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Abstract. We compute some dependence coefficients for the stationary Markov chain whose transition
kernel is the Perron-Frobenius operator of an expanding map T of [0, 1] with a neutral fixed point. We
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1. Introduction

For γ in ]0, 1[, we consider the intermittent map Tγ from [0, 1] to [0, 1], studied for instance by
Liverani, Saussol and Vaienti (1999), which is a modification of the Pomeau-Manneville map (1980):

Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[
2x− 1 if x ∈ [1/2, 1]

We denote by νγ the unique Tγ-probability measure on [0, 1]. We denote by Kγ the Perron-Frobenius
operator of Tγ with respect to νγ : for any bounded measurable functions f, g,

νγ(f · g ◦ Tγ) = νγ(Kγ(f)g) .

Let (Xi)i≥0 be a stationary Markov chain with invariant measure νγ and transition Kernel Kγ . It
is well known (see for instance Lemma XI.3 in Hennion and Hervé (2001)) that on the probability
space ([0, 1], νγ), the random variable (Tγ , T 2

γ , . . . , Tn
γ ) is distributed as (Xn, Xn−1, . . . , X1). Hence any

information on the law of

Sn(f) =
n∑

i=1

f ◦ T i
γ

can be obtained by studying the law of
∑n

i=1 f(Xi).
In 1999, Young proved that such systems (among many others) may be described by a Young

tower with polynomial decay of the return time. From this construction, she was able to control
the covariances νγ(f ◦ Tn · (g − νγ(g))) for any bounded function f and any α-Hölder function g,
and then to prove that n−1/2(Sn(f) − νγ(f)) converges in distribution to a normal law as soon as
γ < 1/2 and f is any α-Hölder function. For γ = 1/2, Gouëzel (2004) proved that the central limit
theorem remains true with the same normalization

√
n if f(0) = νγ(f), and with the normalization
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√
n ln(n) if f(0) 6= νγ(f). When 1/2 < γ < 1, he proved that if f is α-Hölder and f(0) 6= νγ(f),

n−γ(Sn(f)− νγ(f)) converges to a stable law.
At this point, two questions (at least) arise: 1) what happens if f is no longer continuous? 2) what

happens if f is no longer bounded? For instance, for the uniformly expanding map T0(x) = 2x− [2x],
the central limit theorem holds with the normalization

√
n as soon as f is monotonic and square

integrable on [0, 1], that is not necessarily continuous nor bounded.
For the slightly different map θγ(x) = x(1 − xγ)−1/γ − [x(1 − xγ)−1/γ ], with the same behavior

around the indifferent fixed point, Raugi (2004) (following a work by Conze and Raugi (2003)) has
given a precise criterion for the central limit theorem with the normalization

√
n in the case where

0 < γ < 1/2 (see his Corollary 1.7). In particular his result applies to a large class of non continuous
functions, which gives a quite complete answer to our first question for the map θγ . The result also
applies to the unbounded function f(x) = x−a with 0 < a < 1/2 − γ. However, the function f is
allowed to blow up near 0 only (if f tends to infinity when x tends to x0 ∈]0, 1], then the variation
coefficient v(fhγ , k), where hγ is the density of the θγ-invariant probability, is always infinite).

We now go back to the map Tγ . In a short discussion after the proof of his Theorem 1.3, Gouëzel
(2004) considers the case where f(x) = x−a, with 0 < a < 1 − γ. He shows that, if 0 < a < 1/2 − γ
then the central limit theorem holds with the normalization

√
n, if a = 1/2− γ then the central limit

theorem holds with the normalization
√

n ln(n), and if 0 < a < 1 − γ and γ ≥ 1/2 then there is
convergence to a stable law. Again, as for Raugi’s result (2004) concerning the map θγ , the function
f is allowed to blow up only near 0.

On another hand, we know that for stationary Harris recurrent Markov chains with invariant mea-
sure µ and β-mixing coefficients of order n−b, b > 1, the central limit theorem holds with the nor-
malization

√
n as soon as the moment condition µ(|f |p) < ∞ holds for p > 2b/(b − 1). For Tγ , the

covariances decay is of order n(γ−1)/γ , so that one can expect the moment condition νγ(|f |p) < ∞ for
p > (2 − 2γ)/(1 − 2γ). For instance, if f(x) = x−a, since the density of νγ is of order x−γ near 0,
the moment condition is satisfied if 0 < a < 1/2 − γ, which is coherent with Gouëzel’s result (2004).
However, since the chain (Kγ , νγ) is not β-mixing, the condition νγ(|f |p) < ∞ for p > (2−2γ)/(1−2γ)
alone is not sufficient to imply the central limit theorem, and one still needs some regularity on f .

Let us now define the class of functions of interest. For any probability measure µ on R, any M > 0
and any p ∈]1,∞], let Mon(M,p, µ) be the class of functions g which are monotonic on some open
interval of R and null elsewhere, and such that µ(|g| > t) ≤ Mpt−p for p < ∞ and µ(|g| > M) = 0
for p = ∞. Let C(M, p, µ) be the closure in L1(µ) of the set of functions which can be written as∑n

i=1 aigi, where
∑n

i=1 |ai| ≤ 1 and gi belongs to Mon(M, p, µ). Note that a function belonging to
C(M, p, µ) is allowed to blow up at an infinite number of points.

In Corollary 4.1 of the present paper, we prove that if f belongs to the class C(M, p, νγ) for p >

(2− 2γ)/(1− 2γ), then n−1/2(Sn(f − νγ(f)) converges in distribution to a normal law. We also give
some conditions on p to obtain rates of convergence in the central limit theorem (Corollary 5.1), as
well as moment inequalities for Sn(f − νγ(f)) (Corollary 6.1). Finally, a central limit theorem for the
empirical distribution function of (T i

γ)1≤i≤n is given in the last section (Corollary 7.1).
To prove these results, we compute the β-dependence coefficients (cf Dedecker and Prieur (2005,

2007)) of the Markov chain (Kγ , νγ). The main tool is a precise estimate of the Perron-Frobenius
operator of the map F associated to Tγ on the Young tower, due to Maume-Deschamps (2001). Next,
we apply some general results for β-dependent Markov chains. For the sake of simplicity, we give all
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the computations in the case of the maps Tγ , but our arguments remain valid for many other systems
modelled by Young towers.

