
AN EMPIRICAL CENTRAL LIMIT THEOREM FOR INTERMITTENT MAPS

J. DEDECKER1

Abstract. We prove an empirical central limit theorem for the distribution function of a stationary
sequence, under a dependence condition involving only indicators of half line. We show that the result
applies to the empirical distribution function of iterates of expanding maps with a neutral fixed point
at zero as soon as the correlations are summable.
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1. Introduction

For γ in ]0, 1[, we consider the intermittent map Tγ from [0, 1] to [0, 1], introduced by Liverani,
Saussol and Vaienti (1999):

Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[
2x− 1 if x ∈ [1/2, 1]

We denote by νγ the unique Tγ-invariant probability measure on [0, 1] which is absolutely continuous
with respect to the Lebesgue measure.

In 1999, Young showed that such systems (among many others) may be described by a Young
tower with polynomial decay of the return time. From this construction, she was able to control the
covariances νγ(g ◦Tn · (f − νγ(f))) for any bounded function g and any α-Hölder function f , and then
to prove that

Sn(f)√
n

=
1√
n

n∑

i=1

(f ◦ T i
γ − νγ(f))

converges in distribution to a normal law as soon as γ < 1/2. When γ = 1/2, Gouëzel (2004) proved
that if f is α-Hölder, then (n ln(n))−1/2Sn(f) converges to a normal distribution with mean 0 and
variance h(1/2)(f(0)− ν1/2(f))2, where h is the density of ν1/2.

Let Kγ the Perron-Frobenius operator of Tγ with respect to νγ : for any bounded measurable
functions f, g,

(1.1) νγ(f · g ◦ Tγ) = νγ(Kγ(f)g) .

Let (Xi)i≥0 be a stationary Markov chain with invariant measure νγ and transition Kernel Kγ . It
is well known (see for instance Lemma XI.3 in Hennion and Hervé (2001)) that on the probability
space ([0, 1], νγ), the random variable (Tγ , T 2

γ , . . . , Tn
γ ) is distributed as (Xn, Xn−1, . . . , X1). Hence any

information on the law of Sn(f) can be obtained by studying the law of
∑n

i=1(f(Xi)− νγ(f)).
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In a recent paper, Dedecker and Prieur (2008) have computed some dependence coefficients of the
Markov chain (Xi)i≥0. As a consequence they obtain that, if γ < 1/2 and f is any bounded variation
(BV) function, then n−1/2(Sn(f)−νγ(f)) converges in distribution to a normal law. A natural question
is then: for γ < 1/2, can we prove a uniform central limit theorem over the class of BV functions
whose variation is less than 1? Or equivalently, can we prove that the empirical process

{ 1√
n

n∑

k=1

(
1T k

γ≤t − νγ([0, t])
)
, t ∈ [0, 1]

}

converges in the space `∞([0, 1]) of bounded functions from [0, 1] to R (equipped with the uniform
norm) to a Gaussian process?

In this paper, we give a positive answer to this question: the empirical central limit theorem holds
as soon as γ < 1/2. Let us briefly recall the previous results for uniformly expanding maps T . Assume
that there is a finite partition {I1, . . . , IN} of [0, 1] into intervals of continuity and monotonicity of
T . Assume moreover that the absolutely continuous T -invariant probability measure µ is unique and
that (T, µ) is weakly mixing. If |T ′| ≥ λ > 1 on any interval of the partition, the empirical central
limit theorem follows from Theorem 5 applied to Example 1.4 in Borovkova, Burton and Dehling
(2001). Under the weaker assumption that there exist A > 0 and λ > 1 such that |(Tn)′| ≥ Aλn for
any positive integer n on any interval of the partition associated to Tn, the empirical central limit
theorem is due to Collet, Martinez and Schmitt (2004). In Dedecker and Prieur (2007), Section 6.3,
the assumption on the finite partition has been removed. Note that our main result (Theorem 2.1 of
Section 2) also applies in that case.

At this point, a question remains open: can we get an empirical central limit theorem for γ = 1/2
under the normalization (n ln(n))1/2? Starting from Gouëzel’s result (2004) for γ = 1/2, one can prove
(see the appendix) that the finite dimensional marginals of the empirical process (with normalization
(n ln(n))1/2) converge to those of a degenerated Gaussian process G defined by:

for any t ∈ [0, 1], G(t) =
√

h(1/2)(1− Fν1/2
(t))1t 6=0Z ,

where Fν1/2
is the distribution function of ν1/2, and Z is a standard Gaussian. A reasonable conjecture

is that the convergence holds in `∞([0, 1]). If this is true, the tightness of the empirical process
must hold with respect to the natural metric ρ(s, t) = ‖G(t) − G(s)‖2, or equivalently to the metric
d(s, t) = |s− t| for s, t in ]0, 1], and d(0, t) = |1− t| for t in ]0, 1].

