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Abstract. We consider a model Yt = σtηt in which (σt) is not independent of the noise
process (ηt), but σt is independent of ηt for each t. We assume that (σt) is stationary
and we propose an adaptive estimator of the density of ln(σ2

t ) based on the observations
Yt. Under a new dependence structure, the τ -dependency de�ned by Dedecker and
Prieur (2005), we prove that the rates of this nonparametric estimator coincide with
the rates obtained in the i.i.d. case when (σt) and (ηt) are independent. The results
apply to various linear and non linear general ARCH processes. They are illustrated by
simulations applying the deconvolution algorithm of Comte et al.(2006) to a new noise
density.
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1. Introduction

In this paper, we consider the following general ARCH-type model: ((Yt, σt))t∈N is a
strictly stationary sequence of R× R+-valued random variables, satisfying the equation

(1.1) Yt = σtηt

where (ηt)t∈Z is a sequence of independent and identically distributed (i.i.d.) random
variables with mean zero and �nite variance, and for each t ≥ 0, the random vector
(σi, ηi−1)0≤i≤t is independent of the sequence (ηi)i≥t.

Such models are classically encountered in �nancial models, when (σ2
t )t∈Z, the volatility

process of interest, is unobserved. The only available data are the demeaned or detrended
log-return process (Yt) of an asset. A large variety of parametric models have been pro-
posed since the �rst ARCH(1) model of Engle (1982), such as the GARCH(p, q) models of
Bollerslev (1986), and other extensions to be found in Duan (1997). In general, it is not
possible to compute, even in those parametric cases, the stationary density of σt. Here,
we want to use �exible and powerful nonparametric tools to obtain information on the
properties of the hidden process. More precisely, we shall build an estimator of the density
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of ln(σ2
t ) based on the data (Yt)1≤t≤n. This allows to look for its possible bimodality prop-

erties or to precise the localization of the peaks. Such a representation is of importance
for modelization purpose.

Model (1.1) is classically re-written via a logarithmic transformation:

(1.2) Zt = Xt + εt,

where Zt = ln(Y 2
t ), Xt = ln(σ2

t ) and εt = ln(η2
t ). In the context derived from the model

(1.1), Xt and εt are independent for a given t, whereas the processes (Xt)t≥0 and (εt)t∈Z
are not independent.

Our aim is the adaptive estimation of g, the common distribution of the unobserved
variables Xt = ln(σ2

t ), when the density fε of εt = ln(η2
t ) is known. More precisely we

shall build an estimator of g without any prior knowledge on its smoothness, using the
observations Zt = ln(Y 2

t ) and the knowledge of the convolution kernel fε. Since Xt and εt

are independent for each t, the common density fZ of the Zt's is given by the convolution
equation fZ = g ∗ fε, which justi�es the term �deconvolution� for the estimation of g.

It is often assumed that the noise process (ηt) is Gaussian (e.g. in van Es et al. (2005)),
but general distributions can be considered. This may be of interest if heavier or thinner
tails are suspected to be relevant. Nevertheless, for identi�ability of the statistical problem,
the density of εt is required to be known. This assumption cannot be easily removed: even
if the density of εt is completely known up to a scale parameter, Model (1.2) may be
non-identi�able as soon as the unknown density g of Xt is smoother than the density of
εt (see Butucea and Matias (2005), Section 1). For instance, the model in which g is an
unknown normal distribution and εt is a Gaussian random variable with unknown variance
is non-identi�able.

In density deconvolution of i.i.d variables the Xt's and the εt's are i.i.d. and the sequences
(Xt)t≥0 and (εt)t∈Z are independent (for short we shall refer to this case as the i.i.d. case).
In the i.i.d case, the slowest rates of convergence for estimating g are obtained for most
regular error densities. For instance, when εt is Gaussian or the log of a squared Gaussian
and g belongs to some Sobolev class, the minimax rates are negative powers of ln(n)

(see Fan (1991)). Nevertheless, it has been noticed by several authors (see Pensky and
Vidakovic (1999), Butucea (2004), Butucea and Tsybakov (2005), Comte et al. (2006))
that the rates are improved if g has stronger smoothness properties.

In the setting of Model (1.2), the classical assumptions of independence between the
processes (Xt)t≥0 and (εt)t∈Z are no longer satis�ed and the tools for deconvolution have
to be revisited. Our estimator of g is constructed by minimizing an appropriate penalized
contrast function only depending on the observations and on fε. It is chosen in a purely
data-driven way among a collection of non-adaptive estimators. We start by the study of
those non-adaptive estimators and show that their mean integrated squared error (MISE)
has the same order as in the i.i.d. case. Next we prove that the MISE of our adaptive
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estimator is of the same order as the MISE of the best non-adaptive estimator in the
collection, up to some possible negligible logarithmic loss in one case.

In their 2005 paper, van Es et al. (2005) have considered the case where ηt is Gaussian,
the density g of Xt is twice di�erentiable, and the process (Zt, Xt) is α-mixing. Here we
show that, if g happens to be more regular (e.g. if g is a gaussian density, or the log of
a squared gaussian exactly like the noise process εt), then their procedure is suboptimal
and the bandwidth they propose is the not the best one. This is the reason why we do
not make any assumption on the smoothness of g: this is the advantage of the adaptive
procedure.

We also consider a new type of dependence property, which is satis�ed by many ARCH
processes. We can prove all results under the classical β-mixing assumption, satis�ed by
general ARCH models, as recalled in Doukhan (1994) and described in more details in
Carrasco and Chen (2002). But we choose to illustrate that new recent coe�cients can
be used in our context, which allow an easy characterization of the dependence properties
in function of the parameters of the models. Those new dependence coe�cients, recently
de�ned and studied in Dedecker and Prieur (2005), are interesting and powerful because
they require much lighter conditions on the models. Such ideas have been popularized by
Ango Nzé and Doukhan (2004) and Doukhan et al. (2006). For instance, these coe�cients
allow to deal with the general ARCH(∞) processes de�ned by Giraitis et al. (2000).

To be complete, we also give a small simulation study when εt is the log of the square of
a standard gaussian. We check the e�ect of misspeci�cation of the error distribution and
we show that Comte et al.(2005)'s algorithm applies to ARCH processes.

The paper is organized as follows. The estimator is de�ned in Section 2. The MISE
bounds are given in Section 3 under some dependence properties. Examples and simulation
results are described in Section 4. All the proofs are given in Section 5.

2. The estimators

For two complex-valued functions u and v in L2(R) ∩ L1(R), let u∗(x) =
∫

eitxu(t)dt,
u ∗ v(x) =

∫
u(y)v(x − y)dy, and 〈u, v〉 =

∫
u(x)v(x)dx with z the conjugate of a com-

plex number z. We also denote by ‖u‖1 =
∫ |u(x)|dx, ‖u‖2 =

∫ |u(x)|2dx, and ‖u‖∞ =

supx∈R |u(x)|.
In the sequel, we consider Model (1.1) and its equivalent representation (1.2) and we

describe the estimation strategy for g the density of the Xi's based on observations Zi,
i = 1, . . . , n and on the knowledge of fε, the density of the εi's.

2.1. Construction of the minimum contrast estimators. First, the heuristics for the
construction of the estimators are the following. Mean-square type contrasts are deter-
mined by following the idea that we look for a function t such that its L2-distance to the
function g is minimum. Since ‖t − g‖2 = ‖t‖2 − 2〈t, g〉 + ‖g‖2, this amounts to minimize
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‖t‖2− 2〈t, g〉, in a well chosen class of functions t. With Parseval identity, 〈t, g〉 = 〈t∗, g∗〉.
Now, if fZ is the common density of the Zi's, then fZ = fε ∗ g, so that f∗Z = f∗ε g∗ and
g∗ = f∗Z/f∗ε , where f∗ε is assumed to be known. Moreover f∗Z(x) = E(eixZ) can be replaced
by its empirical counterpart (1/n)

∑n
k=1 eixZk . We can now de�ne the contrast function

γn(t) =
1
n

n∑

i=1

[‖t‖2 − 2u∗t (Zi)
]
, with ut(x) =

1
2π

(
t∗(−x)
f∗ε (x)

)
,

under the assumption

(2.1) fε belongs to L2(R) and is such that f∗ε (x) 6= 0 for any x in R.

We have E [u∗t (Zi)] = (2π)−1〈f∗Z/f∗ε , t∗〉 = 〈t, g〉, where the last equality follows from the
Parseval identity. It follows that E(γn(t)) = ‖t− g‖2 − ‖g‖2 is minimal when t = g.

Clearly the functions t must be chosen such that u∗t (x) is well de�ned. Since 1/f∗ε can
be non integrable (think of a Gaussian density), a solution is to choose the functions t such
that t∗ exists and has compact support.