2. The main inequality

For any Markov kernel K with invariant measure µ, any non-negative integers n1, n2, . . . , nk, and
any bounded measurable functions f1, f2, . . . , fk, define

K(n1,n2,...,nk)(f1, f2, . . . , fk) = Kn1(f1K
n2(f2K

n3(f3 · · ·Knk−1(fk−1K
nk(fk)) · · · ))) , and

K(0)(n1,n2,...,nk)(f1, f2, . . . , fk) = K(n1,n2,...,nk)(f1, f2, . . . , fk)− µ(K(n1,n2,...,nk)(f1, f2, . . . , fk)) .

For α ∈]0, 1] and c > 0, let Hα,c be the set of functions f such that |f(x)− f(y)| ≤ c|x− y|α.

Theorem 2.1. Let γ ∈]0, 1[, and let f (0) = f − νγ(f). For any α ∈]0, 1], the following inequality
holds:

νγ

(
sup

f1,...,fk∈Hα,1

∣∣K(0)(n1,n2,...,nk)
γ (f (0)

1 , f
(0)
2 , . . . , f

(0)
k )

∣∣
)
≤ C(α, k)(ln(n1 + 1))2

(n1 + 1)(1−γ)/γ
.

In particular,

νγ

(
sup

f∈Hα,1

|Kn
γ f − νγ(f)|

)
≤ C(α, 1)(ln(n + 1))2

(n + 1)(1−γ)/γ
.

Proof of Theorem 2.1. We refer to the paper by Young (1999) for the construction of the tower ∆
associated to Tγ (with floors Λ`), and for the mappings π from ∆ to [0, 1] and F from ∆ to ∆ such that
Tγ ◦π = π◦F . On ∆ there is a probability measure m0 and an unique F -invariant probability measure
ν̄ with density h0 with respect to m0, and ν̄(Λ`) = O(`−1/γ). The unique Tγ-invariant probability
measure νγ is then given by νγ = ν̄π. There exists a distance δ on ∆ such that δ(x, y) ≤ 1 and
|π(x) − π(y)| ≤ κδ(x, y). For α ∈]0, 1], let δα = δα, let Lα be the space of Lipschitz functions with
respect to δα, and let Lα(f) = supx,y∈∆ |f(x) − f(y)|/δα(x, y). Let Lα,c be the set of functions such
that Lα(f) ≤ c. For ϕ in Hα,c, the function ϕ ◦ π belongs to Lα,cκα . Any function f in Lα is bounded
and the space Lα is a Banach space with respect to the norm ‖f‖α = Lα(f) + ‖f‖∞. The density
h0 belongs to any Lα and 1/h0 is bounded. As in Maume-Deschamps (2001), we denote by L0 the
Perron-Frobenius operator of F with respect to m0, and by P the Perron-Frobenius operator of F
with respect to ν̄: for any bounded measurable functions ϕ,ψ,

m0(ϕ · ψ ◦ F ) = m0(L0(ϕ)ψ) and ν̄(ϕ · ψ ◦ F ) = ν̄(P (ϕ)ψ) .

We first state a useful lemma

Lemma 2.1. For any positive n1, n2, . . . , nk and any bounded measurable functions f1, f2, . . . , fk from
[0, 1] to R, one has

K(n1,n2,...,nk)
γ (f1, f2, . . . , fk) ◦ π = Eν̄

(
P (n1,n2,...,nk)(f1 ◦ π, f2 ◦ π, . . . , fk ◦ π)

∣∣π)
.

We now complete the proof of Theorem 2.1 for k = 2, the general case being similar. Applying
Lemma 2.1, it follows that

sup
f,g∈Hα,1

|Kn
γ (f (0)Km

γ g(0))(x)− νγ(f (0)Km
γ g(0))|

≤ Eν̄

(
sup

φ,ψ∈Lα,κα

|Pn(φ(0)Pmψ(0))− ν̄(φ(0)Pmψ(0))|
∣∣∣π = x

)
.
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Here, we need the following lemma, which is derived from Lemma 3.4 in Maume-Deschamps (2001).

Lemma 2.2. There exists Mα > 0 such that, for any ψ ∈ Lα,

|Pmψ(x)− Pmψ(y)| ≤ Mαδ(x, y)‖ψ(0)‖α ≤ 2Mαδα(x, y)Lα(ψ) .

Hence, if ψ ∈ Lα,κα , then Pm(ψ(0)) belongs to Lα,2Mακα and is centered, so that φ(0)Pmψ(0) belongs
to Lα,4Mακ2α . It follows that

sup
f,g∈Hα,1

|Kn
γ (f (0)Km

γ g(0))(x)− ν(f (0)Km
γ g(0))| ≤ 4Mακ2αEν̄

(
sup

ϕ∈Lα,1

|Pn(ϕ)− ν̄(ϕ)|
∣∣∣π = x

)
.

Next, we apply the following Lemma, which is derived from Corollary 3.14 in Maume-Deschamps
(2001).

Lemma 2.3. Let v` = (` + 1)(1−γ)/γ(ln(` + 1))−2. There exists Cα > 0 such that

Eν̄

(
sup

ϕ∈Lα,1

|Pn(ϕ)− ν̄(ϕ)|
∣∣∣π = x

)
≤ Cα(ln(n + 1))2(n + 1)(γ−1)/γ

∑

`≥0

v`Eν̄(1Λ`
|π = x) .

Hence

νγ

(
sup

f,g∈Hα,1

|Kn
γ (f (0)Km

γ g(0))− ν(f (0)Km
γ g(0))|

)
≤ 4Mακ2αCα(ln(n + 1))2(n + 1)(γ−1)/γ

∑

`≥0

v`ν̄(Λ`) .

Since ν̄(Λ`) = O(`−1/γ), the result follows.

Proof of Lemma 2.1. We write the proof for k = 2 only, the general case being similar. Let ϕ, f
and g be three bounded measurable functions. One has

νγ(ϕKn
γ (fKm

γ g)) = νγ(ϕ ◦ Tn+m
γ · f ◦ Tm

γ · g)

= ν̄(ϕ ◦ π ◦ Fn+m · f ◦ π ◦ Fm · g ◦ π)
= ν̄(ϕ ◦ πPn(f ◦ πPm(g ◦ π)))
= ν̄(ϕ ◦ πEν̄(Pn(f ◦ πPm(g ◦ π))|π))

=
∫

ϕ(x)Eν̄(Pn(f ◦ πPm(g ◦ π))|π = x)νγ(dx) ,

which proves Lemma 2.1 for k = 2.

Proof of Lemma 2.2. Applying Lemma 3.4 in Maume-Deschamps (2001) with vk = 1, we see that
there exists Dα > 0 such that, for any ψ in Lα,

|Lm
0 ψ(x)− Lm

0 ψ(y)| ≤ Dαδα(x, y)‖ψ‖α.