The paper is organized as follows. In Section 2, we prove an empirical central limit theorem
(Theorem 2.1) for a strictly stationary sequence of real valued random variables, under the condition
that the coefficient β2(k) defined in Definition 2.1 is such that β2(k) = O(k−1−δ) for some δ > 0. As a
consequence, we give in Corollary 2.1 the empirical central limit theorem for the iterates of Tγ , when
γ < 1/2. The proof of Theorem 2.1 is based on a a new Rosenthal inequality for sums of random
variables having moments of order p ∈ [2, 3], which is stated and proved in Section 3. In Proposition
4.1 of the appendix, we prove the finite dimensional convergence of the empirical process in the case
γ = 1/2.
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2. An empirical central limit theorem for stationary sequences

Let (Xi)i∈Z be a stationary sequence of real valued random variables, with common distribution
function F , and let

Fn(t) =
1
n

n∑

i=1

1Xi≤t .

Let Ml = σ(Xi, i ≤ l) and M−∞ = ∩i∈ZMi. Applying the central limit theorem given in Gordin
(1973), it is easy to see that the finite dimensional marginals of

√
n(Fn − F ) converge to those of a

Gaussian process G as soon as,
(1) for any s, t ∈ R, E(1Xi≤t1Xj≤s|M−∞) = E(1Xi≤t1Xj≤s).

(2) for any t ∈ R,
∑

k>0 ‖E(1Xk≤t|M0)− F (t)‖1 < ∞.
In view of (2), if one wants to prove the convergence in distribution of supt∈R

√
n|Fn(t) − F (t)| to

supt∈R |G(t)|, it seems natural to impose some conditions on

(2.1) α(k) = sup
t∈R

‖E(1Xk≤t|M0)− F (t)‖1 .

Note that this coefficient α(k) is weaker than the usual strong mixing coefficient of Rosenblatt (1956).
According to Rio’s result (2000, Theorem 7.2) for strongly mixing sequences, one can wonder if the
empirical central limit theorem holds provided that (1) holds, and

α(n) = O(n−1−δ) for some δ > 0.

We shall see in Theorem 2.1 below that this result is true provided that α(k) is replaced by a stronger
coefficient β2(k), introduced in Dedecker and Prieur (2007). The difference between the definition
(2.1) and that of β2(k) is that one can control any products (1Xi≤t − F (t))(1Xj≤s − F (s)), and the
supremum is s, t is taken before the expectation.

Let us define this coefficient more precisely:

Definition 2.1. Let P be the law of X0 and P(Xi,Xj) be the law of (Xi, Xj). Let PXk|X0
be the

conditional distribution of Xk given X0, PXk|Ml
be the conditional distribution of Xk given Ml, and

P(Xi,Xj)|Ml
be the conditional distribution of (Xi, Xj) given Ml. Define the functions ft = 1]−∞,t],

and f
(0)
t = ft − P (ft). Define the random variables

b(X0, k) = sup
t∈R

|PXk|X0
(ft)− P (ft)| ,

b1(Ml, k) = sup
t∈R

|PXk+l|Ml
(ft)− P (ft)| ,

b2(Ml, k) = sup
i>j≥k+l

sup
(s,t)∈R2

|P(Xi,Xj)|Ml
(f (0)

t ⊗ f (0)
s )− P(Xi,Xj)(f

(0)
t ⊗ f (0)

s )| .

Define now the coefficients

β(σ(X0), Xk) = E(b(X0, k)), β1(k) = E(b1(M0, k)) and β2(k) = max{β1(k),E((b2(M0, k)))} .

As usual, we denote by `∞(R) the space of bounded functions from R to R equipped with the
uniform norm. For details on weak convergence on the non separable space `∞(R), we refer to van
der Vaart and Wellner (1996) (in particular, we shall not discuss any measurability problems, which
can be handled by using the outer probability).

Our main result is the following:
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Theorem 2.1. Assume that F is continuous. If β2(n) = O(n−1−δ) for some δ > 0, then
√

n(Fn−F )
converges in distribution in `∞(R) to a centered gaussian process G, whose sample paths are almost
surely uniformly continuous with respect to the pseudo-metric

d(x, y) = |F (x)− F (y)| .
Moreover, the covariance function of G is given by

Cov(G(s), G(t)) =
∑

k∈Z
Cov(1X0≤t,1Xk≤s) .