The most simple spaces that suit to that aim are often studied in preliminary wavelet
courses (see e.g. Meyer (1990), p.22) and are the following. Let ϕ(x) = sin(πx)/(πx). The
Fourier transform of ϕ is obtained by noticing that the Fourier transform of 1I[−π,π](x)/2π

is equal to ϕ and by using the inverse Fourier formula, and thus ϕ∗(x) = 1I[−π,π](x). For
m ∈ N and j ∈ Z, set ϕm,j(x) =

√
mϕ(mx − j). The functions {ϕm,j}j∈Z constitute an

orthonormal system in L2(R): indeed ϕ∗m,j(x) = eijx/mϕ∗(x/m)/
√

m and 〈ϕm,j , ϕm,k〉 =

(2π)−1〈ϕ∗m,j , ϕ
∗
m,k〉 = δj,k. Therefore, if we de�ne

Sm = span{ϕm,j , j ∈ Z},m ∈ N,

the space Sm is exactly the subspace of L2(R) of functions having a Fourier transform
with compact support contained in [−πm, πm]. The orthogonal projection of g on Sm is
gm =

∑
j∈Z am,j(g)ϕm,j where am,j(g) =< ϕm,j , g >. Now, we can not describe practical

algorithms involving in�nite representations. Thus, to obtain representations having a
�nite number of "coordinates", we introduce

S(n)
m = span {ϕm,j , |j| ≤ n} .

The family {ϕm,j}|j|≤n is an orthonormal basis of S
(n)
m and the orthogonal projection of g

on S
(n)
m is given by g

(n)
m =

∑
|j|≤n am,j(g)ϕm,j . Subsequently a space S

(n)
m will be referred

to as a "model" as well as a "projection space".
Then, for an arbitrary �xed integer m, an estimator of g belonging to S

(n)
m is de�ned by

(2.2) ĝ(n)
m = arg min

t∈S
(n)
m

γn(t).

Moreover, it is easy to see that

ĝ(n)
m =

∑

|j|≤n

âm,jϕm,j with âm,j =
1
n

n∑

i=1

u∗ϕm,j
(Zi), and E(âm,j) =< g, ϕm,j >= am,j(g).
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2.2. Minimum penalized contrast estimator. For the sake of completeness in the
description of our estimation strategy, let us give also the last step. We show in the
following that a �good� choice of m exists, but results from a squared bias - variance
compromise in which the bias is unknown. The end of the procedure is the analogue of a
bandwidth selection strategy in kernel estimation and gives a criterion to select m.

The minimum penalized estimator of g is de�ned as g̃ = ĝ
(n)
m̂g

where m̂g is chosen in a
purely data-driven way. The main point of the estimation procedure lies in the choice of
m = m̂ (or equivalently in the choice of a model S

(n)
m̂ ) involved in the estimators ĝ

(n)
m given

by (2.2), in order to mimic the oracle parameter

m̆g = arg min
m
E ‖ ĝ(n)

m − g ‖2 .(2.3)

The model selection is performed in an automatic way, using the following penalized criteria

(2.4) g̃ = ĝ
(n)
m̂ with m̂ = arg min

m∈{1,··· ,mn}

[
γn(ĝ(n)

m ) + pen(m)
]
,

where pen(m) is a penalty function that depends on f∗ε (·) through ∆(m) de�ned by

∆(m) =
1
2π

∫ πm

−πm

1
|f∗ε (x)|2 dx.(2.5)

The key point in the dependent context is to �nd a penalty function not depending on the
dependence coe�cients such that

E ‖ g̃ − g ‖2≤ C inf
m∈{1,··· ,mn}

E ‖ ĝ(n)
m − g ‖2 .

In that way, the estimator g̃ is adaptive since it achieves the best rate among the estimators
ĝ
(n)
m , without any prior knowledge on the smoothness on g.

3. Density estimation bounds

3.1. Mixing assumptions. Clearly, the process of interest after the logarithmic transfor-
mation (Zt = ln(Y 2

t ), Xt = ln(σ2
t )) is

(Wt)t∈Z = ((Zt, Xt))t∈Z(3.1)

and involves dependent variables. We omit the presentation of the classical β-mixing
properties, and describe instead a new τ -dependence notion which reveals useful for a
large class of models.

Let (Ω,A,P) be a probability space. Let W be a random vector with values in a Banach
space (B, ‖ · ‖B), and let M be a σ-algebra of A. Let PW |M be a conditional distribution
of W given M, and let PW be the distribution of W . Let Λ1(B) be the set of 1-Lipschitz
functions from (B, ‖ · ‖B) to R. If E(‖W‖B) < ∞, de�ne

τ(M,W ) = E
(

sup
f∈Λ1(B)

|PW |M(f)− PW (f)|
)

,

as in Dedecker and Prieur (2005).
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Let (Wt)t≥0 be a strictly stationary sequence of R2-valued random variables. On R2, we
put the norm ‖x− y‖R2 = |x1 − y1|+ |x2 − y2|. For any k ≥ 0, de�ne the coe�cients

(3.2) if E(‖W0‖R2) < ∞, τ1(k) = τ(σ(W0),Wk).

On (R2)l, we put the norm ‖x − y‖(R2)l = l−1(‖x1 − y1‖R2 + · · · + ‖xl − yl‖R2). Let
Mi = σ(Wk, 0 ≤ k ≤ i). If E(‖W1‖R2) < ∞, the coe�cients τ∞(k) are de�ned by

(3.3) τ∞(k) = sup
i≥0

sup
l≥1

{τ(Mi, (Wi1 , . . . , Wil)), i + k ≤ i1 < · · · < il} .

We say that the process (Wt)t≥0 is τ -dependent if the coe�cients τ∞(k) tend to zero as
k tends to in�nity. We say that it is geometrically τ -dependent if there exist a < 1 and
C > 0 such that τ∞(k) ≤ Cak for all k ≥ 1.

>From now on, the dependence coe�cients are de�ned as in (3.2) and (3.3) with
(Wt)t∈Z = ((Zt, Xt))t∈Z. Moreover, we summarize the dependency assumptions for Model
(1.2):

(3.4)





- The εi's are i.i.d.,
- The random vector (Xi, εi−1)0≤i≤t is independent of the sequence (εi)i≥t,
- The process (Wt)t∈Z is strictly stationary and τ -dependent.

3.2. Risk bound of the minimum contrast estimators ĝ
(n)
m . Subsequently, the density

g is assumed to satisfy the following assumption:

(3.5) g ∈ L2(R), and there exists M2 > 0,

∫
x2g2(x)dx ≤ M2 < ∞.

For instance, (3.5) is ful�lled if g is bounded by M0 and E(X2
1 ) ≤ M1 < +∞, with

M2 = M0M1. Assumption (3.5) is due to the construction of the estimator on S
(n)
m instead

of Sm, and is not very restrictive.
The order of the MISE of ĝ

(n)
m is given in the following proposition.

Proposition 3.1. If (2.1) and (3.5) hold, then ĝ
(n)
m de�ned by (2.2) satis�es

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m2(M2 + 1)
n

+
2∆(m)

n
+

2Rm

n
,

where ∆(m) is de�ned by (2.5) and

(3.6) Rm =
1
π

n∑

k=2

∫ πm

−πm

∣∣∣Cov
(
eixZ1 , eixXk

)

f∗ε (−x)

∣∣∣dx.

Moreover, Rm ≤ Rm,τ , where Rm,τ = πm∆1/2(m)
∑n−1

k=1 τ1(k), with τ1 de�ned by (3.2),
and where

(3.7) ∆1/2(m) =
1
2π

∫ πm

−πm

1
|f∗ε (x)|dx.
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This proposition requires several comments.
The order of the risk is given by a bias term ‖ gm− g ‖2 +m2(M2 +1)/n and a variance

term 2∆(m)/n + 2Rm/n.
The main part of the bias term is ‖g − gm‖2. It is noteworthy that

(3.8) ‖g − gm‖2 =
∫

|x|≥πm
|g∗(x)|2dx,

so that the order of the bias depends on the rate of decay of g∗(x). The additional term
m2(M2 + 1)/n is negligible with respect to the variance term.

The variance term 2∆(m)/n + 2Rm/n depends on the rate of decay of the Fourier
transform of fε. It is the sum of the variance term appearing in density deconvolution for
i.i.d. variables, 2∆(m)/n, and of an additional term, 2Rm/n. This last term Rm involves
the dependency coe�cients and the quantity ∆1/2(m), which is speci�c to the ARCH
problem. The point is that the main order term in the variance part is ∆(m)/n, which
does not involve the dependency coe�cients. In other words, the dependency coe�cients
only appear in front of the additional and negligible term, speci�c to ARCH models,
∆1/2(m)/n.

3.3. Discussion about the rates. Now, we need to parameterize the rate of decay of f∗ε
and g∗ to evaluate the order of the variance term ∆(m)/n and of the main part of the bias
term given by (3.8).

More precisely, we assume that fε is such that: there exist nonnegative numbers κ0, γ,
µ, and δ such that the fourier transform f∗ε of fε satis�es

(3.9) κ0(x2 + 1)−γ/2 exp{−µ|x|δ} ≤ |f∗ε (x)| ≤ κ′0(x
2 + 1)−γ/2 exp{−µ|x|δ}.