Now Pm(ψ) = Lm
0 (ψh0)/h0. Since 1/h0 is bounded by B(h0), and since h0 belongs to Lα, it follows

that
|Pmψ(x)− Pmψ(y)| ≤ DαB(h0)‖h0‖αδα(x, y)‖ψ‖α.

Let Mα = DαB(h0)‖h0‖α. Since |Pmψ(x)−Pmψ(y)| = |Pmψ(0)(x)−Pmψ(0)(y)| and since ‖ψ(0)‖∞ ≤
Lα(ψ), it follows that

|Pmψ(x)− Pmψ(y)| ≤ Mαδα(x, y)‖ψ(0)‖α ≤ 2Mαδα(x, y)Lα(ψ) .
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Proof of Lemma 2.3. Applying Corollary 3.14 in Maume-Deschamps (2001), there exists Bα > 0
such that

|Ln
0f − h0m0(f)| ≤ Bα‖f‖α(ln(n + 1))2(n + 1)(γ−1)/γ

∑

`≥0

v`1∆`
.

It follows that, with the notations of the proof of Lemma 2.2,

|Pn(f)− ν̄(f)| ≤ BαB(h0)‖h0‖α‖f‖α(ln(n + 1))2(n + 1)(γ−1)/γ
∑

`≥0

v`1∆`
.

Since |Pn(f)− ν̄(f)| = |Pn(f (0))− ν̄(f (0))| and since ‖f (0)‖∞ ≤ Lα(f), it follows that

|Pn(f)− ν̄(f)| ≤ 2BαB(h0)‖h0‖αLα(f)(ln(n + 1))2(n + 1)(γ−1)/γ
∑

`≥0

v`1∆`
,

and the result follows.

3. The dependence coefficients

Let X = (Xi)i≥0 be a stationary Markov chain with invariant measure µ and transition kernel
K. Let ft(x) = 1x≤t. As in Dedecker and Prieur (2005, 2007), define the coefficients αk(n) of the
stationary Markov chain (Xi)i≥0 by

α1(n) = sup
t∈R

µ(|Kn(ft)− µ(ft)|) , and for k ≥ 2,

αk(n) = α1(n) ∨ sup
2≤l≤k

sup
n2≥1,...nl≥1

sup
t1,...,tl∈R

µ
(|K(0)(n,n2,...,nl)(ft1 , ft2 , . . . , ftl)|

)
.

In the same way, define the coefficients βk(n) by

β1(n) = µ
(

sup
t∈R

|Kn(ft)− µ(ft)|
)

, and for k ≥ 2,

βk(n) = β1(n) ∨ sup
2≤l≤k

sup
n2≥1,...nl≥1

µ
(

sup
t1,...,tl∈R

|K(0)(n,n2,...,nl)(ft1 , ft2 , . . . , ftl)|
)

.

Theorem 3.1. Let 0 < γ < 1. Let X = (Xi)i≥0 be a stationary Markov chain with invariant measure
νγ and transition kernel Kγ. There exist two positive constants C1(γ) and C2(δ, γ, k) such that, for
any δ in ]0, (1− γ)/γ[ and any positive integer k,

C1(γ)(n + 1)
γ−1

γ ≤ αk(n) ≤ βk(n) ≤ C2(δ, γ, k)(n + 1)
γ−1

γ
+δ

.

Proof of Theorem 3.1. Applying Proposition 2, Item 2, in Dedecker and Prieur (2005), we know
that

νγ

(
sup

f∈H1,1

|Kn
γ f − νγ(f)|

)
≤ 2α1(n) .

Hence, for any ϕ such that |ϕ| ≤ 1 and any f in H1,1,

νγ(ϕ · (Kn
γ f − νγ(f))) = νγ(ϕ ◦ Tn · (f − νγ(f))) ≤ 2α1(n)

The lower bound for αk(n) follows from the lower bound for νγ(ϕ ◦ Tn · (f − νγ(f))) given by Sarig
(2002), Corollary 1.
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It remains to prove the upper bound. The point is to approximate the indicator ft(x) = 1x≤t by
some α-Hölder function. Let

ft,ε,α(x) = ft(x) +
(
1−

(x− t

ε

)α)
1t<x≤t+ε .

This function is α-Hölder with Hölder constant ε−α. We now prove the upper bounds for k = 1 and
k = 2 only, the general case being similar. For k = 1, one has

Kn(ft−ε,ε,α)− νγ(ft−ε,ε,α)− νγ([t− ε, t]) ≤ Kn
γ (ft)− νγ(ft) ≤ Kn

γ (ft,ε,α)− νγ(ft,ε,α) + νγ([t, t + ε]) .

Since the density gνγ of νγ is such that gνγ (x) ≤ V (γ)x−γ , we infer that for any real a, νγ([a, a + ε]) ≤
V (γ)ε1−γ(1− γ)−1. Consequently,

|Kn
γ (ft)− νγ(ft)| ≤ ε−α sup

f∈Hα,1

|Kn
γ (f)− νγ(f)|+ V (γ)

1− γ
ε1−γ .

Applying Theorem 2.1 with k = 1, we obtain that

νγ

(
sup

t∈[0,1]
|Kn

γ (ft)− νγ(ft)|
)
≤ C(α, 1)ε−α(ln(n + 1))2(n + 1)

γ−1
γ +

V (γ)
1− γ

ε1−γ .

The optimal ε is equal to

ε =
(αC(α, 1)(ln(n + 1))2(n + 1)

γ−1
γ

V (γ)

) 1
α+1−γ

.

Consequently, for some positive constant D(γ, α), one has

νγ

(
sup

t∈[0,1]
|Kn

γ (ft)− νγ(ft)|
)
≤ D(γ, α)

(
(ln(n + 1))2(n + 1)

γ−1
γ

) 1−γ
α+1−γ

.

Choosing α < δγ(1− γ)/(1− γ(1 + δ)), the result follows for k = 1.
We now prove the result for k = 2. Clearly, the four following inequalities hold:

Kn
γ (f (0)

t Km
γ f (0)

s ) ≤ Kn
γ (f (0)

t,ε,αKm
γ f (0)

s,ε,α) + νγ([t, t + ε]) + νγ([s, s + ε]) ,

Kn
γ (f (0)

t Km
γ f (0)

s ) ≥ Kn
γ (f (0)

t−ε,ε,αKm
γ f

(0)
s−ε,ε,α)− νγ([t− ε, t])− νγ([s− ε, s]) ,

νγ(f (0)
t Km

γ f (0)
s ) ≥ νγ(f (0)

t,ε,αKm
γ f (0)

s,ε,α)− 2νγ([t, t + ε])− νγ([s, s + ε]) ,

νγ(f (0)
t Kmf (0)

s ) ≤ νγ(f (0)
t−ε,ε,αKm

γ f
(0)
s−ε,ε,α) + 2νγ([t− ε, t]) + νγ([s− ε, s]) .

