m−2[log2 m]‖p−2

p ‖E(ξ2
m|Fm−2[log2 m])− 1‖p/2 .

Now we notice that 2[log2 m] ≥ m/2. Consequently

‖E(ξ2
m|Fm−2[log2 m])− 1‖p/2 ≤ ‖E(ξ2

[m/2]|F0)− 1‖p/2 ,

and by Burkholder inequality,

‖Sn,m−2[log2 m]‖p−2
p ≤ C‖ξ0‖p−2

p

( m−2[log2 m]∑
j=1

c2
n,j

)(p−2)/2

.
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Consequently, since α ∈ [0, p− 2],

N∑
m=2

c2
n,mE

(
f ′′

N−(m−2[log2 m])−1,n
(Sn,m−2[log2 m])(ξ2

m − 1)
)

≤ C max
j∈Z

|cn,j|α
N∑

m=2

mα/2
c2
n,m

B(m, 2[log2 m])

( m−2[log2 m]∑
j=1

c2
n,j

)(p−2−α)/2

‖E(ξ2
[m/2]|F0)− 1‖p/2 .

If α = p− 2, using the fact that mα/2‖E(ξ2
[m/2]|F0)− 1‖p/2 = O(1), we get the following bound

N∑
m=2

c2
n,mE

(
f ′′

N−(m−2[log2 m])−1,n
(Sn,m−2[log2 m])(ξ2

m − 1)
)
≤ C max

j∈Z
|cn,j|p−2

N∑
m=2

c2
n,m

B(m, 1)
.

Now in the case where α ∈ [0, p− 2[, using Hölder’s inequality we then derive that

N∑
m=2

c2
n,mE

(
f ′′

N−(m−2[log2 m])−1,n
(Sn,m−2[log2 m])(ξ2

m − 1)
)

≤ C max
j∈Z

|cn,j|α
( N∑

m=2

|cn,m|p−α

B(m, 1)

)2/(p−α)

×
( N∑

m=2

m
α(p−α)

2(p−α−2)
+ p−α−2

2 ‖E(ξ2
[m/2]|F0)− 1‖(p−α)/(p−α−2)

p/2

∑m−2[log2 m]

j=1 |cn,j|p−α

B(m, 2[log2 m])

)(p−α−2)/(p−α)

.

Since for any j = 1, . . . , m− 2[log2 m],
∑m−2[log2 m]+1

k=j+1 c2
n,k ≤ m maxk∈Z c2

n,k, we get that

(m + 1)(p−r)/2B(m, 2[log2 m]) ≥ B(j, 1) .

Hence,

N∑
m=2

m
α(p−α)

2(p−α−2)
+ p−α−2

2 ‖E(ξ2
[m/2]|F0)− 1‖(p−α)/(p−α−2)

p/2

∑m−2[log2 m]

j=1 |cn,j|p−α

B(m, 2[log2 m])

≤ 2(p−r)/2

N∑
m=2

mβ(p−α)/(p−α−2)

m
‖E(ξ2

[m/2]|F0)− 1‖(p−α)/(p−α−2)
p/2

∑
j≥1

|cn,j|p−α

B(j, 1)
.

Consequently

N∑
m=2

c2
n,mE

(
f ′′

N−(m−2[log2 m])−1,n
(Sn,m−2[log2 m])(ξ2

m − 1)
)
≤ CKp,r,α(n,N) , (6.18)

provided that
N∑

m=2

mβ(p−α)/(p−α−2)

m
‖E(ξ2

[m/2]|F0)− 1‖(p−α)/(p−α−2)
p/2 < ∞ ,

which holds under (3.1). From (6.7), (6.8), (6.13), (6.17) and (6.18), we conclude that (6.2)

holds.
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6.3 Proof of Lemma 3.1.

For any m ∈ Z, we set

tn,m = cn,m/ max
j∈Z

|cn,j| . (6.19)

With this notation we then derive that

L̃p,r,α(n) = max
j∈Z

|cn,j|r
∑

m∈Z

|tn,m|p−α

1 +
∑∞

j=m+1 t2n,j

(
1 +

∞∑
j=m+1

t2n,j

)1−(p−r)/2

.