Since fε is known, the constants µ, δ, κ0, and γ de�ned in (3.9) are known. The class
described by (3.9) is very general. By convention, we set δ = 0 if µ = 0. When δ = 0

in (3.9), the errors are called �ordinary smooth� errors. When µ > 0 and δ > 0, they are
called �super smooth�. An example of ordinary smooth density is the Laplace distribution,
for which f∗ε (x) = 1/(1 + x2) so that δ = µ = 0 and γ = 2. The standard examples for
super smooth densities are Gaussian (f∗ε (x) = e−x2/2 so that γ = 0, δ = 2, µ = 1/2) or
Cauchy (f∗ε (x) = e−|x|, so that γ = 0, δ = 1, µ = 1) distributions. When εt = ln(η2

t )

with ηt ∼ N (0, 1) as in van Es et al. (2005), then f∗ε (x) = 2ixΓ(1/2 + ix)/
√

π and with
Stirling formula |f∗ε (x)| ∼+∞

√
2/ee−π|x|/2. Then εt is super-smooth with δ = 1, γ = 0

and µ = π/2. Note that, in that case, E(ε1) = − ln(2) − γ where γ is the Euler constant
and Var(ε1) = π2/2.

Moreover, the square integrability of fε and (3.9) require that γ > 1/2 when δ = 0.
Now, concerning the main variance term, if f∗ε satis�es (3.9), then ∆(m) given by (2.5)

has the same order as

Γ(m) = (1 + (πm)2)γ(πm)1−δ exp
{

2µ(πm)δ
}

,
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up to some constant bounded by

λ1(fε, κ0) =
1

κ2
0πR(µ, δ)

, where R(µ, δ) = 1I{δ=0} + 2µδ1I{δ>0}.(3.10)

Also, we describe the smoothness properties of g by the set

(3.11) Ss,r,b(C1) =
{

ψ such that
∫ +∞

−∞
|ψ∗(x)|2(x2 + 1)s exp{2b|x|r}dx ≤ C1

}

for s, r, b unknown non negative numbers. By convention, if b = 0 or r = 0, we set both to
0. When r = 0, the class Ss,r,b(C1) corresponds to a Sobolev ball. Heuristically, a function
ψ admitting k continuous derivatives is such that |ψ∗(x)| = O(|x|−k) when x tends to
in�nity and thus belongs to Ss,0,0(C1) for s < k − 1/2. When r > 0, b > 0 functions
belonging to Ss,r,b(C1) are in�nitely many times di�erentiable. For instance ψ(x) = e−x2/2

belongs to Ss,b,2(C1) for any b < 1/2 and any s ≥ 0.
Now, concerning the main bias term, it follows from (3.8) that if g belongs to a space

Ss,r,b(C1), then

‖g − gm‖2 ≤ C

2π
(m2π2 + 1)−s exp{−2bπrmr},

where C is a constant depending on C1.
As a consequence, the rates resulting from Proposition 3.1 under (3.9) and (3.11) are

deduced from the following proposition.

Corollary 3.1. Assume that (3.9), (2.1), and (3.5) hold, and that g belongs to Ss,r,b(C1)

de�ned by (3.11). Assume that δ = 0, γ > 1 or δ > 0 in (3.9), and that
∑

k≥1 τ1(k) < +∞.
Then ĝ

(n)
m de�ned by (2.2) satis�es

(3.12) E‖g−ĝ(n)
m ‖2 ≤ C1

2π
(m2π2+1)−s exp{−2bπrmr}+2λ1(fε, κ0)Γ(m)

n
+

C2

n
Γ(m)om(1),

where C1 and C2 are �nite constants. The constant C2 depends on
∑

k≥1 τ1(k).

The rate of convergence of ĝ
(n)
m̆ is the same as the rate for density deconvolution for i.i.d.

sequences. Moreover, our context encompasses the particular case considered by van Es
et al. (2005). Table 1 gives a summary of these rates obtained when minimizing the right
hand of (3.12). The m̆g denotes the corresponding minimizer (see 2.3).

If g belongs to a classical Sobolev class (r = 0), the rates range from negative powers
of n when the errors are ordinary smooth, to negative powers of ln(n) if the errors are
super-smooth. But if the function to estimate becomes super-smooth also (case r > 0),
the rates become much better in both cases. When r > 0, δ > 0 the value of m̆g is not
explicitly given. It is obtained as the solution of the equation

m̆2s+2γ+1−r
g exp{2µ(πm̆g)δ + 2bπrm̆r

g} = O(n).

Consequently, the rate of ĝ
(n)
m̆g

is not easy to give explicitly and depends on the ratio r/δ.
We refer to Comte et al. (2006) for further discussions about those rates. We refer to
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Table 1. Choice of m̆g and corresponding rates under Assumptions (3.9)
and (3.11).

fε

δ = 0 δ > 0

ordinary smooth supersmooth

g

r = 0

Sobolev(s)
πm̆g = O(n1/(2s+2γ+1))

rate = O(n−2s/(2s+2γ+1))

πm̆g = [ln(n)/(2µ + 1)]1/δ

rate = O((ln(n))−2s/δ)

r > 0

C∞
πm̆g = [ln(n)/2b]1/r

rate = O

(
ln(n)(2γ+1)/r

n

)
m̆g solution of

m̆2s+2γ+1−r
g exp{2µ(πm̆g)δ + 2bπrm̆r

g}
= O(n)

Lacour (2006b) for explicit formulae for the rates in the special case r > 0 and δ > 0.

Example. Consider the case of van Es et al (2005)'s paper, where f∗ε satis�es (3.9)
with δ = 1, µ = π/2 and γ = 0. They consider that the regularity of g is such that g

belongs to Ss,r,b(C1) with s at most 3/2 and r = 0. This is the up-right case of Table
1 and leads to a logarithmic rate. Now, if for instance g∗(x) is of order e−π|x|/2 like
the noise, then the squared bias-variance compromise C1e

−πm + C2e
πm/n leads to choose

m̆ = ln(n)/(2π) and the rate is of order 1/
√

n, which is better than logarithmic. If g is
Gaussian, then the squared bias - variance compromise C1m

−1e−π2m2/2 + C2e
πm/n leads

to choose m̆ = 2
√

ln(n)/π and the rate if of order e2
√

ln(n)/n = o(1/n1−ε) for any ε > 0,
which is even better than the previous one. This example is another way to see the interest
of the adaptive procedure, which enables to face any regularity for g, without requiring to
know it.

3.4. Adaptive bound. Theorem 3.1 below gives a general bound which holds under weak
dependence conditions, for ε being either ordinary or super smooth.

For a > 1, let pen(m) be de�ned by

(3.13) pen(m) =





48a
∆(m)

n
if 0 ≤ δ < 1/3,

16aλ3
∆(m) (πm)min((3δ/2−1/2)+,δ))

n
if δ ≥ 1/3,

where ∆(m) is de�ned by (2.5). The constant λ1(fε, κ0) is de�ned in (3.10) and

(3.14) λ3 = 1 +
98µ

λ1(fε, κ′0)

(
(
√

2 + 8)‖fε‖∞κ−1
0

√
λ1(fε, κ0)1I0≤δ≤1 + 2λ1(fε, κ0)1Iδ>1

)
.

The important point here is that λ3 is known. Hence the penalty is explicit up to a nu-
merical multiplicative constant. This procedure has already been practically studied for
independent sequences (Xt)t≥1 and (εt)t≥1 in Comte et al. (2005, 2006). In particular,
the practical implementation of the penalty functions, and the calibration of the constants
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have been studied in the two previously mentioned papers. Moreover, it is shown therein
that the estimation procedure is robust to various types of dependence, whether the errors
εi's are ordinary or super smooth (see Tables 4 and 5 in Comte et al. (2005)).

In order to bound up pen(m), we impose that

πmn ≤





n1/(2γ+1) if δ = 0[
ln(n)
2µ

+
2γ + 1− δ

2δµ
ln

(
ln(n)
2µ

)]1/δ

if δ > 0.
(3.15)

Subsequently we set

Ca = max(κ2
a, 2κa) where κa = (a + 1)/(a− 1).(3.16)

Theorem 3.1. Consider Model (1.2) under (3.1)-(3.4). Assume that fε satis�es (3.9)
and (2.1), that g satis�es (3.5), and that mn satis�es (3.15). Consider the collection of
estimators ĝ

(n)
m de�ned by (2.2) with 1 ≤ m ≤ mn and pen(m) de�ned by (3.13). Assume

either that

(1) δ = 0, γ ≥ 3/2 in (3.9) and τ∞(k) = O(k−(1+θ)) for some θ > 3 + 2/(1 + 2γ)

(2) or δ > 0 in (3.9) and τ∞(k) = O(k−(1+θ)) for some θ > 3,

where τ∞ is de�ned as in (3.3). Then the estimator g̃ = ĝ
(n)
m̂ de�ned by (2.4) satis�es

(3.17) E(‖g − g̃‖2) ≤ Ca inf
m∈{1,··· ,mn}

[
‖g − gm‖2 + pen(m) +

m2(M2 + 1)
n

]
+

C

n
,

where Ca is de�ned in (3.16) and C is a constant depending on fε, a, and
∑

k≥1 τ∞(k).

Remark. The result of Theorem 3.1 holds under a similar (but slightly weaker) β-mixing
condition.

The estimator g̃ is adaptive in the sense that it is purely data-driven. This is due to the
fact that pen(.) is explicitly known. In particular, its construction does not require any
prior smoothness knowledge on the unknown density g and does not use the dependency
coe�cients. This point is important since all quantities involving dependency coe�cients
are usually not tractable in practice.