Consequently,

|Kn
γ (f (0)

t Km
γ f (0)

s )− νγ(f (0)
t Km

γ f (0)
s )| ≤ ε−α sup

f,g∈Hα,1

|Kn
γ (f (0)Km

γ g(0))− νγ(f (0)Km
γ g(0))|+ 5V (γ)

1− γ
ε1−γ .

Applying Theorem 2.1, we obtain that

νγ

(
sup

t∈[0,1]
|Kn

γ (f (0)
t Km

γ f (0)
s )− νγ(f (0)

t Km
γ f (0)

s )|
)
≤ C(α, 2)ε−α(ln(n + 1))2(n + 1)

γ−1
γ +

5V (γ)
1− γ

ε1−γ ,

and the proof can be completed as for k = 1.
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4. Central limit theorems

In this section we give a central limit theorem for Sn(f − νγ(f)) when f belongs to the class
C(M, p, µ) defined in the introduction. Note that any function f with bounded variation (BV) such
that |f | ≤ M1 and ‖df‖ ≤ M2 belongs to the class C(M1 + 2M2,∞, µ). Hence, any BV function f
belongs to C(M,∞, µ) for some M large enough. If g is monotonic on some open interval of R and
null elsewhere, and if µ(|g|p) ≤ Mp, then g belongs to Mon(M, p, µ). Conversely, any function in
C(M, p, µ) belongs to Lq(µ) for 1 ≤ q < p.

Theorem 4.1. Let X = (Xi)i≥0 be a stationary and ergodic (in the ergodic theoretic sense) Markov
chain with invariant measure µ and transition kernel K. Assume that f belongs to C(M, p, µ) for some
M > 0 and some p ∈]2,∞], and that

∑

k>0

(α1(k))
p−2

p < ∞ .

The following results hold:

(1) The series

σ2(µ,K, f) = µ((f − µ(f))2) + 2
∑

k>0

µ((f − µ(f))Kk(f))

converges to some non negative constant, and n−1Var(
∑n

i=1 f(Xi)) converges to σ2(µ,K, f).
(2) Let (D([0, 1], d) be the space of cadlag functions from [0, 1] to R equipped with the Skorohod

metric d. The process {n−1/2
∑[nt]

i=1(f(Xi) − µ(f)), t ∈ [0, 1]} converges in distribution in
(D([0, 1], d) to σ(µ,K, f)W , where W is a standard Wiener process.

(3) One has the representation

f(X1)− µ(f) = m(X1, X0) + g(X1)− g(X0)

with µ(|g|p/(p−1)) < ∞, E(m(X1, X0)|X0) = 0 and E(m2(X1, X0)) = σ2(µ,K, f).

Corollary 4.1. Let γ ∈]0, 1/2[. If f belongs to the class C(M, p, ν) for some M > 0 and some
p > (2− 2γ)/(1− 2γ), then n−1/2Sn(f − νγ(f)) converges in distribution to N (0, σ2(νγ ,Kγ , f)).

Remark 4.1. We infer from Corollary (4.1) that the central limit theorem holds for any BV function
provided γ < 1/2. Under the same condition on γ, Young (1999) has proved that the central limit
theorem holds for any α-Hölder function. For the map θγ(x) = x(1 − xγ)−1/γ − [x(1 − xγ)−1/γ ] and
γ < 1/2, the central limit theorem for BV functions is a consequence of Corollary 1.7(i) in Raugi
(2004).

Two simple examples.

(1) Assume that f is positive and non increasing on ]0, 1[, with f(x) ≤ Cx−a for some a ≥ 0.
Since the density gνγ of νγ is such that gνγ (x) ≤ V (γ)x−γ , we infer that

νγ(f > t) ≤ C
1−γ

a V (γ)
1− γ

t−
1−γ

a .

Hence the CLT holds as soon as a < 1
2 − γ.
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(2) Assume now that f is positive and non decreasing on ]0, 1[ with f(x) ≤ C(1− x)−a for some
a ≥ 0. Here

νγ(f > t) ≤ V (γ)
1− γ

(
1−

(
1−

(C

t

)1/a)1−γ)
.

Hence the CLT holds as soon as a < 1
2 − γ

2(1−γ) .

Proof of Theorem 4.1. Let f in C(M, p, µ). From Dedecker and Rio (2000), Items (1) and (2) of
Theorem 4.1 hold as soon as∑

n>0

‖(f(X0)− µ(f))(E(f(Xn)|X0)− µ(f))‖1 < ∞ .

Assume first that f =
∑k

i=1 aigi, where
∑k

i=1 |ai| ≤ 1, and gi belongs to Mon(M,p, µ). Clearly, the
series on left side is bounded by

k∑

i=1

k∑

j=1

|aiaj |
∑

n>0

‖(gi(X0)− µ(gi))(E(gj(Xn)|X0)− µ(gj))‖1 .

Here, we use the following lemma

Lemma 4.1. Let gi and gj be two functions in Mon(M,p, µ) for some p ∈]2,∞]. For any 1 ≤ q ≤ p
one has

‖E(gj(Xn)|X0)− µ(gj)‖q ≤ 2M
( p

p− q

)1/q
(2α1(n))

p−q
pq .

For any 1 ≤ q < p/2, one has

‖(gi(X0)− µ(gi))(E(gj(Xn)|X0)− µ(gj))‖q ≤ 4M2
( p

p− 2q

)1/q
(2α1(n))

p−2q
pq .

From Lemma 4.1 with q = 1, we conclude that

(4.1)
∑

n>0

‖(f(X0)− µ(f))(E(f(Xn)|X0)− µ(f))‖1 ≤ 4pM2

p− 2

∑

n>0

(2α1(n))
p−2

p .

Since the bound (4.1) is true for any function f =
∑k

i=1 aigi, it is true also for any f in C(M, p, µ),
and Items (1) and (2) follow.