Now since |tn,m| ≤ 1 and p− α ≥ 2,

L̃p,r,α(n) ≤ max
j∈Z

|cn,j|r
∑

m∈Z

|tn,m|p−α

1 +
∑∞

j=m+1 |tn,j|p−α

(
1 +

∞∑
j=m+1

|tn,j|p−α
)1−(p−r)/2

. (6.20)

Using again the fact that |tn,m| ≤ 1,

|tn,m|p−α

1 +
∑∞

j=m+1 |tn,j|p−α
≤ 2|tn,m|p−α

1 + |tn,m|p−α + 2
∑∞

j=m+1 |tn,j|p−α
.

Now, for any m ∈ Z, set

un,m = 1 + 2
∞∑

j=m+1

|tn,j|p−α , (6.21)

and notice that

2|tn,m|p−α

1 + |tn,m|p−α + 2
∑∞

j=m+1 |tn,j|p−α
=

2(un,m−1 − un,m)

(un,m−1 − un,m) + 2un,m

.

Applying the inequality: log(1 + x) ≥ 2x/(x + 2) for x > 0, to x = (un,m−1 − un,m)/un,m, we

then derive that |tn,m|p−α

1 +
∑∞

j=m+1 |tn,j|p−α
≤ log

(un,m−1

un,m

)
.

In addition, we notice that for any r ∈ [p− 2, p],

(
1 +

∞∑
j=m+1

|tn,j|p−α
)1−(p−r)/2

≤ x1−(p−r)/2 for any x ≥ un,m.

It follows that

∑

m∈Z

|tn,m|p−α

(
1 + 2

∑∞
j=m+1 |tn,j|p−α

)(p−r)/2
≤

∑

m∈Z

∫ un,m−1

un,m

x−(p−r)/2dx

=

∫ 1+2
∑

j∈Z |tn,j |p−α

1

x−(p−r)/2dx .
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Hence,

∑

m∈Z

|tn,m|p−α

(
1 + 2

∑∞
j=m+1 tp−α

n,j

)(p−r)/2
≤





2
2−p+r

(
1 + 2

∑
j∈Z |tn,j|p−α

)(2−p+r)/2
if r ∈]p− 2, p]

log(1 + 2
∑

j∈Z
|tn,j|p−α) if r = p− 2 ,

(6.22)

which gives the result by taking into account (6.20) and (6.19).

6.4 Proof of Theorem 3.2.

As in the proof of Theorem 3.1 and with the same notations, it suffices to prove that for any

positive integer N ,

ζr(PSn,N
, Gv2

n,Nσ2) ≤ C
(
M r

n + L̂p,r(n,N)
)
, (6.23)

where

L̂p,r(n,N) =
N∑

k=1

|cn,k|p(
M2

n +
∑N

j=k+1 c2
n,j

)(p−r)/2
.

We modify the proof of Theorem 3.1 as follows: here Zn is a N (0,M2
n)-distributed random

variable independent of (ξi)i∈Z and (Yi)i∈Z. It follows that (6.12) is replaced by

|fN−m,n|Λp ≤ C
(
M2

n + max
j∈Z

|cn,j|2
)(r−p)/2

. (6.24)

We then follow the lines of the proof of Theorem 3.1 to get the bound (6.13) for
∑N

m=1 Rm except

that we replace Kp,r,α(n,N) by L̂p,r(n,N). In addition we bound up D′ =
∑N

m=1 D′
m, where D′

m

is defined by (6.10), in a different way. We write that for any m = 1, · · · , N ,

f ′′N−m,n(Sn,m−1) = f ′′N−1,n(0) +
m−1∑
j=1

(
f ′′N−(m−j)−1,n(Sn,m−j)− f ′′N−(m−j),n(Sn,m−j−1)

)
, (6.25)

since Sn,0 = 0. Now for any j = 1, . . . , m− 1,

E
((

f ′′N−(m−j)−1,n(Sn,m−j)− f ′′N−(m−j),n(Sn,m−j−1)
)
(ξ2

m − 1)
)

= E
((

f ′′N−(m−j)−1,n(Sn,m−j)− f ′′N−(m−j)−1,n(Sn,m−j−1 + Tn,m−j+1 − Tn,m−j)
)
E

(
ξ2
m − 1|Fm−j

))
.
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Using (6.14) (with Mn instead of maxj∈Z |cn,j|), the stationarity of (ξi)i∈Z, and the fact that