Moreover, one can compare the order of the penalty to the variance order ∆(m)/n in
the light of Table 1. They are equal for 0 ≤ δ ≤ 1/3: this means that, asymptotically,
the right-hand side of (3.17) realizes an automatic squared-bias variance compromise. For
δ > 1/3, the order penalty has the order of the variance increased by a power of m, but
this does not change the choice of πm̆g if r = 0 and thus the rate is unchanged then; for
r > 0, the optimal choice of m̆ in the case δ > 0 is of order ln(n) and the rate is always
faster than logarithmic. Therefore, if a loss occurs, it is negligible, when compared to the
rate.
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To summarize, the main result in Theorem 3.1 shows that the MISE of g̃ automatically
achieves the best squared-bias variance compromise (possibly up to some logarithmic fac-
tor) among the estimators ĝ

(n)
m . Consequently, it achieves the best rate among the rates

of the ĝ
(n)
m , even from a non-asymptotical point of view. This non-asymptotic feature is

important since the m's selected in practice are small and far away from asymptotic. For
practical illustration of this point in the case of density deconvolution of i.i.d. variables,
we refer to Comte et al. (2005, 2006).

As a conclusion, the estimator g̃ has the same rate as in the i.i.d. case, with an explicit
penalty function not depending on the dependence coe�cients.

3.5. Further comments. We �rst show how the density f of σ2
t can be estimated. Since

for u > 0, f(u) = g(ln(u))/u, we choose the estimator

f̂(u) =
g̃(ln(u))

u
, for u > 0.

A change of variables gives the equality

E
(∫ ∞

0
|f̂(t)− f(t)|2tdt

)
= E(‖g̃ − g‖2) .

Note that the term on left hand is a MISE for f̂ with respect to the measure tdt. In
particular, it follows that for any a > 0,

E
(∫ ∞

a
|f̂(t)− f(t)|2dt

)
≤ 1

a
E(‖g̃ − g‖2) ,

which shows that the usual MISE for f̂ on any interval [a,∞[ tends to 0 at least with the
same rate as E(‖g̃ − g‖2).

Secondly, we can mention that the procedure can be generalized in order to estimate
the joint distribution of (σt, σt+1) or more precisely (Xt, Xt+1). If G denotes the bivariate
density of (Xt, Xt+1), then the extension is conducted as follows. Let

VT (x, y) =
1

4π2

∫∫
eixu+iyv T ∗(−u,−v)

f∗ε (u)f∗ε (v)
dudv, T ∗(u, v) =

∫∫
eiux+ivyT (x, y)dxdy,

and

Γn(T ) =
1
n

n∑

k=1

[‖T‖2 − 2VT (Zk, Zk+1)],

for a function T square integrable on R2. Then we would de�ne Ĝm = arg min Γn(T ) for T

belonging to product spaces spanned by (ϕm,j ⊗ ϕm,k)(x, y) := ϕm,j(x)ϕm,k(y). In other
words,

Ĝm(x, y) =
∑

j,k

Âj,kϕm,j(x)ϕm,k(y), Âj,k =
1
n

n∑

i=1

Vϕm,j⊗ϕm,k
(Zi, Zi+1).

Model selection is then performed via penalization. In the context where the process X

is mixing, but globally independent of the noise process (εt), the procedure is studied by
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Lacour (2006a). It is likely that the multivariate procedure would work in our context as
well, but the technical price sets this question beyond the scope of the present paper.

Lastly, it is possible to deal with dependent errors, but again if the processes (Xt)t and
(εt)t are independent. This context is not developed because then, the presence of the
unknown mixing coe�cients in the variance bound and then in the penalty function is
unavoidable. The procedure is then not theoretically satisfactory.

4. Example of β and τ -mixing processes and illustration of the method

4.1. Examples of mixing models. In this section, we give examples of ARCH models
for which the result of Theorem 3.1 holds.

A particular case of model (1.1) is

(4.1) Yt = σtηt, with σt = f(ηt−1, ηt−2, . . .)

for some measurable function f . Another important case is

(4.2) Yt = σtηt, with σt = f(σt−1, ηt−1) and σ0 independent of (ηt)t≥0,

that is σt is a stationary Markov chain. For the sake of simplicity, we shall always assume
here that E(η2

0) = 1.
We begin with models satisfying a recursive equation, whose stationary solution satis�es

(4.1). The original ARCH model was introduced by Engle (1982) and generalized by
Bollerslev (1986) with the class of GARCH(p, q) models de�ned by Yt = σtηt and

(4.3) σ2
t = a +

p∑

i=1

aiY
2
t−i +

q∑

j=1

bjσ
2
t−j

where the coe�cients a, ai, i = 1, . . . , p and bj , j = 1, . . . , q are all positive real numbers.
Those processes were studied from the point of view of existence and stationarity of solu-
tions by Bougerol and Picard (1992a, 1992b) and Ango Nzé (1992). Under the condition∑p

i=1 ai +
∑q

j=1 bj < 1, this model has a unique stationary solution of the form (4.1).
Many extensions have been proposed since then. A general linear example of model is

given by the ARCH(∞) model described by Giraitis et al. (2000):

(4.4) σ2
t = a +

∞∑

j=1

ajY
2
t−j ,

where a ≥ 0 and aj ≥ 0. Again if
∑

j≥1 aj < 1, then there exists a unique strictly
stationary solution to (4.4) of the form (4.1).

For the models satisfying (4.2), let us cite �rst the so-called augmented GARCH(1, 1)

models introduced by Duan (1997):

(4.5) Λ(σ2
t ) = c(ηt−1)Λ(σ2

t−1) + h(ηt−1),

where Λ is an increasing and continuous function on R+. We refer to Duan (1997) for nu-
merous examples of more standard models belonging to this class. There exists a stationary
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solution to (4.5), provided c satis�es the condition A∗2 given in Carrasco and Chen (2002)
(this condition is satis�ed as soon as E(|c(η0)|s) < 1 and E(|h(η0)|s) < ∞ for integer s ≥ 1,
see the condition A2 of the same paper).

An example of the model (4.5) is the threshold ARCH model (see Zakoïan (1993)):

(4.6) σt = a + bσt−1ηt−11I{ηt−1>0} − cσt−1ηt−11I{ηt−1<0}, a, b, c > 0

for which c(ηt−1) = bηt−11I{ηt−1>0}−cηt−11I{ηt−1<0} and h = a. In particular, the condition
for the stationarity is satis�ed as soon as b ∨ c < 1.

Other models satisfying (4.2) are the non linear ARCH models (see Doukhan (1994), p.
106-107), for which:

(4.7) σt = f(σt−1ηt−1).

There exists a stationary solution to (4.7) provided that the density of η0 is positive on a
neighborhood of 0 and lim sup|x|→∞ |f(x)/x| < 1.

Now, for models (4.3)-(4.7), the following results can be deduced from the literature. If
we assume that in all cases the ηt's are centered with unit variance and admit a density
with respect to the Lebesgue measure, then

• the process ((Yt, σt))t∈Z de�ned by Model (4.3) under
∑p

i=1 ai +
∑q

j=1 bj < 1 (see
Carrasco and Chen (2000, 2002)),

• the process ((Yt, σt))t∈Z de�ned by Model (4.5) under: the density of η0 is positive
on an open set containing 0; c and h are polynomial functions; there exists an
integer s ≥ 1 such that |c(0)| < 1, E(|c(η0)|s) < 1, and E(|h(η0)|s) < ∞. See
Proposition 5 in Carrasco and Chen (2002),

• the process ((Yt, σt))t∈Z de�ned by Model (4.6) if 0 < b ∨ c < 1,
• the process ((Yt, σt))t∈Z de�ned by Model (4.7) if the density of η0 is positive
on a neighborhood of 0 and lim sup|x|→+∞ |f(x)/x| < 1 (see Doukhan (1994),
Proposition 6 page 107),

have dependence properties under which the risk bound (3.17) of Theorem 3.1 holds,
provided that the other assumptions are ful�lled. (More precisely, the processes are then
geometrically β-mixing.)

Note that some other extensions to nonlinear models having stationarity and dependency
properties can be found in Lee and Shin (2005).

Concerning more speci�cally the τ -dependence, we can prove the following result that
relies on a more general property given in Section 5.6.

Proposition 4.1. Let Yt and σt satisfy either (4.1) or (4.2). Assume that σ2
0 and η2

0 admit
bounded densities and that E(η2

0) = 1.
1) For the ARCH(∞) Model (4.4), the following rates for ((Xt, Zt))t≥0 hold:
• If aj = 0, for j ≥ J , then ((Xt, Zt))t≥0 is geometrically τ -dependent.
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• If aj = O(bj) for some b < 1 then τ∞(n) = O(κ
√

n) for some κ < 1.
• If aj = O(j−b) for some b > 1 then τ∞(n) = O(n−b/2(ln(n))b+2).

2) For Model (4.2), if there exists κ < 1 such that

(4.8) E(|(f(x, η0))2 − (f(y, η0))2|) ≤ κ|x2 − y2| ,
then ((Xt, Zt))t>0 is geometrically τ dependent with τ∞(n) = O(n(

√
κ)n).

For more general models than (4.4), we refer to Doukhan et al. (2006). An example of
Markov chain satisfying (4.8) is the autoregressive model σ2

t = h(σ2
t−1) + r(ηt−1) for some

κ-lipschitz function h.

4.2. Illustration of the method. In this Section, we use Matlab programs that can be
found on Yves Rozenholc's page: http://www.math-info.univ-paris5.fr/∼rozen/.