Remark 2.1. Theorem 2.1 improves on the corresponding result in Dedecker and Prieur (2007), who
assumed that β2(n) = O(n−2−δ) for some δ > 0. We refer to Section 6 in Dedecker and Prieur (2007)
for many examples of stationary processes for which the coefficients β2(k) can be computed.

Let us give the application of Theorem 2.1 to the iterates of Tγ . We keep the same notations as in
the introduction.

Corollary 2.1. Let Fνγ (t) = νγ([0, t]) and Fn,γ(t) = n−1
∑n

i=1 1T i
γ≤t. Assume that γ ∈]0, 1/2[. On

the probability space ([0, 1], νγ) the process
√

n(Fn,γ − Fνγ ) converges in distribution in `∞([0, 1]) to a
centered Gaussian process Gγ, whose sample paths are almost surely uniformly continuous. Moreover
the covariance function of Gγ is given by

(2.2) Cov(Gγ(s), Gγ(t)) = νγ(f (0)
t · f (0)

s ) +
∑

k>0

νγ(f (0)
t · f (0)

s ◦ T k
γ ) +

∑

k>0

νγ(f (0)
s · f (0)

t ◦ T k
γ ) ,

where the function f
(0)
t is defined by f

(0)
t (x) = 1x≤t − νγ([0, t]).

Remark 2.2. Let us give here another application of Theorem 2.1. Let Xi =
∑

i≥0 akεi−k where
(εi)i∈Z is a sequence of i.i.d. random variables such that E(|ε0|α) < ∞ for some α ∈]0, 1[, and
ai = O(ρi) for some ρ ∈]0, 1[. Let w be the modulus of continuity of F . Following the computations
made in Section 6.1 in Dedecker and Prieur (2007), we obtain that

β2(k) ≤ 2w(x) + K
(ρn

x

)α
,

for some K > 0 and any x > 0. Taking x = ρnn2/α, we infer that β2(n) = O(n−1−δ) for some δ > 0
as soon as

(2.3) w(x) ≤ C| ln(x)|−a in a neighbourhood of 0, for some a > 1 .

Hence Theorem 2.1 applies as soon as the modulus of continuity of F satisfies (2.3). This result
improves on Corollary 4.2 in Dehling, Durieu and Volnỳ (2007), who required a > 2 in (2.3), and
‖ε0‖∞ < ∞.

Proof of Theorem 2.1. For any strictly stationary sequence V = (Vi)i∈Z of real valued random
variables, let

µn,V (t) =
1√
n

n∑

k=1

(
1Vi≤t − P(V0 ≤ t)

)
.

Let P be the law of X0, and let Q be the probability on R whose density with respect to P is
1 + 4

∑∞
k=1 b(x, k)

1 + 4
∑∞

k=1 β(σ(X0), Xk)
.
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Let FQ be the distribution function of Q, and note that FQ is continuous because F is continuous.
Let Yi = FQ(Xi). Clearly µn,X = µn,Y ◦FQ almost surely. Since FQ is non decreasing, the β-dependence
coefficients of (Yi)i∈Z are smaller than those of (Xi)i∈Z. Arguing as in the proof of Theorem 1 in
Dedecker and Prieur (2007), since

∑
k>0 β2(k) < ∞, we obtain that the finite-dimensional marginals

of µn,Y converges to those of the Gaussian process W with covariance function

Cov(W (s),W (t)) =
∑

k∈Z
Cov(1Y0≤t,1Yk≤s) .

Let us check that one can choose W such that its sample paths are almost surely uniformly contin-
uous with respect to the usual distance on [0, 1]. By definition of b(X0, k) one has, for 0 ≤ s ≤ t ≤ 1,

|Cov(1s<Y0≤t,1s<Yk≤t)| = |E(1s<Y0≤tE(1s<Yk≤t − E(1s<Yk≤t)|X0))| ≤ 2E(1s<Y0≤tb(X0, k)) .

From this upper bound and the fact that, for any Q-distributed random variable V , FQ(V ) is uniformly
distributed over [0, 1], we infer that

Var(W (t)−W (s)) ≤
(
1+4

∑

k>0

β(σ(X0), Xk)
)∫

1s<FQ(x)≤tQ(dx) =
(
1+4

∑

k>0

β(σ(X0), Xk))
)
(t−s) .

This is enough to ensure that there exists a Gaussian process W whose sample paths are almost surely
uniformly continuous with respect to the usual distance on [0, 1].

Consequently, the sample paths of the Gaussian process G = W ◦ FQ are almost surely uniformly
continuous with respect to the distance dQ defined by dQ(x, y) = |FQ(x)− FQ(y)|. Now, the uniform
continuity with respect to dQ is equivalent to the uniform continuity with respect to d, since P and Q
are equivalent.