E(f ′′N−1,n(0)(ξ2
m − 1)) = 0, it follows that

D′ =
N∑

m=1

c2
n,m

m−1∑
j=1

E
(
f ′′N−(m−j)−1,n(Sn,m−j)− f ′′N−(m−j),n(Sn,m−j−1)

)
(ξ2

m − 1)
)

≤ C

N−1∑
j=1

‖|ξ0|p−2E
(
ξ2
j − 1|F0

)‖1

N−1∑
m=j+1

c2
n,m|cn,m−j|p−2

(
M2

n +
N∑

k=m−j+2

c2
n,k

)(r−p)/2

+C

N−1∑
j=1

‖E(
ξ2
j − 1|F0

)‖1

N−1∑
m=j+1

c2
n,m|cn,m−j+1|p−2

(
M2

n +
N∑

k=m−j+2

c2
n,k

)(r−p)/2
.

From Hölder’s inequality, we get that

N−1∑
m=j+1

c2
n,m|cn,m−j|p−2

(
M2

n +
N∑

k=m−j+2

c2
n,k

) r−p
2 ≤

N∑
m=1

|cn,m|p(
M2

n +
∑N

k=m+2 c2
n,k)

(p−r)/2
.

Similarly

N−1∑
m=j+1

c2
n,m|cn,m−j+1|p−2

(
M2

n +
N∑

k=m−j+2

c2
n,k

) r−p
2 ≤

N∑
m=1

|cn,m|p(
M2

n +
∑N

k=m+2 c2
n,k)

(p−r)/2
.

Consequently if (3.9) holds,

D′ ≤ C

N∑
m=1

|cn,m|p(
M2

n +
∑N

k=m+2 c2
n,k)

(p−r)/2
. (6.26)

This ends the proof of the theorem.

6.5 Proof of Comment 3.4.

Using the notations and arguments given at the beginning of the proof of Theorem 3.1, it suffices

to prove that for any positive integer N ,

ζr(PSn,N
, Gv2

n,Nσ2) ≤ C max
j∈Z

|cn,j|p−2 . (6.27)

With this aim, we follow the lines of the proof of Theorem 3.2 with Mn = maxj∈Z |cn,j|, except

that we give more precise upper bounds for the terms
∑N

m=1 Rm and D′ =
∑N

m=1 D′
m than (6.13)

and (6.26) (recall that Rm and D′
m are defined respectively in (6.11) and (6.10)). Indeed Taylor’s

formula at orders two and three and the strict stationarity give

Rm ≤ c2
n,mE

(
ξ2
0

(‖f ′′N−m,n‖∞ ∧
1

6
‖f (3)

N−m,n‖∞ max
j∈Z

|cn,j||ξ0|
))

+
|cn,m|3

6
‖f (3)

N−m,n‖∞E(|Y0|3) . (6.28)
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In addition using the fact that Sn,0 = 0 and E(f ′′N−m,n(0)(ξ2
m − 1)) = 0 for every m = 1, . . . , N ,

and the stationarity, we derive that

D′
m = c2

n,m

m−1∑
j=1

E
(
(f ′′N−m,n(Sn,m−j)− f ′′N−m,n(Sn,m−j−1))(ξ

2
m − 1)

)
.

Then using again the stationarity, we get

D′ =
N∑

m=1

D′
m ≤ C

N−1∑
j=1

N−1∑
m=j+1

c2
n,mE

(
AN,m(ξ0, Y1)

∣∣E(ξ2
j − 1|F0)

∣∣) , (6.29)

where AN,m(ξ0, Y1) := ‖f ′′N−m,n‖∞ ∧ (‖f (3)
N−m,n‖∞ maxk |cn,k|(|ξ0| + |Y1|)

)
. Notice now that for

any positive integer i, ‖f (i)
N−m,n‖∞ = ‖f ∗ φ

(i)
δn
‖∞ where φt is the density of the law N(0, t2) and

δ2
n = maxj∈Z |cn,j|2 +

∑N
j=m+1 c2

n,j. Since f belongs to Λr (i.e. |f |Λr ≤ 1) and r = p−2, it follows

from Remark 6.1 in Dedecker, Merlevède and Rio (2009) that for any integer i ≥ 2,

‖f (i)
N−m,n‖∞ ≤ Ci

( N∑
j=m+1

c2
n,j + max

j∈Z
|cn,j|2

)(p−2−i)/2

, (6.30)

where Ci is a positive constant depending on i.