In their 2005 paper, Comte et al. (2005) provide a simulation study for deconvolution
in the i.i.d. case. In this paper, the authors have considered various signal densities
g to estimate, and two types of errors: Gaussian and Laplace. We add here the case
εt ; ln[(N (0, 1))2]. We refer to Comte et al. (2005) for the values of the constants in the
penalty and similarly, we take for the last case

pen(m) =
(
1 +

ln(πm)2.5

(1 + σ2
ε)πm

+ πm
)∫ πm

−πm

dx

|f∗ε (x)|2
where σ2

ε is the (known) variance of ε1. Many replications have been done in this context
and the reader is referred to Comte et al. (2006, 2005) for details.

Here, we just give a few illustrations for the case εt ; ln[(N (0, 1))2] (which implies
that |f∗ε (x)| = |Γ(1 + ix)/

√
π|). More precisely, we consider three independent and three

dependent models. In the three independent models, Zi = Xi + ln(η2
i ) with i.i.d N (0, 1)

ηi's and i.i.d. Xi's, and
M1 Xi has density 0.6g1 + 0.4g2 with g1 ; N (−2, 4) and g2 ; N (6, 4),
M2 Xi has density 0.6g1 + 0.4g2 with g1 ; N (−2, 1) and g2 ; N (6, 1),
M3 Xi ; N (0, 9).

The �rst two models are chosen to compare the impact of the empirical signal to noise
(s2n) ratio de�ned by s2n = v̂ar(Z)/σ2

ε − 1, where v̂ar(Z) is the empirical variance of the
observations (note that s2n is an estimation of the true signal to noise ratio var(X)/σ2

ε).
Model M1 has s2n= 5.6 and s2n= 1.94 for M2, in a di�cult bimodal case. For M3,
s2n= 1.66 but the curve is easier to estimate. The dependent models are:

M4 GARCH(1,1) process (i.e. p = q = 1 in (4.3)) with parameter values a = 1, a1 =

0.7, b1 = 0.2 (as in van Es et al. (2005)),
M5 GARCH(1,1) process (p = q = 1 in (4.3)) with parameter values a = 5, a1 = 0.79

and b1 = 0.2.
M6 Yt = σtηt and σ2

t = τ2σ2
t−1 + 1/η2

t−1, with i.i.d. N (0, 1) variables ηt and τ2 = 0.5

or τ2 = 0.8 (de Vries's (1991) example, equation (10)).
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Figure 1. Left: x 7→ |f∗1 (x)| = 1/(1 + x2) full line (green), x 7→ |f∗2 (x)| =
e−x2/2 dotted line (blue), x 7→ |f∗ε (x)| = |Γ(1/2 + ix)/

√
π| dashed-dotted

line (red). Right: Deconvolution of mixed normals, n = 1000 data. True
density, full line. Estimator computed with the right characteristic function
f∗ε , small dotted line (blue). Estimator computed with f∗2 instead of f∗ε ,
big dotted line (red). Estimator computed with with f∗1 instead of f∗ε ,
dashed-dotted line (green).
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Figure 2. Deconvolution of a mixed normal (right) and of a normal (left)
density, n = 1000 data. True density, full line. Estimator computed with
the right characteristic function f∗ε , small dotted line (blue). Estimator
computed with f∗2 instead of f∗ε , big dotted line (red). Estimator computed
with f∗1 instead of f∗ε , dashed-dotted line (green).

First, we consider the problem of misspeci�cation of the noise density. Figure 1-left plots
the modulus of the characteristic function of the Laplace distribution f1, of the N (0, 1)

distribution f2 and of the noise density fε. Figure 1-right shows the true density g and
the estimators computed with f∗ε (true characteristic function of fε), f∗1 and f∗2 (wrong
characteristic functions of fε) for M1. Figure 2-left and Figure 2-right show the same
picture for M2 and M3 respectively. Figure 2-left shows clearly that if the estimator is
computed with a wrong characteristic function of fε, then it can be really far from the true
distribution g. This is not surprising since we have recalled in the introduction that if fε

is not completely known, then the model may be non identi�able.
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Figure 3. Deconvolution of two GARCH processes (top) and of two de
Vries model (bottom). Estimated curve and optimal histogram on the direct
data ln(σ2

t ) for n = 1000 simulated data.

For the dependent processes, as the true stationary density is generally unknown, we
compare with the optimal histogram selected with Birgé and Rozenholc's (2006) adaptive
procedure using the direct data ln(σ2

t ). This histogram is a reliable indication of the shape
of the true density, all the more that it is based on the direct data (which are available
only in the simulation context). For M4, we obtain a good result. Figure 3-top-left shows
the estimated curve based on the ln(Y 2

t ) data. We can see that the peak is slightly cut.
The result is better in Figure 3-top-right (model M5), when s2n increases (it reaches 0.35
instead of 0.13 in the previous case). For M6, we choose τ2 = 0.5 (Figure 3-bottom-left)
and τ2 = 0.8 (Figure 3-bottom-right) and obtain a signal to noise ratio which is equal to
0.6 (left) and 1.34 (right) in Figure 3-bottom. Here, the procedure works well, which shows
that the penalty is well calibrated.

5. Proofs

5.1. Two useful tools in the dependent context. We �rst recall the coupling property
associated with the dependence coe�cients. Assume that Ω is rich enough, which means
that there exists U uniformly distributed over [0, 1] and independent of M∨σ(W ). There
exist aM∨σ(U)∨σ(W )-measurable random variable W ? distributed as W and independent



ADAPTIVE DENSITY ESTIMATION FOR ARCH-TYPE MODELS 17

of M such that

(5.1) τ(M,W ) = E(‖W −W ?‖B) .

Equality in (5.1) has been established in Dedecker and Prieur (2005), Section 7.1.
As consequence of the coupling property (5.1), we have the following covariance inequal-

ity. Let ‖ · ‖∞,P be the L∞(Ω,P)-norm. For two measurable functions f, h from R to C,
and if Lip(h) is the Lipschitz coe�cient of h,

(5.2) |Cov (f(Y ), h(X))| ≤ ‖f(Y )‖∞,PLip(h) τ(σ(Y ), X) .

Thus, using that t → eixt is |x|-Lipschitz, we obtain the bound

|Cov(eixZ1 , eixXk)| ≤ |x|τ1(k − 1).(5.3)

5.2. Proof of Proposition 3.1. The proof of Proposition 3.1 follows the same lines as
in the independent framework (see Comte et al. (2006)). The main di�erence lies in the
control of the variance term. We keep the same notations as in Section 2.1. According to
(2.2), for any given m belonging to {1, · · · ,mn}, ĝ

(n)
m satis�es, γn(ĝ(n)

m )− γn(g(n)
m ) ≤ 0. For

a random variable T with density fT , and any function ψ such that ψ(T ) is integrable, set
νn,T (ψ) = n−1

∑n
i=1[ψ(Ti)− 〈ψ, fT 〉]. In particular,

(5.4) νn,Z(u∗t ) =
1
n

n∑

i=1

[u∗t (Zi)− 〈t, g〉] .

Since

γn(t)− γn(s) = ‖t− g‖2 − ‖s− g‖2 − 2νn,Z(u∗t−s),(5.5)

we infer that

(5.6) ‖g − ĝ(n)
m ‖2 ≤ ‖g − g(n)

m ‖2 + 2νn,Z

(
u∗

ĝ
(n)
m −g

(n)
m

)
.

Writing that âm,j − am,j = νn,Z(u∗ϕm,j
), we obtain that

νn,Z

(
u∗

ĝ
(n)
m −g

(n)
m

)
=

∑

|j|≤kn

(âm,j − am,j)νn,Z(u∗ϕm,j
) =

∑

|j|≤kn

[νn,Z(u∗ϕm,j
)]2.

Consequently, E‖g − ĝ
(n)
m ‖2 ≤ ‖g − g

(n)
m ‖2 + 2

∑
j∈Z E[(νn,Z(u∗ϕm,j

))2]. According to Comte
et al. (2006),

‖g − g(n)
m ‖2 =‖ g − gm ‖2 +‖gm − g(n)

m ‖2 ≤‖ g − gm ‖2 +
(πm)2(M2 + 1)

kn
.(5.7)

The variance term is studied by using �rst that for f ∈ L1(R),

νn,Z(f∗) =
∫

νn,Z(eix·)f(x)dx.(5.8)
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Now, we use (5.8) and apply Parseval's formula to obtain

E
( ∑

j∈Z
(νn,Z(u∗ϕm,j

))2
)

=
1

4π2

∑

j∈Z
E

(∫
ϕ∗m,j(−x)

f∗ε (x)
νn,Z(eix·)dx

)2

=
1
2π

∫ πm

−πm

E|νn,Z(eix·)|2
|f∗ε (x)|2 dx.(5.9)

Since νn,Z involves centered and stationary variables, we have

(5.10) E|νn,Z(eix·)|2 = Var|νn,Z(eix·)| = 1
n
Var(eixZ1) +

1
n2

∑

1≤k 6=l≤n

Cov(eixZk , eixZl).