The last assertion is rather standard. From the first inequality of Lemma 4.1 with q = p/(p − 1),
we infer that if

∑
n>0(α1(n))(p−2)/p < ∞, then

∑
n>0 ‖E(f(Xn)|X0) − µ(f)‖p/(p−1) < ∞ for any f

in C(M, p, µ). It follows that g(x) =
∑∞

k=1 E(f(Xk) − µ(f)|X0 = x) belongs to Lp/(p−1)(µ) and that
m(X1, X0) =

∑
k≥1(E(f(Xk)|X0)− E(f(Xk)|X1)) belongs to Lp/(p−1). Clearly

f(X1)− µ(f) = m(X1, X0) + g(X0)− g(X1) ,

with E(m(X1, X0)|X0) = 0. Moreover, it follows from the preceding result that

lim
n→∞

1√
n

∥∥∥
n∑

k=1

m(Xk, Xk−1)
∥∥∥

1
= lim

n→∞
1√
n

∥∥∥
n∑

k=1

(f(Xk)− µ(f))
∥∥∥

1
≤ σ(µ,K, f) .

By Theorem 1 in Esseen an Janson (1985), it follows that E(m2(X1, X0)) = σ2(µ,K, f).
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Proof of Lemma 4.1. We only prove the second inequality (the proof of the first one is easier). Let
r = q/(q−1) and let Br(σ(X0)) be the set of σ(X0)-measurable random variables such that ‖Y ‖r ≤ 1.
By duality,

‖(gi(X0)− µ(gi))(E(gj(Xn)|X0)− µ(gj))‖q = sup
Y ∈Br(σ(X0))

E(Y (gi(X0)− µ(gi))(gj(Xn)− µ(gj)))

= sup
Y ∈Br(σ(X0))

Cov(Y (gi(X0)− µ(gi), gj(Xn)) .

Define the coefficients αk,g(n) of the sequence (g(Xi))i≥0 as in Section 3 with g ◦ ft instead of ft. If
g is monotonic on some open interval of R and null elsewhere, the set {x : g(x) ≤ t} is either some
interval or the complement of some interval, so that αk,g(n) ≤ 2kαk(n). Let QY be the generalized
inverse of the tail function t → P(|Y | > t). From Theorem 1.1 and Lemma 2.1 in Rio (2000), one has
that

Cov(Y gi(X0), gj(Xn)) ≤ 2
∫ α1,gi

(n)

0
QY (u)Qgi(X0)(u)Qgj(X0)(u)du

≤ 2
∫ 2α1(n)

0
QY (u)Qgi(X0)(u)Qgj(X0)(u)du .

In the same way, applying first Theorem 1.1 in Rio (2000) and next Fréchet’s inequality (1957) (see
also Inequality (1.11b) in Rio (2000)),

Cov(Y µ(gi), gj(Xn)) ≤ 2µ(|gi|)
∫ 2α1(n)

0
QY (u)Qgj(X0)(u)du

≤ 2
∫ 2α1(n)

0
QY (u)Qgi(X0)(u)Qgj(X0)(u)du .

Since
∫ 1
0 Qr

Y (u)du ≤ 1, it follows that

‖(gi(X0)− µ(gi))(E(gj(Xn)|X0)− µ(gj))‖q ≤ 4
(∫ 2α1(n)

0
Qq

gi(X0)(u)Qq
gj(X0)(u)du

)1/q
.

Since gi and gj belong to Mon(M, p, µ) for some p > 2q, we have that Qgi(X0)(u) and Qgj(X0)(u) are
smaller than Mu−1/p, and the result follows.

Proof of Corollary 4.1. We have seen that (T 1
γ , . . . , Tn

γ ) is distributed as (Xn, . . . , X1) where (Xi)i≥0

is the stationary Markov chain with invariant measure νγ and transition kernel Kγ . Consequently, on
the probability space ([0, 1], νγ), the sum Sn(f − νγ(f)) is distributed as

∑n
i=1(f(Xi)− νγ(f)), so that

n−1/2Sn(f − νγ(f)) satisfies the central limit theorem if and only if n−1/2
∑n

i=1(f(Xi)− νγ(f)) does.
Moreover, we infer from Theorem 3.1 that

α1(n) = O(n
γ−1

γ
+ε)

for any ε > 0. Consequently, if p > (2 − 2γ)/(1 − 2γ), one has that
∑

k>0(α1(n))
p−2

p < ∞ so that
Theorem 4.1 applies: the central limit theorem holds provided that f belongs to C(M, p, νγ).
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5. Rates of convergence in the CLT

Let c be some concave function from R+ to R+, with c(0) = 0. Denote by Lipc the set of functions
g such that

|g(x)− g(y)| ≤ c(|x− y|) .

When c(x) = xα for α ∈]0, 1], we have Lipc = Hα,1. For two probability measures P, Q with finite first
moment, let

dc(P,Q) = sup
g∈Lipc

|P (f)−Q(f)| .

When c =Id, we write dc = d1. Note that d1(P,Q) is the so-called Kantorovič distance between P
and Q.

Theorem 5.1. Let X = (Xi)i≥0 be a stationary Markov chain with invariant measure µ and transition
kernel K. Let σ2(f) = σ2(µ, K, f) be the non-negative number defined in Theorem 4.1, and let Gσ2(f)

be the Gaussian distribution with mean 0 and variance σ2(f). Let Pn(f) be the distribution of the
normalized sum n−1/2

∑n
i=1(f(Xi)− µ(f)).

(1) Assume that f belongs to C(M, p, µ) for some M > 0 and some p ∈]2,∞], and that
∑

k>0

(α1(k))
p−2

p < ∞ .

If σ2(f) = 0, then dc(Pn(f), δ{0}) = O(c(n−1/2)).
(2) If f belongs to C(M, p, µ) for some M > 0 and some p ∈]3,∞], and if

∑

k>0

k(α3(k))
p−3

p < ∞ ,

then dc(Pn(f), Gσ2(f)) = O(c(n−1/2)).
(3) If f belongs to C(M, p, µ) for some M > 0 and some p ∈]3,∞], and if

α2(k) = O(k−(1+δ)p/(p−3)) for some δ ∈]0, 1[,

then dc(Pn(f), Gσ2(f)) = O(c(n−δ/2)).

Corollary 5.1. Let δ ∈]0, 1] and γ < 1/(2+δ), and let µn(f) be the distribution of n−1/2Sn(f−νγ(f)).
If f belongs to the class C(M,p, νγ) for some M > 0 and some p > (3 − 3γ)/(1 − (2 + δ)γ), then
dc(µn(f), Gσ2(f)) = O(c(n−δ/2)), where σ2(f) = σ2(νγ ,Kγ , f).