We first bound up D′. Starting from (6.29), using (6.30) and the notation (6.19), and setting

for any m = 0, . . . , N ,

un,m,N = 1 + 2
N∑

j=m+1

t2n,j , (6.31)

we obtain that for any j = 1, . . . , N − 1,

N−1∑
m=j+1

c2
n,mE

(
AN,m(ξ0, Y1)

∣∣E(ξ2
j − 1|F0)

∣∣)

≤ C max
k∈Z

|cn,k|p−2E
(∣∣E(ξ2

j − 1|F0)
∣∣

N−1∑
m=j+1

t2n,m

(1 +
∑N

k=m+1 t2n,k)
(4−p)/2

BN,m(ξ0, Y1)
)

, (6.32)

where BN,m(ξ0, Y1) := 1 ∧ (1 +
∑N

k=m+1 t2n,k)
−1/2(|ξ0|+ |Y1|). Now, we bound up BN,m(ξ0, Y1) as

follows:

BN,m(ξ0, Y1) ≤ 1I1+
∑N

k=m+1 t2n,k≤(|ξ0|+|Y1|)2 +
|ξ0|+ |Y1|(

1 +
∑N

k=m+1 t2n,k

)1/2
1I1+

∑N
k=m+1 t2n,k≥(|ξ0|+|Y1|)2 .

Since t2n,m ≤ 1, un,m−1,N ≤ 3(1 +
∑N

k=m+1 t2n,k). Moreover un,m,N ≥ 1 +
∑N

k=m+1 t2n,k. Therefore,

BN,m(ξ0, Y1) ≤ 1Iun,m−1,N≤3(|ξ0|+|Y1|)2 +
|ξ0|+ |Y1|(

1 +
∑N

k=m+1 t2n,k

)1/2
1Iun,m,N≥(|ξ0|+|Y1|)2 . (6.33)
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As in the proof of Lemma 3.1, the following inequalities are valid:

|tn,m|2
1 +

∑N
j=m+1 |tn,j|2

≤ log
(un,m−1,N

un,m,N

)
, (6.34)

and since p > 2, for any x ≥ un,m,N ,

(
1 +

∞∑
j=m+1

|tn,j|2
)1−(4−p)/2

≤ x1−(4−p)/2 .

Consequently, since p > 2,

N−1∑
m=j+1

t2n,m

(1 +
∑N

k=m+1 t2n,k)
(4−p)/2

1Iun,m−1,N≤3(|ξ0|+|Y1|)2

≤
N−1∑

m=j+1

( ∫ un,m−1,N

un,m,N

x−(4−p)/2dx
)
1Iun,m−1,N≤3(|ξ0|+|Y1|)2

≤
∫ 3(|ξ0|+|Y1|)2

1

x−(4−p)/2dx ≤ 2(p− 2)−13(p−2)/2(|ξ0|+ |Y1|)p−2 . (6.35)

On the other hand, using once again the fact that un,m−1,N ≤ 3(1 +
∑N

k=m+1 t2n,k), we get that

N−1∑
m=j+1

t2n,m

(1 +
∑N

k=m+1 t2n,k)
(5−p)/2

1Iun,m,N≥(|ξ0|+|Y1|)2

≤ 3(3−p)/2

N−1∑
m=j+1

t2n,m

1 +
∑N

k=m+1 t2n,k

u
(p−3)/2
n,m−1,N1Iun,m,N≥(|ξ0|+|Y1|)2 .