To prove Theorem 2.1, it suffices to prove that µn,Y converges in distribution in `∞([0, 1]) to W . In
fact, it remains to prove the tightness, that is, for any ε > 0,

(2.4) lim
δ→0

lim sup
n→∞

P
(

sup
|s−t|≤δ

|µn,Y (t)− µn,Y (s)| > ε
)

= 0 .

For x ∈ [0, 1] and any positive integer K, let ΠK(x) = 2−K [2Kx]. Clearly (2.4) will follow from the
tightness of W and from the convergence of the marginals of µn,Y to those of W , if we can prove that

(2.5) lim
K→∞

lim sup
n→∞

E
(

sup
x∈[0,1]

|µn,Y (x)− µn,Y (ΠK(x))|
)

= 0 .

In the rest of the proof, we shall prove (2.5). To simplify the notations, let µn = µn,Y , and Zn = dµn.
In the following, C is a positive constant which may vary form line to line.

We first use the elementary decomposition

µn(x)− µn(ΠK(x)) =
M∑

L=K+1

µn(ΠL(x))− µn(ΠL−1(x)) + µn(x)− µn(ΠM (x)) .

Consequently,

(2.6) sup
x∈[0,1]

|µn(x)− µn(ΠK(x))| ≤
M∑

L=K+1

∆L + ∆∗
M ,
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where

∆L = sup
1≤i≤2L

|Zn(](i− 1)2−L, i2−L])| and ∆∗
M = sup

x∈[0,1]
|Zn(]ΠM (x), x])| .

Note that

(2.7) −√nP(ΠM (x) < Y0 ≤ ΠM (x) + 2−M ) ≤ Zn(]ΠM (x), x]),

and

(2.8) Zn(]ΠM (x), x]) ≤ Zn(]ΠM (x), ΠM (x) + 2−M ]) +
√

nP(ΠM (x) < Y0 ≤ ΠM (x) + 2−M ) .

Let C(β) = 1 + 4
∑∞

k=1 β(σ(X0), Xk). Clearly

(2.9) P(ΠM (x) < Y0 ≤ ΠM (x) + 2−M ) ≤ C(β)
∫

1ΠM (x)<FQ(x)≤ΠM (x)+2−M Q(dx) = C(β)2−M .

From (2.7), (2.8) and (2.9), we infer that ∆∗
M ≤ ∆M + C(β)

√
n2−M . Consequently, it follows from

(2.6) that

sup
x∈[0,1]

|µn(x)− µn(ΠK(x))| ≤ C(β)
√

n2−M + 2∆M +
M−1∑

L=K+1

∆L .

Let M be the integer such that 2M−1 < n ≤ 2M . For this choice of M , we have

∥∥∥ sup
x∈[0,1]

|µn(x)− µn(ΠK(x))|
∥∥∥

1
≤ C(β)n−1/2 + 2

M∑

L=K+1

‖∆L‖1 .

Hence, to prove (2.5), it suffices to prove that

(2.10) lim
K→∞

lim sup
n→∞

M∑

L=K+1

‖∆L‖1 = 0 .

Choose 2 < p < 2(1 + δ). Clearly

(2.11) ‖∆L‖p
1 ≤ E(∆p

L) ≤
2L∑

i=1

E(|Zn(](i− 1)2−L, i2−L])|p) .

We shall now control the term E(|Zn(](i − 1)2−L, i2−L])|p) with the help of Proposition 3.1. Let
Ti,k = 1(i−1)2−L<Yk≤i2−L and T

(0)
i,k = Ti,k − E(Ti,k). Clearly

E(|Zn(](i− 1)2−L, i2−L])|p) =
1

np/2
E

(∣∣∣
n∑

k=1

T
(0)
i,k

∣∣∣
p)
≤ C

(
a

p/2
i + n(2−p)/2

(
‖T (0)

i,0 ‖p
p + ci,1 + ci,2 + ci,3

))
,
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where, according to Remark 3.1, for any 1 ≤ N ≤ n,

ai =
1
2
Var(Ti,0) +

N−1∑

k=1

|Cov(Ti,0, Ti,k)|+
n−1∑

k=N

‖T (0)
i,0 E(T (0)

i,k |M0)‖p/2 ,

ci,1 =
N−1∑

l=1

l∑

k=0

‖|T (0)
i,0 |p−2|T (0)

i,k |E(T (0)
i,k+l|Mk)‖1 ,

ci,2 =
n∑

l=2

l−1∑

k=(l−N)++1

‖|T (0)
i,0 |p−2E(T (0)

i,l T
(0)
i,k − E(T (0)

i,l T
(0)
i,k )|M0)‖1 ,

ci,3 =
1
2

n−1∑

k=1

‖|T (0)
i,0 |p−2E((T (0)

i,k )2 − E((T (0)
i,k )2)|M0)‖1 .