Remark 5.1. We infer from Corollary 5.1 that if f is BV , then d1(µn(f), Gσ2(f)) = O(n−1/2) if
γ < 1/3, and d1(µn(f), Gσ2(f)) = O(n−δ/2) if γ < 1/(2 + δ). Denote by dBV (P,Q) the uniform
distance between the distribution functions of P and Q. If f is α-Hölder, Gouëzel (2005, Theorem
1.5) has proved that dBV (µn(f), Gσ2(f)) = O(n−1/2) if γ < 1/3, and dBV (µn(f), Gσ2(f)) = O(n−δ/2)
if γ = 1/(2 + δ). In fact, from a general result of Bolthausen (1982) for Harris recurrent Markov
chains, we conjecture that the results of Corollary 5.1 are true with dBV instead of d1.

Two simple examples (continued).
(1) Assume that f is positive and non increasing on [0, 1], with f(x) ≤ Cx−a for some a ≥ 0. Let

δ ∈]0, 1] and γ < 1/(2 + δ). If a < 1
3 − (2+δ)γ

3 , then dc(µn(f), Gσ2(f)) = O(c(n−δ/2)).
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(2) Assume that f is positive and non increasing on [0, 1], with f(x) ≤ C(1−x)−a for some a ≥ 0.
Let δ ∈]0, 1] and γ < 1/(2 + δ). If a < 1

3 − (1+δ)γ
3(1−γ) , then dc(µn(f), Gσ2(f)) = O(c(n−δ/2)).

Proof of Theorem 5.1. From the Kantorovič-Rubinštĕın theorem (1957), there exists a probability
measure π with margins P and Q, such that d1(P, Q) =

∫ |x−y|π(dx, dy). Since c is concave, we then
have

dc(P,Q) = sup
f∈Hc

∣∣∣
∫

(f(x)− f(y))π(dx, dy)
∣∣∣ ≤

∫
c(|x− y|)π(dx, dy) ≤ c(d1(P,Q)) .

Hence, it is enough to prove the theorem for d1 only.
If

∑
k>0(α1(k))(p−2)/p < ∞, f belongs to C(M, p, µ) for some M > 0 and some p ∈]2,∞], and

σ2(f) = 0, it follows from Theorem 4.1 that f(X1) = g(X0)− g(X1) with µ(|g|) < ∞. Hence

d1(Pn(f), δ{0}) ≤
2µ(|g|)√

n
,

and Item (1) is proved.
From now, we assume that σ2(f) > 0 (otherwise, the result follows from Item (1)). If f = g1 − g2,

where g1, g2 belong to Mon(M, p, µ) for some M > 0 and some p ∈]3,∞], Item (2) of Theorem 5.1
follows from Theorem 3.1(b) in Dedecker and Rio (2007). In fact the proof remains unchanged if f
belongs to C(M, p, µ) for some M > 0 and some p ∈]3,∞].

It remains to prove Item (3). Let Yk = f(Xk)− µ(f), σ2(f) = σ2, and sm =
∑m

i=1 Yi. Define

Wm = Am + Bm, with Am = E(s2
m|X0)−mσ2 and Bm = 2

m∑

k=1

E
(
Yk

∑

i>m

Yi

∣∣∣X0

)
.

From Theorem 2.2 in Dedecker and Rio (2007), we have that, if
∑

k>0 ‖Y0E(Yk|X0)‖1 < ∞,

(5.2)
√

nd1(Pn(f), Gσ2) ≤ C ln(n) +
[
√

2n]∑

m=1

‖(|Y0|+ 2σ)Wm‖1

mσ2
+ D1,n + D2,n ,

where

D1,n =
n∑

m=1

1
σ
√

m

∑

i≥m

‖Y0E(Yi|X0)‖1 and D2,n =
n∑

m=1

1
2σ2m

m∑

k=1

‖(σ2 + Y 2
0 )E(Yk|X0)‖1.

From Lemma 4.1 with q = 1, the bound (4.1) holds for any f in C(M, p, µ) for p > 2. Consequently,
if α2(k) = O(k−(1+δ)p/(p−3)) for some δ ∈]0, 1[ and p > 3, then

∑
k>0 ‖Y0E(Yk|X0)‖1 < ∞, so that the

bound (5.2) holds. Moreover n−1/2D1,n = O(n−1/2 ln(n) ∨ n−δ). Arguing as in Lemma 4.1, one can
prove that

‖Y 2
0 E(Yk|X0)‖1 ≤ C(M, p)(α1(k))

p−3
p ,

so that n−1/2D2,n = O(n−1/2 ln(n)).
Arguing as in Lemma 4.1, one can prove that, for 0 < k < i,

(5.3) ‖(|Y0|+ 2σ)E(YkYi|X0)‖1 ≤ ‖(|Y0|+ 2σ)YkE(Yi|Xk)‖1 ≤ C(M, p, σ)(α1(i− k))
p−3

p .
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Consequently,

1√
n

[
√

2n]∑

m=1

‖(|Y0|+ 2σ)Bm‖1

mσ2
= O

( 1√
n

[
√

2n]∑

m=1

1
mσ2

m∑

k=1

∑

i>m

1
(i− k)1+δ

)
= O(n−δ/2) .

Now,

‖(|Y0|+ 2σ)Am‖1

m
≤ 2

m

m∑

i=1

m∑

j=i

‖(|Y0|+ 2σ)(E(YiYj |X0)− E(YiYj))‖1 + (‖Y0‖1 + 2σ)
∣∣∣ 1
m
E(s2

m)− σ2
∣∣∣ .

For the second term on right hand, we have

∣∣∣ 1
m
E(s2

m)− σ2
∣∣∣ ≤ 2

∞∑

k=1

k ∧m

m
|E(Y0Yk)| = O

(∑

k>0

k ∧m

m
(α1(k))

p−2
p

)
= O(m−δ) ,

so that

1√
n

[
√

2n]∑

m=1

∣∣∣ 1
m
E(s2

m)− σ2
∣∣∣ = O(n−δ/2) .

To complete the proof of the theorem, it remains to prove that

(5.4)
1√
n

[
√

2n]∑

m=1

2
m

m∑

i=1

m∑

j=i

‖(|Y0|+ 2σ)(E(YiYj |X0)− E(YiYj))‖1 = O(n−δ/2) .

Applying first (5.3), we have for j > i,

(5.5) ‖(|Y0|+ 2σ)(E(YiYj |X0)− E(YiYj))‖1 ≤ 2C(M,p, σ)(α1(j − i))
p−3

p .