Consequently by using (6.34) and the fact that if x ≤ un,m−1,N then u
(p−3)/2
n,m−1,N ≤ x(p−3)/2 (since

p < 3), we derive that

N−1∑
m=j+1

t2n,m

(1 +
∑N

k=m+1 t2n,k)
(5−p)/2

1Iun,m,N≥(|ξ0|+|Y1|)2

≤ 3(3−p)/2

N−1∑
m=j+1

( ∫ un,m−1,N

un,m,N

x(p−3)/2dx
)
1Iun,m,N≥(|ξ0|+|Y1|)2

≤ 3(3−p)/2

∫ ∞

(|ξ0|+|Y1|)2
x−(5−p)/2dx ≤ 2(3− p)−13(3−p)/2(|ξ0|+ |Y1|)p−3 . (6.36)

Starting from (6.32) and considering the bounds (6.33), (6.35) and (6.36), we derive that

D′ ≤ C max
j∈Z

|cn,j|p−2

N−1∑
j=1

‖(|ξ0|p−2 ∨ 1)|E(ξ2
n|F0)− σ2|‖1 .
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Consequently, under (3.9),

D′ ≤ C max
j∈Z

|cn,j|p−2 . (6.37)

Now, we bound up
∑N

m=1 Rm. According to the arguments developed above, we first get that

N∑
m=1

c2
n,mE

(
ξ2
0

(‖f ′′N−m,n‖∞ ∧ ‖f (3)
N−m,n‖∞ max

j∈Z
|cn,j||ξ0|

))

≤ C max
j∈Z

|cn,j|p−2E
(
ξ2
0

N∑
m=1

t2n,m

(1 +
∑N

k=m+1 t2n,k)
(4−p)/2

1Iun,m−1,N≤3ξ2
0

)

+C max
j∈Z

|cn,j|p−2E
(
|ξ0|3

N∑
m=1

t2n,m

(1 +
∑N

k=m+1 t2n,k)
(5−p)/2

1Iun,m,N≥ξ2
0

)
.

With the same arguments used to get (6.35) and (6.36), we obtain that

N∑
m=1

c2
n,mE

(
ξ2
0

(‖f ′′N−m,n‖∞ ∧ ‖f (3)
N−m,n‖∞ max

j∈Z
|cn,j||ξ0|

)) ≤ C max
j∈Z

|cn,j|p−2‖ξ0‖p
p . (6.38)

On the other hand, considering the bound (6.30), we get that

N∑
m=1

|cn,m|3‖f (3)
N−m,n‖∞ ≤ C max

j∈Z
|cn,j|p−2

N∑
m=1

t2n,m

(1 +
∑N

k=m+1 t2n,k)
(5−p)/2

.

As to get (6.36), we then derive that

N∑
m=1

|cn,m|3‖f (3)
N−m,n‖∞ ≤ C max

j∈Z
|cn,j|p−23(3−p)/2

∫ ∞

1

x−(5−p)/2dx

≤ C max
j∈Z

|cn,j|p−2 . (6.39)

Starting from (6.28) and collecting the bounds (6.38) and (6.39), we obtain that

N∑
m=1

Rm ≤ C max
j∈Z

|cn,j|p−2 . (6.40)

Taking into account the bounds (6.37) and (6.40), (6.27) is proven, and so is Comment 3.4.

6.6 Proof of Comment 4.5.

We shall prove that (4.11) implies (3.5) for F0 = σ(ηi, i ≤ 0). Notice that

E(ξ2
n|F0)− E(ξ2

0) = E(σ2
n|F0)− E(σ2

n) ,
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where σ2
n is defined in (4.10). Since E(η2

0) = 1 and
∑

j≥1 cj < 1, the unique stationary solution

to (4.10) is given by Giraitis et al. (2000):

σ2
n = c + c

∞∑

`=1

∞∑
j1,...,j`=1

cj1 . . . cj`
η2

n−j1
. . . η2

n−(j1+···+j`)
. (6.41)

Setting κ = ‖η0‖2
p

∑
j≥1 cj, it follows that

‖E(ξ2
n|F0)− E(ξ2

0)‖p/2 ≤ 2c
∥∥∥

∞∑

`=1

∞∑
j1,...,j`=1

cj1 . . . cj`
η2

n−j1
. . . η2

n−(j1+···+j`)
1Ij1+···+j`≥n

∥∥∥
p/2

≤ 2c
∞∑

`=1

∞∑
j1,...,j`=1

∑̀

k=1

cj1 . . . cj`
1Ijk≥[n/`]‖η0‖2`

p

≤ 2c‖η0‖2
p

∞∑

`=1

`κ`−1

∞∑

k=[n/`]

ck .