It follows from the structure of the model that, for k < l, εl is independent of (Xl, Zk), so
that E(eixZk) = f∗ε (x)g∗(x) and E(eix(Zl−Zk)) = f∗ε (x)E(eix(Xl−Zk)). Thus, for k < l,

Cov(eixZk , eixZl) = f∗ε (x)Cov(eixZk , eixXl).(5.11)

>From (5.10) and the stationarity of (Xi)i≥1, we obtain that

(5.12) E|νn,Z(eix·)|2 ≤ 1
n

+
2
n

n∑

k=2

∣∣Cov(eixZ1 , eixXk)
∣∣ |f∗ε (x)|.

The �rst part of Proposition 3.1 follows from the stationarity of the Xi's, and from (5.6),
(5.7), (5.9) and (5.12). The proof of Rm ≤ Rm,τ , where Rm,τ is de�ned in Proposition 3.1,
comes from inequality (5.3). Hence we get the result.2

5.3. Proof of Corollary 3.1. According to Butucea and Tsybakov (2005), under (3.9),
we have

λ1(fε, κ
′
0)Γ(m)(1 + om(1)) ≤ ∆(m) ≤ λ1(fε, κ0)Γ(m)(1 + om(1)) as m →∞, where

(5.13) Γ(m) = (1 + (πm)2)γ(πm)1−δ exp
{
2µ(πm)δ

}
,

where λ1 is de�ned in (3.10). In the same way

λ1(fε, κ
′
0)Γ(m)(1 + om(1)) ≤ ∆1/2(m) ≤ λ1(fε, κ0)Γ(m)(1 + om(1)) as m →∞,

where

Γ(m) = (1 + (πm)2)γ/2(πm)1−δ exp(µ(πm)δ)

λ1(fε, κ0) =
[
κ2

0π(1I{δ=0} + µδ1I{δ>0})
]−1

.

It is easy to see that ∆1/2(m) ≤
√

m∆(m) and hence ∆1/2(m) = Γ(m)om(1). Now, as
soon as γ > 1 when δ = 0, m∆1/2(m) = Γ(m)om(1). Set m1 such that for m ≥ m1 we
have

(5.14) 0.5λ1(fε, κ
′
0)Γ(m) ≤ ∆(m) ≤ 2λ1(fε, κ0)Γ(m),

and

(5.15) 0.5λ1(fε, κ
′
0)Γ(m) ≤ ∆1/2(m) ≤ 2λ1(fε, κ0)Γ(m).
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If
∑

k≥1 τ1(k) < +∞, if γ > 1 when δ = 0, if (3.9) and (3.5) hold, and if kn ≥ n, then we
have the upper bound: for m ≥ m1,

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m2(M2 + 1)
n

+
2λ1Γ(m)

n
+ 2πλ1

∑

k≥1

τ1(k)
mΓ(m)

n

≤ ‖g − gm‖2 +
m2(M2 + 1)

n
+

2λ1Γ(m)
n

+
C(

∑
k≥1 τ1(k))Γ(m)

n
om(1).

Since γ > 1 when δ = 0, the residual term n−1m2(M2 +1) is negligible with respect to the
variance term.

Finally, gm being the orthogonal projection of g on Sm, we get g∗m = g∗1I[−mπ,mπ] and
therefore

‖g − gm‖2 =
1
2π
‖g∗ − g∗m‖2 =

1
2π

∫

|x|≥πm
|g∗|2(x)dx.

If g belongs to the class Ss,r,b(C1) de�ned in (3.11), then

‖g − gm‖2 ≤ C1

2π
(m2π2 + 1)−s exp{−2bπrmr}.

The corollary is proved. 2

5.4. Proof of Theorem 3.1. By de�nition, g̃ satis�es that for all m ∈ {1, · · · ,mn},
γn(g̃) + pen(m̂) ≤ γn(gm) + pen(m).

Therefore, by using (5.5) we get

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + 2νn,Z(u∗

g̃−g
(n)
m

) + pen(m)− pen(m̂),

where νn,Z is de�ned in (5.4). If t = t1 + t2 with t1 in S
(n)
m and t2 in S

(n)
m′ , t∗ has its

support in [−πmax(m,m′), πmax(m,m′)] and t belongs to S
(n)
max(m,m′). Set Bm,m′(0, 1) =

{t ∈ S
(n)
max(m,m′) / ‖t‖ = 1} and write

|νn,Z(u∗
g̃−g

(n)
m

)| ≤ ‖g̃ − g(n)
m ‖ sup

t∈Bm,m̂(0,1)
|νn,Z(u∗t )|.

Using that 2uv ≤ a−1u2 + av2 for any a > 1, leads to

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + a−1‖g̃ − g(n)

m ‖2 + a sup
t∈Bm,m̂(0,1)

(νn,Z(u∗t ))
2 + pen(m)− pen(m̂).

Therefore, we have

(5.16) ‖ g̃ − g ‖2≤ κ2
a ‖ g(n)

m − g ‖2 +aκa sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t )|2 + κa(pen(m)− pen(m̂)),

where κa is de�ned in (3.16).
The main point is to control supt∈Bm,m̂(0,1) |νn,Z(u∗t )|2, the supremum of a centered em-

pirical process νn,Z(u∗t ). To handle this supremum, we use coupling methods to replace
the dependent random variables (r.v.'s) involved in this process, by block-independent
r.v.'s in order to apply Talagrand's Inequality. Heuristically, we replace the expectation of
the supremum by the (negligible) price of coupling plus the expectation of a term p(m, m̂)
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imposed by Talagrand's Inequality, which in turn will �x the choice of the penalty function.

We use the coupling method recalled in Section 5.1 to build approximating variables for
the Wi = (Zi, Xi)'s. More precisely, we build variables W ?

i such that if n = 2pnqn + rn,
0 ≤ rn < qn, and ` = 0, · · · , pn − 1

E` = (W2`qn+1, ..., W(2`+1)qn
), F` = (W(2`+1)qn+1, ..., W(2`+2)qn

),

E?
` = (W ?

2`qn+1, ...,W
?
(2`+1)qn

), F ?
` = (W ?

(2`+1)qn+1, ..., W
?
(2`+2)qn

).

The variables E?
` and F ?

` are such that

- E?
` and E` are identically distributed. F ?

` and F` are identically distributed.

-
qn∑

i=1

E(‖W2`qn+i−W ?
2`qn+i‖R2) ≤ qnτ∞(qn),

qn∑

i=1

E(‖W(2`+1)qn+i−W ?
(2`+1)qn+i‖R2) ≤

qnτ∞(qn),

- E?
` and M0 ∨ σ(E0, E1, ..., E`−1, E

?
0 , E?

1 , · · · , E?
`−1) are independent, and therefore

independent of M(`−1)qn
and the same holds for the blocks F ?

` .

For the sake of simplicity we assume that rn = 0. We denote by (Z?
i , X?

i ) = W ?
i the new

couple of variables. Using the notation (5.4), we denote by ν?
n,Z(u∗t ) the empirical contrast

computed on the Z?
i . Then we write

‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2aκa sup
t∈Bm,m̂(0,1)

|ν?
n,Z(u∗t )|2 + κa(pen(m)− pen(m̂))

+2aκa sup
t∈Bm,m̂(0,1)

|ν?
n,Z(u∗t )− νn,Z(u∗t )|2.

Set

(5.17) T ?
n(m, m′) :=

[
sup

t∈Bm,m′ (0,1)
|ν?

n,Z(t)|2 − p(m,m′)
]
+
,

where p(m,m′) will de�ned further. Hence

‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2aκaT
?
n(m, m̂) + κa (2ap(m, m̂) + pen(m)− pen(m̂))

+2aκa sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t )− ν?
n,Z(u∗t )|2

≤ κ2
a‖g − g(n)

m ‖2 + 2κapen(m) + 2aκa sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t )− ν?
n,Z(u∗t )|2

+2aκaT
?
n(m, m̂)(5.18)

where pen(m) is chosen such that

2ap(m,m′) ≤ pen(m) + pen(m′).(5.19)
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Now write

νn,Z(u∗t )− ν?
n,Z(u∗t ) =

1
2π

1
n

n∑

k=1

∫
[eixZk − eixZ?

k ]
t∗(−x)
f∗ε (x)

dx

=
1
2π

∫
[νn,Z(eix·)− ν?

n,Z(eix·)]
t∗(−x)
f∗ε (x)

dx.

Consequently,

(5.20)

E
[

sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t )−ν?
n,Z(u∗t )|2

]
≤ 1

2π

∫ πmn

−πmn

E[|νn,Z(eix·)−ν?
n,Z(eix·)|2] 1

|f∗ε (x)|2 dx.

Next, the bound |e−ixt − e−ixs| ≤ |x||t− s| implies that
qn∑

i=1

E(|e−ixZ2`qn+i − e−ixZ?
2`qn+i |2) ≤ 2qn|x|τ∞(qn)

It follows that

E
[

sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t )− ν?
n,Z(u∗t )|2

]
≤ τ∞(qn)

π

∫ πmn

−πmn

|x|
|f∗ε (x)|2 dx

≤ 2τ∞(qn)mn∆(mn).(5.21)

By gathering (5.18) and (5.21) we get

E‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2aκa

mn∑

m′=1

E
[
T ?

n(m,m′)
]
+ 2κapen(m) + 2aκaτ∞(qn)mn∆(mn).