Let us first bound up ai. Taking the conditional expectation with respect to X0, we have that

|Cov(Ti,0, Ti,l)| ≤ 2E(Ti,0b(X0, l)) .

With this upper bound, it follows that

ai ≤ 1
2
E

(
(Ti,0

(
1 + 4

∞∑

l=1

b(X0, l)
))

+
∞∑

l=N

‖T (0)
i,0 E(T (0)

i,l |M0)‖p/2 .

Clearly

E
(
Ti,0

(
1 + 4

∞∑

l=1

b(X0, l)
))

= C(β)
∫

1(i−1)2−L<FQ(x)≤i2−LQ(dx) = C(β)2−L .

In the same way, since |T (0)
i,0 | ≤ 1 and b1(M0, l) ≤ 1,

∞∑

l=N+1

‖T (0)
i,0 E(T (0)

i,l |M0)‖p/2 ≤ 2
∞∑

l=N+1

‖T (0)
i,0 b1(M0, l)‖p/2 ≤ 2

∞∑

l=N+1

(
E(|T (0)

i,0 |b1(M0, l))
)2/p

.

Hence, applying Hölder’s inequality,
∞∑

l=N+1

‖T (0)
i,0 E(T (0)

i,l |M0)‖p/2 ≤ 2
( ∞∑

l=N

β1(l)2/p
)(p−2)/p( ∞∑

l=N

E(|T (0)
i,0 |b1(M0, l))

β1(l)(p−2)/p

)2/p
.

Since
∑2L

i=1 |T (0)
i,0 | ≤ 2, we obtain that

2L∑

i=1

∞∑

l=N

E(|T (0)
i,0 |b1(M0, l))

β1(l)(p−2)/p
≤ 2

∞∑

l=N

β1(l)2/p .

Finally, we obtain the control

2L∑

i=1

a
p/2
i ≤ C

(
2−L(p−2)/2 +

( ∞∑

l=N

β1(l)2/p
)p/2)

≤ C
(
2−L(p−2)/2 + N−(2(1+δ)−p)/2

)
.(2.12)
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On another hand, we have that

(2.13) n(2−p)/2
2L∑

i=1

‖T (0)
i,0 ‖p

p ≤ n(2−p)/2
2L∑

i=1

E(|T (0)
i,0 |) ≤ 2n(2−p)/2 .

For the term ci,1, one gets

(2.14) n(2−p)/2
2L∑

i=1

ci,1 ≤ 2n(2−p)/2
N∑

l=1

l∑

k=0

2L∑

i=1

E(|T (0)
i,0 |b1(Mk, k + l)) ≤ 4n(2−p)/2

N∑

l=1

(l + 1)β1(l) .

For the term ci,2, one gets

(2.15) n(2−p)/2
2L∑

i=1

ci,2 ≤ 2n(2−p)/2
n∑

l=2

l−1∑

k=(l−N)++1

2L∑

i=1

E(|T (0)
i,0 |b2(M0, k)) ≤ 4n(2−p)/2N

n∑

k=1

β2(k) .

For the term ci,3, note first that (T (0)
i,k )2 − E((T (0)

i,k )2) = (1− 2E(Ti,k))T
(0)
i,k . Since |1− 2E(Ti,k)| ≤ 1,

it follows that
|E((T (0)

i,k )2 − E((T (0)
i,k )2)|M0)| ≤ |E(T (0)

i,k |M0)| ≤ 2b1(M0, k) .

Hence, one gets

(2.16) n(2−p)/2
2L∑

i=1

ci,3 ≤ 2n(2−p)/2
n∑

k=1

2L∑

i=1

E(|T (0)
i,0 |b1(M0, k)) ≤ 4n(2−p)/2

n∑

k=1

β1(k) .

Now we take N = [nε], for 0 < ε < (p − 2)/2. From the bounds (2.12), (2.13), (2.14), (2.15) and
(2.16), we infer that

2L∑

i=1

E(|Zn(](i− 1)2−L, i2−L])|p) ≤ C
(
2−L(p−2)/2 + n−ε(2(1+δ)−p)/2 + n−(p−2)/2+ε

)
.