Consequently under (4.11), ‖E(ξ2
n|F0) − E(ξ2

0)‖p/2 = O(n−b), so that (3.5) holds as soon as

b > p/2− 1.

6.7 Proof of Theorem 4.1.

Following Volný (1993), if (4.12) holds, then

ξ0 = d0 + Z − Z ◦ T , (6.42)

where Z belongs to Lp. For any j ≥ 1, let Rj =
∑j

k=1(ξk − dk) and R̃j =
∑j

k=1(ξ−k − d−k), and

let also R0 = R̃0 = 0. From (6.42), we easily infer that

‖Rj‖p ≤ 2‖Z‖p and ‖R̃j‖p ≤ 2‖Z‖p . (6.43)

Let Tn =
∑

j∈Z cn,jdj, and ∆n = Sn − Tn. For any n ≥ 1, one has that

∆n = cn,0(ξ0 − d0) +
∞∑

j=1

cn,j(ξj − dj) +
∞∑

j=1

cn,−j(ξ−j − d−j).

By assumption (4.13), for any n ≥ 1,
∑

j∈Z |cn,j − cn,j−1| < ∞. From (6.43), it follows that the

two series ∞∑
j=1

(cn,j−1 − cn,j)Rj−1 and
∞∑

j=1

(cn,−j−1 − cn,−j)R̃j−1
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converge in Lp. Hence, an Abel transformation gives

∆n = cn,0(ξ0 − d0) +
∞∑

j=1

(cn,j−1 − cn,j)Rj−1 +
∞∑

j=1

(cn,−j−1 − cn,−j)R̃j−1 ,

so that

‖∆n‖p ≤ 2‖Z‖p

(
|cn,0|+

∑

j∈Z
|an+j − aj|

)
. (6.44)

On the other hand, for i > 0,

|cn,i| =
∣∣∣cn,0 +

i∑
j=1

(cn,j − cn,j−1)
∣∣∣ ≤ |cn,0|+

∑

j∈Z
|an+j − aj| ,

and the same upper bound is valid for cn,i with i < 0. It follows that Condition (4.13) implies

Condition (4.4). Consequently, if the sequence (di)i∈Z satisfies (3.5), it follows from Corollary

4.1 that

ζr(PTn/vn , Gσ2) ≤
{

Cn1−p/2 if r ∈]p− 2, p]

Cn1−p/2 log n if r = p− 2 ,
(6.45)

where σ2 = E(d2
0) =

∑
k∈Z E(ξ0ξk).

We now complete the proof of Theorem 4.1 with the help of (6.44) and (6.45).

If f ∈ Λr with r ∈ [p− 2, 1], then

|E(f(v−1
n Sn)− f(v−1

n Tn))| ≤ v−r
n ‖∆n‖r

p ≤ Cv−r
n

(
|cn,0|+

∑

j∈Z
|an+j − aj|

)r

,

and the last bound is O(n−r/2) by (4.13). Then if r ∈ [p−2, 1], Items 1 and 2 follow from (6.45).

If f ∈ Λr with r ∈]1, 2], from the proof of Lemma 5.2 in Dedecker, Merlevède and Rio (2009),

we get that

|E(f(v−1
n Sn)− f(v−1

n Tn))| ≤ v−r
n (‖∆n‖r‖Tn‖r−1

r + ‖∆n‖r
r) .

Since ‖Tn‖r ≤ ‖Tn‖2 = σvn, we obtain that

|E(f(v−1
n Sn)− f(v−1

n Tn))| ≤ C


 |cn,0|+

∑
j∈Z |an+j − aj|
vn

+

(
|cn,0|+

∑
j∈Z |an+j − aj|

)r

vr
n


 ,

and the last bound is O(n−1/2) by (4.13). Then if r ∈]1, 2], Item 2 follows from (6.45).