Therefore we infer that, for all m ∈ {1, · · · ,mn},

E‖g − g̃‖2 ≤ Ca

[
‖g − g(n)

m ‖2 + pen(m)
]

+ 2aκa(C1 + C2)/n,(5.22)

provided that

(5.23) ∆(mn)mnτ∞(qn) ≤ C1/n and
mn∑

m′=1

E(T ?
n(m,m′)) ≤ C2/n.

Using (5.14), we conclude that the �rst part of (5.23) is ful�lled as soon as

(5.24) mn
2γ+2−δ exp{2µπδmn

δ}τ∞(qn) ≤ C ′
1/n.

In order to ensure that our estimators converge, we only consider models with bounded
penalty, and therefore (5.24) requires that mnτ∞(qn) ≤ C ′

1/n2. For qn = [nc] and τ∞(k) =

O(n−1−θ), we obtain the condition

mnn−c(1+θ) = O(n−2).(5.25)

If fε satis�es (3.9) with δ > 0, and if θ > 3, one can �nd c ∈]0, 1/2[, such that (5.25) is
satis�ed. Now, if δ = 0 and γ ≥ 3/2 in (3.9) and if θ > 3 + 2/(1 + 2γ), then one can �nd
c ∈]0, 1/2[, such that (5.25) is satis�ed. These conditions ensure that (5.24) holds.
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To prove the second part of (5.23), we split T ?
n(m,m′) into two terms

T ?
n(m,m′) ≤ (T ?

n,1(m,m′) + T ?
n,2(m,m′))/2,

where p1(m,m′) = p2(m,m′) = p(m,m′)/2, and for k = 1, 2

(5.26)

T ?
n,k(m,m′) =

[
sup

t∈Bm,m′ (0,1)

∣∣ 1
pnqn

pn∑

`=1

qn∑

i=1

(
u∗t (Z

?
(2`+k−1)qn+i)− 〈t, g〉

)∣∣2 − pk(m,m′)
]
+
.

We only study T ?
n,1(m,m′) and conclude for T ?

n,2(m,m′) analogously. The study of T ?
n,1(m,m′)

consists in applying a concentration inequality to ν?
n,1(t) de�ned by

ν?
n,1(t) =

1
pnqn

pn∑

`=1

qn∑

i=1

(
u∗t (Z

?
2`qn+i)− 〈t, g〉

)
=

1
pn

pn∑

`=1

ν?
qn,`(u

∗
t ).(5.27)

The random variable ν?
n,1(u

∗
t ) is considered as the sum of the pn independent random

variables ν?
qn,`(t) de�ned as

ν?
qn,`(u

∗
t ) = (1/qn)

qn∑

j=1

u∗t (Z
?
2`qn+j)− 〈t, g〉.(5.28)

Let m∗ = max(m, m′). Let M?
1 (m∗), v?(m∗) and H?(m∗) be some terms such that

supt∈Bm,m′ (0,1) ‖ ν?
qn,`(u

∗
t ) ‖∞≤ M?

1 (m∗), supt∈Bm,m′ (0,1) Var(ν?
qn,`(u

∗
t )) ≤ v?(m) and lastly

E(supt∈Bm,m′ (0,1) |ν?
n,1(u

∗
t )|) ≤ H?(m∗).

According to Lemma 5.2, we take

(H?(m∗))2 =
2∆(m∗)

n
, M?

1 (m∗) =
√

∆(m∗) and v?(m∗) =
Cv∗

√
∆2(m∗, fZ)
2πqn

,

where ∆2(m, fZ) is de�ned by

(5.29) ∆2(m, fZ) =
∫ πm

−πm

∫ πm

−πm

|f∗Z(x− y)|2
|f∗ε (x)f∗ε (y)|2 dxdy,

and where

Cv∗ = 2
[
1Iδ>0 +

√
2π3/2(2π)3/2

√
3

∑

k≥1

τ1(k)1Iδ=0

]
.(5.30)

>From the de�nition of T ?
n,1(m, m′), by taking p1(m,m′) = 2(1 + 2ξ2)(H?)2(m∗), we get

(5.31) E(T ?
n,1(m,m′)) ≤ E[

sup
t∈Bm,m′ (0,1)

|ν?
n,1(u

∗
t )− 2(1 + 2ξ2)(H?)2(m∗)

]
+
.

According to the condition (5.19), we thus take

pen(m) = 2ap(m,m) = 2a(p1(m,m) + p2(m,m)) = 4ap1(m,m)

= 8a(1 + 2ξ2)
(
2n−1∆(m)

)
= 16a(1 + 2ξ2)n−1∆(m).(5.32)
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where ξ2 is suitably chosen. Set m2 and m3 as de�ned in Lemma 5.2, and set m1 such
that for m∗ ≥ m1, ∆(m∗) satis�es (5.14). Take m0 = m1 ∨m2 ∨m3. We split the sum
over m′ in two parts and write

(5.33)
mn∑

m′=1

E(T ?
n,1(m,m′)) =

∑

m′|m∗≤m0

E(T ?
n,1(m,m′)) +

∑

m′|m∗≥m0

E(T ?
n,1(m,m′)).

By applying Lemma 5.3, we get E(T ?
n,1(m,m′)) ≤ K[I(m∗) + II(m∗)], where

I(m∗) =

√
∆2(m∗, fZ)

pn
exp

{
−K1ξ

2 ∆(m∗)
qnv?(m∗)

}
, II(m∗) =

∆(m∗)
p2

n

exp
{
−2K1ξC(ξ)2

7

√
n

qn

}
.

When m∗ ≤ m0, with m0 �nite, we get that, for all m ∈ {1, · · · , mn},
∑

m′|m∗≤m0

E(R?
n,1(m,m′)) ≤ C(m0)

n
.

We now come to the sum over m′ such that m∗ ≥ m0. It follows from Comte et al. (2006)
that

v?(m∗) =
Cv∗

√
∆2(m∗, fZ)
2πqn

≤ λ?
2(fε, κ0)

Γ2(m∗)
qn

,(5.34)

with

(5.35) λ?
2(fε, κ0) = κ−1

0 Cv∗
√

2πλ1‖fε∗‖1Iδ≤1 + 1Iδ>1

where λ1 = λ1(fε, κ0) is de�ned in (3.10) and
(5.36)

Γ2(m) = (1 + (πm)2)γ(πm)min((1/2−δ/2),(1−δ)) exp(2µ(πm)δ) = (πm)−(1/2−δ/2)+Γ(m).

By combining the left hand-side of (5.14) and (5.34), we get that, for m∗ ≥ m0,

I(m∗) ≤ λ?
2(fε, κ0)Γ2(m∗)

2n
exp

{
−K1ξ

2λ1(fε, κ
′
0)

λ?
2(fε, κ0)

(πm∗)(1/2−δ/2)+

}

and II(m∗) ≤ ∆(m∗)q2
n

n2
exp

{
−2K1ξC(ξ2)

7

√
n

qn

}
.

• Study of
∑

m′|m∗≥m0
II(m∗). According to the choices for v?(m∗), (H?(m∗))2 and

M?
1 (m∗), we have

∑

m′|m∗≥m0

II(m∗) ≤
∑

m′∈{1,··· ,mn}

∆(m∗)q2
n

n2
exp

{
−2K1ξC(ξ2)

7

√
n

qn

}

= O

[
mn exp

{
−2K1ξC(ξ2)

7

√
n

qn

}
∆(mn)q2

n

n2

]
.

Since ∆(mn)/n is bounded, then qn = [nc] with c in ]0, 1/2[ ensures that
mn∑

m′=1

mn exp
{
−2K1ξC(ξ2)

7

√
n

qn

}
∆(mn)q2

n

n2
≤ C

n
.(5.37)



24 F. COMTE∗,1, J. DEDECKER2, AND M. L. TAUPIN 3

Consequently

∑

m′|m∗≥m0

II?(m∗) ≤ C

n
.(5.38)

• Study of
∑

m′|m∗≥m0
I(m∗). Denote by ψ = 2γ+min(1/2−δ/2, 1−δ), ω = (1/2−δ/2)+,

and K ′ = K1λ1(fε, κ
′
0)/(2λ?

2(fε, κ0)). For a, b ≥ 1, we use that

max(a, b)ψe2µπδ max(a,b)δ
e−K′ξ2 max(a,b)ω ≤ (aψe2µπδaδ

+ bψe2µπδbδ
)e−(K′ξ2/2)(aω+bω)

≤ aψe2µπδaδ
e−(K′ξ2/2)aω

e−(K′ξ2/2)bω
+ bψe2µπδbδ

e−(K′ξ2/2)bω
.(5.39)

Consequently,

∑

m′|m∗≥m0

I(m∗) ≤
mn∑

m′=1

λ?
2(fε, κ0)Γ2(m∗)

2n
exp

{
−K1ξ

2λ1(fε, κ
′
0)

λ?
2(fε, κ0)

(πm∗)(1/2−δ/2)+

}

≤ λ?
2(fε, κ0)Γ2(m)

n
exp

{
−K ′ξ2

2
(πm)(1/2−δ/2)+

} mn∑

m′=1

exp
{
−K ′ξ2

2
(πm′)(1/2−δ/2)+

}

+
mn∑

m′=1

λ?
2(fε, κ0)Γ2(m′)

n
exp

{
−K ′ξ2

2
(πm′)(1/2−δ/2)+

}
.(5.40)

Case 0 ≤ δ < 1/3. In that case, since δ < (1/2 − δ/2)+, the choice ξ2 = 1 ensures
that Γ2(m) exp{−(K ′ξ2/2)(πm)(1/2−δ/2)} is bounded and thus the �rst term in (5.40) is
bounded by C/n. Clearly the term

∑mn
m′=1 Γ2(m′) exp{−(K ′/2)(m′)(1/2−δ/2)}/n is bounded

by C ′/n, and hence
∑

m′|m∗≥m0

I(m∗) ≤ C

n
.