Consequently, since M = O(ln(n)), it follows from (2.11) that

lim sup
n→∞

M∑

L=K+1

‖∆L‖1 ≤ C
∞∑

L=K+1

2−L(p−2)/2p ,

and (2.10) easily follows. This completes the proof. ¤
Proof of Corollary 2.1. We have seen that, on the probability space ([0, 1], νγ), (Tγ , . . . , Tn

γ ) is
distributed as (Xn, . . . , X1) where (Xi)i∈Z is a stationary Markov chain with invariant measure νγ and
transition kernel Kγ . Consequently, on the probability space ([0, 1], νγ), the empirical central limit
theorem holds for

√
n(Fn,γ − Fνγ ) if and only if the it holds for

√
n(Fn − F ). It remains to check

that the coefficients β2(k) of the Markov chain (Xi)i∈Z satisfy the assumption of Theorem 2.1. From
Theorem 3.1 in Dedecker and Prieur (2008), we see that

β2(k) = O(k−a) for any a < (1− γ)/γ .

Since γ < 1/2, one can choose a close enough to (1− γ)/γ, so that β2(k) = O(k−1−δ) fore some δ > 0.
Consequently Theorem 1.1 applies to the Markov chain (Xi)i∈Z. The covariance (2.1) of Gγ can be
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written

Cov(Gγ(s), Gγ(t)) = νγ(f (0)
t · f (0)

s ) +
∑

k>0

νγ(f (0)
t Kk

γf (0)
s ) +

∑

k>0

νγ(f (0)
s Kk

γf
(0)
t ) ,

which is exactly (2.2) thanks to the equality (1.1). Here the uniform continuity with respect to dFνγ
is

equivalent to the uniform continuity with respect to the usual distance on [0, 1], since νγ is equivalent
to the Lebesgue measure. ¤

3. A Rosenthal Inequality for dependent random variables

In this section, we use the convention that
∑k

i=j ai = 0 if j < k.

Proposition 3.1. Let X1, . . . , Xn be n real-valued random variables in Lp for some p ∈ [2, 3], with
zero expectation. Let Sn = X1 + · · ·+Xn. For 1 ≤ i ≤ n, let Fi = σ(X1, . . . , Xi). For any 1 ≤ N ≤ n,
the following inequality holds

‖Sn‖p ≤
(
2(p− 1)

n∑

i=1

γi

)1/2
+

( n∑

i=1

E(|Xi|p) + p(p− 1)
n∑

i=1

(
δi,1 + δi,2 + δi,3

))1/p
,

where

γi =
1
2
E(X2

i ) +
i−1∑

j=(i−N)++1

|E(XiXj)|+
i−N∑

j=1

‖XjE(Xi|Fj)‖p/2 ,

δi,1 =
i−1∑

j=(i−N)++1

j∑

l=(2j−i)++1

‖|Xl|p−2|Xj |E(Xi|Fj)‖1 ,

δi,2 =
i−1∑

j=(i−N)++1

(2j−i)+∑

l=1

‖|Xl|p−2E(XiXj − E(XiXj)|Fl)‖1 ,

δi,3 =
1
2

i−1∑

j=1

‖|Xj |p−2E(X2
i − E(X2

i )|Fj)‖1 .

Remark 3.1. Assume that the Xi’s of Proposition 3.1 are taken from a stationary sequence (Xi)i∈Z,
and let Mi = σ(Xk, k ≤ i). One has γi ≤ γ̃, δi,1 ≤ δ1, δi,2 ≤ δ2 and δi,3 ≤ δ3, with

γ̃ =
1
2
E(X2

0 ) +
N−1∑

k=1

|E(X0Xk)|+
n−1∑

k=N

‖X0E(Xk|M0)‖p/2 ,

δ1 =
N−1∑

l=1

l∑

k=0

‖|X0|p−2|Xk|E(Xk+l|Mk)‖1 ,

δ2 =
n∑

l=2

l−1∑

k=(l−N)++1

‖|X0|p−2E(XlXk − E(XlXk)|M0)‖1 ,

δ3 =
1
2

n−1∑

k=1

‖|X0|p−2E(X2
k − E(X2

k)|M0)‖1 .
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Proof of Proposition 3.1. For q > 0, let ψq(x) = |x|q(1x>0 − 1x≤0). Let p ∈ [2, 3]. Applying
Taylor’s integral formula, and using that ||x|p−2 − |y|p−2| ≤ |x− y|p−2, one has that

|Sn|p = |Sn−1|p + pXnψp−1(Sn−1) + p(p− 1)
∫ 1

0
(1− t)X2

n|Sn−1 + tXn|p−2dt

≤ |Sn−1|p + pXnψp−1(Sn−1) +
p(p− 1)

2
X2

n|Sn−1|p−2 + p(p− 1)
∫ 1

0
(1− t)tp−2|Xn|pdt .