We turn now to the proof of Item 3. If f ∈ Λr with r ∈]2, p] and if σ > 0, we set αn =

‖Sn‖2‖Tn‖−1
2 . Following the proof of Lemma 5.2 in Dedecker, Merlevède and Rio (2009) and

setting ∆̃n = ∆n + (1− αn)Tn, we get that

E(f(v−1
n Sn)− f(αnv

−1
n Tn)) ≤ 1

(r − 1)vr
n

αr−1
n ‖∆̃n‖r‖Tn‖r−1

r + αr−2
n ‖∆̃n‖2

r

‖Tn‖r−2
r

2vr
n

+
‖∆̃n‖r

r

2vr
n

.
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Now αn = O(1) and ‖∆̃n‖r ≤ ‖∆n‖r + |1− αn|‖Tn‖r. Since |‖Sn‖2 − ‖Tn‖2| ≤ ‖∆n‖2, we infer

by using (6.44) (with p replaced by r) that

|1− αn| ≤ C
|cn,0|+

∑
j∈Z |an+j − aj|
vn

.

Hence, applying Burkholder’s inequality for martingales, we infer that

‖∆̃n‖r ≤ C
(
|cn,0|+

∑

j∈Z
|an+j − aj|

)
.

Consequently

E(f(v−1
n Sn)− f(αnv

−1
n Tn)) ≤ C

( |cn,0|+
∑

j∈Z |an+j − aj|
vn

+

(|cn,0|+
∑

j∈Z |an+j − aj|
)2

v2
n

+

(
|cn,0|+

∑
j∈Z |an+j − aj|

)r

vr
n

)
,

and the last bound is O(n−1/2) by (4.13). Then if r ∈]2, p] and σ2 > 0, Item 3 follows from

(6.45) and the fact that

ζr(Pαnv−1
n Tn

, Gσ2
n
) = αr

nζr(Pv−1
n Tn

, Gσ2) .

It remains to consider the case where r ∈]2, p] and σ2 = 0. In this case Sn = ∆n. Let Y be

a N (0, 1) random variable. Following the proof of Lemma 5.2 in Dedecker, Merlevède and Rio

(2009), we get that for any f ∈ Λr,

|E(f(v−1
n Sn)− f(σnY ))| ≤ 1

(r − 1)vn

‖∆̄n‖r‖σnY ‖(r−1)
r +

1

2v2
n

‖∆̄n‖2
r‖σnY ‖r−2

r +
1

2vr
n

‖∆̄n‖r
r ,

where ∆̄n = ∆n − σnvnY . Since σnvn = ‖∆n‖2 ≤ ‖∆n‖r and since ‖∆n‖r = O(vnn
−1/2) by

(6.44) and condition (4.13), we get that ‖∆̄n‖r = O(vnn
−1/2). The result follows. ¤

6.8 Proof of Corollary 5.2.

We apply Theorem 3.2 with Mn = αn(
∑n

i=1 α2
i )
−1 = O(nγ−1) which gives the upper bound

ζr(PSn/vn , Gσ2) ≤ Cv−r
n (M r

n + L̂
(1)
p,r(n) + L̂

(2)
p,r(n)) where

v−r
n L̂(1)

p,r(n) := vr
n

[n/2]−1∑

k=1

αp
k( ∑n

j=k+1 α2
j

)(p−r)/2
.

and

v−r
n L̂(2)

p,r(n) := vr
n

n∑

k=[n/2]

αp
k(

α2
n +

∑n
j=k+1 α2

j

)(p−r)/2
.
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With the above choice of Mn, we get that for any r ∈ [p− 2, p],

v−r
n M r

n ≤ Cn1−p/2 . (6.46)

Now

v−r
n L̂(1)

p,r(n) ≤ Cvr
n

(
nα2

n

)(r−p)/2
[n/2]−1∑

k=1

αp
k .

Therefore,

v−r
n L̂(1)

p,r(n) ≤





Cn(2γ−1)p/2 if γp > 1

Cn1−p/2 log(n) if γp = 1

Cn1−p/2 if γp < 1.

(6.47)

Now, we bound up v−r
n L̂

(2)
p,r(n) by noticing first that

v−r
n L̂(2)

p,r(n) ≤ Cvr
nα

p
[n/2]α

r−p
n

[n/2]−1∑

k=1

k(r−p)/2 ,

which leads to

v−r
n L̂(2)

p,r(n) ≤
{

Cn1−p/2 if r ∈]p− 2, p]

Cn1−p/2 log(n) if r = p− 2.
(6.48)

Collecting the bounds (6.46), (6.47) and (6.48), we obtain (5.3) in the case r ∈]p−2, p] and (5.4)

in the case r = p− 2.
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