We need a second bound for this quantity. Assume first that f =
∑k

i=1 aigi, where
∑k

i=1 |ai| ≤ 1 and
gi belongs to Mon(M, p, µ). Let g

(0)
i = gi − µ(gi). We have that

‖Y0(E(YiYj |X0)− E(YiYj))‖1

≤
k∑

l=1

k∑

q=1

k∑

r=1

|alaqar|‖g(0)
l (X0)(E(g(0)

q (Xi)g(0)
r (Xj)|X0)− E(g(0)

q (Xi)g(0)
r (Xj)))‖1 .

For three real-valued random variables A,B, C, define the numbers ᾱ(A, B) and ᾱ(A,B, C) by

ᾱ(A,B) = sup
s,t∈R

|Cov(1A≤s,1B≤t)|

ᾱ(A,B, C) = sup
s,t,u∈R

|E((1A≤s − P(A ≤ s))(1B≤t − P(B ≤ t))(1C≤u − P(C ≤ u)))|

(note that ᾱ(A,B,B) ≤ ᾱ(A,B)). Let

A = |g(0)
l (X0)|sign{E(g(0)

q (Xi)g(0)
r (Xj)|X0)− E(g(0)

q (Xi)g(0)
r (Xj))} ,
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and note that QA = Q
g
(0)
l (X0)

. From Proposition 6.1 and Lemma 6.1 in Dedecker and Rio (2007), we
have that

‖g(0)
l (X0)(E(g(0)

q (Xi)g(0)
r (Xj)|X0)− E(g(0)

q (Xi)g(0)
r (Xj)))‖1 = E((A− E(A))g(0)

q (Xi)g(0)
r (Xj))

≤ 16
∫ ᾱ(A,gq(Xi),gr(Xj))/2

0
Q

g
(0)
l (X0)

(u)Qgq(X0)(u)Qgr(X0)(u)du .

Note that Q
g
(0)
l (X0)

≤ Qgl(X0) + ‖gl(X0)‖1. Hence, by Fréchet’s inequality (1957),

∫ ᾱ(A,gq(Xi),gr(Xj))/2

0
Q

g
(0)
l (X0)

(u)Qgq(X0)(u)Qgr(X0)(u)du

≤ 2
∫ ᾱ(A,gq(Xi),gr(Xj))/2

0
Qgl(X0)(u)Qgq(X0)(u)Qgr(X0)(u)du .

Since {gi(x) ≤ t} is some interval of R, we have that for j > i ≥ 1

ᾱ(A, gq(Xi), gr(Xj)) ≤ 4ᾱ(A,Xi, Xj) ≤ 4α2(i) ,

and for i = j,

ᾱ(A, gq(Xi), gr(Xi)) ≤ 4ᾱ(A,Xi, Xi) ≤ 4ᾱ(X0, Xi) ≤ 4α1(i) ≤ 4α2(i) .

Since Qgi(X0)(u) ≤ Mu−1/p, it follows that, for 1 ≤ i ≤ j,

‖gl(X0)(E(gq(Xi)gr(Xj)|X0)− E(gq(Xi)gr(Xj)))‖1 ≤ 32M3p

p− 3
(2α2(i))

p−3
p .

Consequently, for any f in C(M, p, µ) with p > 3,

‖Y0(E(YiYj |X0)− E(YiYj))‖1 ≤ 32M3p

p− 3
(2α2(i))

p−3
p .

In the same way,

2σ‖E(YiYj |X0)− E(YiYj)‖1 ≤ 32σM2p

p− 2
(2α2(i))

p−2
p .

It follows that, for any 1 ≤ i ≤ j,

(5.6) ‖(|Y0|+ 2σ)(E(YiYj |X0)− E(YiYj))‖1 ≤ D(M, p, σ)(α2(i))
p−3

p .

Combining (5.5) and (5.6), we infer that

m∑

i=1

m∑

j=i

‖(|Y0|+ 2σ)(E(YiYj |X0)− E(YiYj))‖1 = O(m1−δ) ,

and (5.4) easily follows. This completes the proof.
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6. Moment inequalities

Theorem 6.1. Let X = (Xi)i≥0 be a stationary Markov chain with invariant measure µ and transition
kernel K. If f belong to C(M, p, µ) for some M > 0 and some p > 2, then, for any 2 ≤ q < p

∥∥∥
n∑

i=1

(f(Xi)− µ(f))
∥∥∥

q
≤

√
2q

(
n‖f(X0)− µ(f)‖2

q + 4M2
( p

p− q

) 2
q

n−1∑

k=1

(n− k)(2α1(k))
2(p−q)

pq

) 1
2
.

Corollary 6.1. Let 0 < γ < 1. Let f belong to C(M, p, µ) for some M > 0 and some p > 2, and let
2 ≤ q < p.

(1) If γ < 2(p− q)/(2(p− q) + pq), then ‖Sn(f − νγ(f))‖q = O(
√

n) .
(2) If 2(p− q)/(2(p− q) + pq) ≤ γ < 1, then, for any ε > 0,

‖Sn(f − νγ(f))‖q = O
(
n

1+ε− (1−γ)(p−q)
γpq

)
.

Remark 6.1. Assume that γ < (p − 2)/(2p − 2). By Chebichev inequality applied with 2 ≤ q <
2p(1− γ)/(γp + 2(1− γ)), we infer from Item (1) that for any ε > 0,

νγ

( 1
n
|Sn(f − νγ(f))| > x

)
≤ C

(nx2)p(1−γ)/(γp+2(1−γ))−ε
.

Assume now that (p− 2)/(2p− 2) ≤ γ < 1. By Chebichev inequality applied with q = 2, we infer from
Item (2) that for any ε > 0,

νγ

( 1
n
|Sn(f − νγ(f))| > x

)
≤ C

x2n(p−2)(1−γ)/γp−ε
.

When f is BV (case p = ∞) and γ < 1, we obtain that, for any ε > 0 and any x > 0,

νγ

( 1
n
|Sn(f − νγ(f))| > x

)
≤ C(x)

n(1−γ)/γ−ε
.

Note that Melbourne and Nicol (2007) obtained the same bound when f is α-Hölder and γ < 1/2.

Two simple examples (continued).

(1) Assume that f is positive and non increasing on [0, 1], with f(x) ≤ Cx−a for some a > 0.
If a < 1

2 − γ and 2 ≤ q < 2(1−γ)
γ+2a , then ‖Sn(f − νγ(f))‖q = O(

√
n). If now a < 1−γ

2 and

2 ∨ 2(1−γ)
γ+2a ≤ q < 1−γ

a , then, for any ε > 0,

‖Sn(f − νγ(f))‖q = O
(
n

1+ε− (1−γ−aq)
γq

)
.