Consequently

(3.1) E(|Sn|p) ≤ E(|Sn−1|p) + pE(Xnψp−1(Sn−1) +
p(p− 1)

2
E(X2

n|Sn−1|p−2) + E(|Xn|p) .

Let us bound up all the terms on right hand.

The second order terms. Write first

X2
n|Sn−1|p−2 = (X2

n − E(X2
n))|Sn−1|p−2 + E(X2

n)|Sn−1|p−2 = I1 + I2 .

Now, with the convention S0 = 0,

I1 =
n−1∑

k=1

(X2
n − E(X2

n))(|Sk|p−2 − |Sk−1|p−2) .

Taking the conditional expectation with respect to Fk and using that ||x|p−2 − |y|p−2| ≤ |x − y|p−2,
we obtain that

(3.2) |E(I1)| ≤
n−1∑

k=1

‖E(X2
n − E(X2

n)|Fk)|Xk|p−2‖1 .

The first order terms. For 1 ≤ N ≤ n, write

Xnψp−1(Sn−1) = Xn(ψp−1(Sn−1)− ψp−1(Sn−N ) + Xnψp−1(Sn−N ) = I3 + I4 .

Now

I3 =
n−1∑

k=n−N+1

Xn(ψp−1(Sk)− ψp−1(Sk−1)

= (p− 1)
n−1∑

k=n−N+1

XnXk

∫ 1

0
|Sk−1 + tXk|p−2dt

= (p− 1)
( n−1∑

k=n−N+1

XnXk|Sk−1|p−2 +
n−1∑

k=n−N+1

XnXk

∫ 1

0
(|Sk−1 + tXk|p−2 − |Sk−1|p−2)dt

)

= J1 + J2 .

Taking the conditional expectation with respect to Fk and using that ||x|p−2 − |y|p−2| ≤ |x − y|p−2,
we obtain that

(3.3) |E(J2)| ≤
n−1∑

k=n−N+1

‖|Xk|p−1E(Xn|Fk)‖1 .
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For the term J1, write

J1 = (p− 1)
( n−1∑

k=n−N+1

k−1∑

i=(2k−n)++1

XnXk(|Si|p−2 − |Si−1|p−2) +
n−1∑

k=n−N+1

XnXk|S(2k−n)+ |p−2
)

= K1 + J3 .

Taking the conditional expectation with respect to Fk and using that ||x|p−2 − |y|p−2| ≤ |x − y|p−2,
we obtain that

(3.4) |E(K1)| ≤ (p− 1)
n−1∑

k=n−N+1

k−1∑

i=(2k−n)++1

‖Xk|Xi|p−2E(Xn|Fk)‖1

For the term J3, write

J3 = (p− 1)
( n−1∑

k=n−N+1

(XnXk − E(XnXk))|S(2k−n)+ |p−2 +
n−1∑

k=n−N+1

E(XnXk)|S(2k−n)+ |p−2
)

= K2 + K3 .

For the term K2, write

K2 = (p− 1)
n−1∑

k=n−N+1

(2k−n)+∑

i=1

(XnXk − E(XnXk))(|Si|p−2 − |Si−1|p−2) .

Taking the conditional expectation with respect to Fi and using that ||x|p−2 − |y|p−2| ≤ |x − y|p−2,
we obtain that

(3.5) |E(K2)| ≤ (p− 1)
n−1∑

k=n−N+1

(2k−n)+∑

i=1

‖E(XnXk − E(XnXk)|Fi)|Xi|p−2‖1 .

The remainder terms. It remains to control I2, I4 and K3. For I2 we have

(3.6) ‖I2‖1 ≤ E(X2
n)‖Sn−1‖p−2

p .

For K3, we have

(3.7) ‖K3‖1 ≤ (p− 1)
n−1∑

k=n−N+1

|E(XnXk)|‖S(2k−n)+‖p−2
p .

For I4, write

I4 =
n−N∑

k=1

Xn(ψp−1(Sk)− ψp−1(Sk−1)) = (p− 1)
n−N∑

k=1

XnXk

∫ 1

0
|Sk−1 + tXk|p−2dt .

Taking the conditional expectation with respect to Fk and applying Hölder’s inequality, we obtain
that

(3.8) |E(I4)| ≤ (p− 1)
n−N∑

k=1

‖XkE(Xn|Fk)‖p/2

∫ 1

0
‖Sk−1 + tXk‖p−2

p dt .
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End of the proof of Proposition 3.1. We proceed by induction on n. Clearly, Proposition 3.1 is true
for n = 1. Assume that it holds for any positive integer k strictly less than n. Let

di = p(p− 1)
(E(|Xi|p)

p(p− 1)
+ δi,1 + δi,2 + δi,3

)
.