(2) Assume that f is positive and non increasing on [0, 1], with f(x) ≤ C(1 − x)−a for some
a ≥ 0. If a < 1−2γ

2(1−γ) and 2 ≤ q < 2(1−γ)
γ+(1−γ)2a , then ‖Sn(f − νγ(f))‖q = O(

√
n). If a < 1

2 and

2 ∨ 2(1−γ)
γ+(1−γ)2a ≤ q < 1

a , then, for any ε > 0,

‖Sn(f − νγ(f))‖q = O
(
n

1+ε− (1−γ)(1−aq)
γq

)
.



CLT FOR UNBOUNDED FUNCTIONS OF THE INTERMITTENT MAP 15

Proof of Theorem 6.1. From Proposition 4 in Dedecker and Doukhan (2003) (see also Theorem 2.5
in Rio (2000)), we have that, for any q ≥ 2,

∥∥∥
n∑

i=1

(f(Xi)−µ(f))
∥∥∥

q
≤

√
2q

(
n‖f(X0)−µ(f)‖2

q+
n−1∑

k=1

(n−k)‖(f(X0)−µ(f))(E(f(Xk)|X0)−µ(f))‖ q
2

) 1
2
.

Assume first that f =
∑k

i=1 aigi, where
∑k

i=1 |ai| ≤ 1, and gi belongs to Mon(M, p, µ). Clearly

‖(f(X0)−µ(f))(E(f(Xn)|X0)−µ(f))‖q/2 ≤
k∑

i=1

k∑

j=1

|aiaj |‖(gi(X0)−µ(gi))(E(gj(Xn)|X0)−µ(gj))‖q/2 .

Applying Lemma 4.1, we obtain that

‖(f(X0)− µ(f))(E(f(Xn)|X0)− µ(f))‖q/2 ≤ 4M2
( p

p− q

)2/q
(2α1(n))

2(p−q)
pq .

Clearly, this inequality remains valid for any f in C(M, p, µ), and the result follows.

7. The empirical distribution function

Theorem 7.1. Let X = (Xi)i≥0 be a stationary Markov chain with invariant measure µ and transition
kernel K. Let Fn(t) = n−1

∑n
i=1 1Xi≤t and Fµ(t) = µ(]−∞, t]).

(1) If X is ergodic (in the ergodic theoretic sense) and if
∑

k>0 β1(k) < ∞, then, for any probability
π on R, the process {√n(Fn(t) − Fµ(t)), t ∈ R} converges in distribution in L2(π) to a tight
Gaussian process G with covariance function

Cov(G(s), G(t)) = Cµ,K(s, t) = µ(f (0)
t f (0)

s ) +
∑

k>0

µ(f (0)
t Kkf (0)

s ) +
∑

k>0

µ(f (0)
s Kkf

(0)
t ) .

(2) Let (D(R), d) be the space of cadlag functions equipped with the Skorohod metric d. If β2(k) =
O(k−2−ε) for some ε > 0, then the process {√n(Fn(t)−Fµ(t)), t ∈ R} converges in distribution
in (D(R), d) to a tight Gaussian process G with covariance function Cµ,K .

Corollary 7.1. Let Fn,γ(t) = n−1
∑n

i=1 1T i
γ≤t.

(1) If 0 < γ < 1/2, then, for any probability π on [0, 1], the process {√n(Fn,γ(t)−Fνγ (t)), t ∈ [0, 1]}
converges in distribution in L2(π) to a tight Gaussian process Gγ with covariance function
Cνγ ,Kγ .

(2) If 0 < γ < 1/3, the process {√n(Fn,γ(t) − Fνγ (t)), t ∈ [0, 1]} converges in distribution in
(D([0, 1]), d) to a tight Gaussian process Gγ with covariance function Cνγ ,Kγ .

Remark 7.1. Denote by ‖ · ‖p,π the Lp(π)-norm. If γ < 1/2, we have that, for any 1 ≤ p ≤ 2,

(7.7)
√

n‖Fn,γ − Fνγ‖p,π converges in distribution to ‖Gγ‖p,π .

In particular, if π = λ is the Lebesgue measure on [0, 1] and q = p/(p− 1), we obtain that

1√
n

sup
‖f ′‖q≤1

|Sn(f − νγ(f))| converges in distribution to ‖Gγ‖p,λ .
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For p = 1 and q = ∞, we obtain the limit distribution of the Kantorovič distance d1(Fn,γ , Fνγ ):

√
nd1(Fn,γ , Fνγ ) =

1√
n

sup
f∈H1,1

|Sn(f − νγ(f))| converges in distribution to
∫ 1

0
|Gγ(t)|dt .

Now if γ < 1/3, the limit in (7.7) holds for any p ≥ 1.
Note that, for Harris recurrent Markov chains, Item (2) of Theorem 7.1 holds as soon as the sum

of the β-mixing coefficients of the chain is finite. Hence, we conjecture that Item (2) of Corollary 7.1
remains true for γ < 1/2.

Proof of Theorem 7.1. Item (1) has been proved in Dedecker and Merlevède (2007, Theorem 2,
Item 2) and Item (2) in Dedecker and Prieur (2007, Proposition 2).

Acknowledgments. Many thanks to Jean-René Chazottes, who pointed out the references to Conze
and Raugi (2003) and Raugi (2004).
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[14] L. V. Kantorovič and G. Š. Rubinštĕın (1957), On a functional space and certain extremum
problems. Dokl. Akad. Nauk SSSR 115,1058-1061.

[15] C. Liverani, B. Saussol and S. Vaienti (1999), A probabilistic approach to intermittency. Ergodic
Theory Dynam. Systems. 19, 671-685.



References 17

[16] V. Maume-Deschamps (2001), Projective metrics and mixing properties on towers. Trans. Amer.
Math. Soc. 353, 3371-3389.

[17] I. Melbourne and M. Nicol (2007), Large deviations for nonuniformly hyperbolic systems. To
appear in Trans. Amer. Math. Soc.

[18] A. Raugi (2004), Étude d’une transformation non uniformément hyperbolique de l’intervalle [0, 1[.
Bull. Soc. math. France 132, 81-103.

[19] Y. Pomeau and P. Manneville (1980), Intermittent transition to turbulence in dissipative dynam-
ical systems. Commun. Math. Phys. 74, 189-197.
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