Applying the induction hypothesis on the right hand terms of (3.6), (3.7) and (3.8), we obtain that

1
2
p(p− 1)‖I2‖1 + p(|E(I4)|+ ‖K3‖1) ≤ p(p− 1)γn

((
2(p− 1)

n−1∑

i=1

γi

)1/2
+

( n−1∑

i=1

di

)1/p)(p−2)
.

Now it is easy to infer that

1
2
p(p− 1)‖I2‖1 + p(|E(I4)|+ ‖K3‖1) ≤

((
2(p− 1)

n∑

i=1

γi

)1/2
+

( n−1∑

i=1

di

)1/p)p

−
((

2(p− 1)
n−1∑

i=1

γi

)1/2
+

( n−1∑

i=1

di

)1/p)p
.(3.9)

Applying the induction hypothesis on the first term on right hand in (3.1), and gathering (3.2), (3.3),
(3.4), (3.5) and (3.9), we obtain that

‖Sn‖p
p ≤

((
2(p− 1)

n∑

i=1

γi

)1/2
+

( n−1∑

i=1

di

)1/p)p
+ dn

≤
((

2(p− 1)
n∑

i=1

γi

)1/2
+

( n∑

i=1

di

)1/p)p
.

Hence, the result is true for any integer n, and the proof is complete. ¤

4. Appendix

Proposition 4.1. Let Fν1/2
(t) = ν1/2([0, t]) and Fn,1/2(t) = n−1

∑n
i=1 1T i

1/2
≤t. On the probability space

([0, 1], ν1/2) the finite dimensional marginals of the process (n/ ln(n))1/2(Fn,1/2 − Fν1/2
) converges in

distribution to those of the degenerated Gaussian process G defined by:

for any t ∈ [0, 1], G(t) =
√

h(1/2)(1− Fν1/2
(t))1t6=0Z ,

where Z is a standard normal and h is the density of ν1/2.

Proof of Proposition 4.1. It suffices to prove that for any piecewise constant function f =∑k
i=1 ai1[0,ti] with ti > 0, (n ln(n))−1/2Sn(f) converges in distribution to a Gaussian random vari-

able with mean 0 and variance h(1/2)(
∑k

i=1 ai(1− Fν1/2
(ti)))2 = h(1/2)(f(0)− ν1/2(f))2.

Let g be some Lipschitz function which is equal to
∑k

i=1 ai on [0, ε] for ε > 0, and such that
ν1/2(g) = ν1/2(f). Applying Gouëzel’s result (2004) for Hölder functions (see the second point of
the comments after his Theorem 1.3), we infer that (n ln(n))−1/2Sn(g) converges in distribution to a
Gaussian random variable with mean 0 and variance h(1/2)(g(0)−ν1/2(g))2 = h(1/2)(f(0)−ν1/2(f))2.
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Now, the function u = f − g is BV, equal to 0 on [0, ε], and such that ν1/2(u) = 0. For such a u, one
can prove that

(4.1) |ν1/2(u · u ◦ Tn
1/2)| = O(n−2),

so that n−1/2‖Sn(u)‖2 converges, and (n ln(n))−1/2‖Sn(u)‖2 converges to 0. Hence the two sequences
(n ln(n))−1/2Sn(f) and (n ln(n))−1/2Sn(g) have the same limit distribution, and the result follows.

The proof of (4.1) is almost the same as that of Corollary 3.2 in Gouëzel (2007). It suffices to notice
that the result of this corollary remains true if:

(1) Y is any interval of the form [xk, 1], where xk is defined by: x0 = 1/2 and xk+1 = T−1
1/2(xk) ∩

[0, 1/2].
(2) The Lebesgue measure is replaced by the invariant measure ν1/2. This means that the Perron

Frobenius operator T̂1/2 with respect to the Lebesgue measure can be everywhere replaced by
K1/2(f) = T̂ 1/2(fh)/h, where h is the density of ν1/2 (recall that h is Lipschitz on [xk, 1]).

Note that, with the same proof, one can see that if f is any BV function which is also Lipschitz
in a neighbourhood of 0, (n ln(n))−1/2Sn(f) converges in distribution to a Gaussian random variable
with mean 0 and variance h(1/2)(f(0)− ν1/2(f))2. ¤

Acknowledgments. Many thanks to Sébastien Gouëzel, who explained me how to prove Proposition
4.1 of the appendix. I also thank Herold Dehling for helpful discussions about the empirical distribution
function of uniformly expanding maps.
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