According to (5.19), the result follows by choosing pen(m) = 2ap(m,m) = 48a∆(m)/n.

Case δ = 1/3. According to the inequality (5.40), we choose ξ2 such that (K ′ξ2/2)(πm)δ =

(2 + ε)µ(πm)δ for some ε > 0, for instance

ξ2 =
49µλ?

2(fε, κ0)
λ1(fε, κ′0)

.

Arguing as for the case 0 ≤ δ < 1/3, this choice ensures that
∑

m′|m∗≥m0
I(m∗) ≤ C/n.

The result follows by taking p(m,m′) = 8(1 + 2ξ2)∆(m∗)/n, and

pen(m) = 16a(1 + 2ξ2)
∆(m)

n
= 16a

(
1 +

98µλ?
2(fε, κ0)

λ1(fε, κ′0)

)
∆(m)

n
.
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Case δ > 1/3. In that case δ > (1/2 − δ/2)+. According to the inequality (5.40), we
choose ξ2 such that (K ′ξ2/2)(πm)ω = (2 + ε)µ(πm)δ for some ε > 0, for instance

ξ2 = ξ2(m) =
49µλ?

2(fε, κ0)
λ1(fε, κ′0)

(πm)min((3δ/2−1/2)+,δ).

Consequently, we have
∑

m′|m∗≥m0
I(m∗) ≤ C/n. The result follows by choosing p(m,m′) =

8(1 + 2ξ2(m, m′))∆(m)/n, associated to

pen(m) = 16a(1 + 2ξ2(m))
∆(m)

n

= 16a
(

1 +
98µλ?

2(fε, κ0)
λ1(fε, κ′0)

(πm∗)min((3δ/2−1/2)+,δ)

)
∆(m)

n
2

5.5. Technical lemmas.

Lemma 5.1.

‖
∑

j∈Z
|u∗ϕm,j

|2 ‖∞≤ ∆(m).(5.41)

The proof of Lemma 5.1 can be found in Comte et al. (2006).

Lemma 5.2. Assume that
∑

k≥1 τ1(k) < +∞. Assume either that δ = 0, γ ≥ 3/2 in (3.9)
or δ > 0 in (3.9). Then we have

sup
t∈Bm,m′ (0,1)

‖ ν?
qn,`(u

∗
t ) ‖∞≤

√
∆(m∗)(5.42)

Moreover, there exist m2 and m3 such that

E[ sup
t∈Bm,m′ (0,1)

|ν?
n,1(u

∗
t )|] ≤

√
2∆(m∗)/n for m∗ ≥ m2,

and sup
t∈Bm,m′ (0,1)

Var(ν?
qn,`(u

∗
t )) ≤ Cv∗

√
∆2(m∗, fZ)/(2πqn) for m∗ ≥ m3,

where ∆(m) and ∆2(m, fZ) are de�ned by (2.5) and (5.29) and where Cv∗ is de�ned in
(5.30).

Proof of Lemma 5.2. Arguing as in Lemma 5.1 and by using Cauchy-Schwartz Inequal-
ity and Parseval formula, we obtain that the �rst term supt∈Bm,m′ (0,1) ‖ ν?

qn,`(u
∗
t ) ‖∞ is

bounded by

sup
t∈Bm,m′ (0,1)

‖ ν?
qn,`(u

∗
t ) ‖∞≤

√√√√∑

j∈Z

∫ ∣∣∣∣
ϕ∗m∗,j(x)
f∗ε (x)

∣∣∣∣
2

dx =
√

∆(m∗).

Next

E
[

sup
t∈Bm,m′ (0,1)

∣∣∣ν?
n,1(u

∗
t )

∣∣∣
]

= E
[

sup
t∈Bm,m′ (0,1)

∣∣∣ 1
pnqn

pn∑

`=1

qn∑

i=1

u∗t (Z
?
2`qn+i)− 〈t, g〉

∣∣∣
]

≤
√∑

j∈Z
Var(ν?

n,1(u∗ϕm∗,j
)).
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By using (5.9) we obtain
√∑

j∈Z
Var(ν?

n,1(u∗ϕm∗,j
)) =

√√√√∑

j∈Z

1
p2

n

pn∑

`=1

Var
(
ν?

qn,`(u
∗
ϕm∗,j

)
)

=

√√√√∑

j∈Z

1
p2

n

pn∑

`=1

Var
(
νqn,`(u∗ϕm∗,j

)
)

=
√∑

j∈Z

1
pn

Var
(
νqn,1(u∗ϕm∗,j

)
)

=

√
1

2πpn

∫ πm∗

−πm∗

E|νqn,1(eix.)|2
|f∗ε (x)|2 dx.

Now, according to (5.12) and (5.2)

E|νqn,1(eix.)|2 ≤ 1
qn

+
1
qn

n−1∑

k=1

τ1(k)|x||f∗ε (x)|.

This implies that

E2
[

sup
t∈Bm,m′ (0,1)

∣∣∣ν?
n,1(u

∗
t )

∣∣∣
]
≤ 1

pn

( 1
qn

∆(m∗) +
2π

qn

n−1∑

k=1

τ1(k)m∆1/2(m
∗)

)
.

Since 2π
∑

k≥1 τ1(k)m∆1/2(m) ≤ ∆(m) for m large enough, we get that for m∗ large
enough

E2
[

sup
t∈Bm,m′ (0,1)

∣∣∣ν?
n,1(u

∗
t )

∣∣∣
]
≤ 2∆(m∗)/n.

Now, for t ∈ Bm,m′(0, 1) we write

Var
( 1

qn

qn∑

i=1

u∗t (Z
?
2`qn+i)

)
= Var

( 1
qn

qn∑

i=1

u∗t (Zi)
)

=
1
q2
n

[ qn∑

k=1

Var(u∗t (Zk)) + 2
∑

1≤k<l≤qn

Cov(u∗t (Zk), u∗t (Zl))
]
.

According to (5.8), (5.11) and (5.2), we have

|Cov(u∗t (Zk), u∗t (Zl))| =
∣∣∣
∫ πm∗

−πm∗

∫ πm∗

−πm∗

f∗ε (−y)Cov(eixZk , eiyXl)t∗(x)t∗(y)
f∗ε (x)f∗ε (−y)

dxdy
∣∣∣

≤
∫ πm∗

−πm∗

∫ πm∗

−πm∗

|y|τ1(k)|t∗(x)t∗(y)|
|f∗ε (x)| dxdy.

Hence,

Var
( 1

qn

qn∑

i=1

u∗t (Z
?
2`qn+i)

)
≤ 1

qn

(∫ πm∗

−πm∗

∫ πm∗

−πm∗

f∗Z(u− v)t∗(u)t∗(−v)
fε(u)fε(−v)

dudv

+2
qn∑

k=1

τ1(k)
∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣∣∣ut∗(u)t∗(v)
f∗ε (v)

∣∣∣dudv
)
.

Following Comte et al. (2006) and applying Parseval's formula, the �rst integral is less that√
∆2(m∗, fZ)/2π. For the second one, write
∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣∣∣ut∗(u)t∗(v)
f∗ε (v)

∣∣∣dudv ≤
√

2π3/2

√
3

(m∗)3/2‖t∗‖
√∫

|t∗(v)|2dv

∫ πm∗

−πm∗

dv

|f∗ε (v)|2 ,
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that is ∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣∣∣ t
∗(u)t∗(v)
f∗ε (v)

∣∣∣dudv ≤
√

2π3/2

√
3

(2π)3/2
√

(m∗)3∆(m∗).

If δ > 0, then
√

(m∗)3∆(m∗) = om

√
∆2(m∗, fZ). If γ > 3/2 and δ = 0, we get

that
√

(m∗)3∆(m∗) = om

√
∆2(m∗, fZ). Lastly, if γ = 3/2 and δ = 0, we get that√

(m∗)3∆(m∗) ≤
√

∆2(m∗, fZ) and the result follows for m large enough. 2

Lemma 5.3. Let Y1, . . . , Yn be independent random variables and let F be a countable
class of uniformly bounded measurable functions. Then for ξ2 > 0

E
[

sup
f∈F

|νn,Y (f)|2−2(1+2ξ2)H2
]
+
≤ 2

K1

(
v

n
e−K1ξ2 nH2

v +
49M2

1

4K1n2C2(ξ2)
e
− 2

√
2K1C(ξ2)ξ

7
nH
M1

)
,

with C(ξ2) = (
√

1 + ξ2 − 1) ∧ 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤ M1, E
[

sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F
1
n

n∑

k=1

Var(f(Yk)) ≤ v.

This inequality comes from a concentration Inequality in Klein and Rio (2005) and
arguments that can be found in Birgé and Massart (1998) (see the proof of Corollary 2
page 354). Usual density arguments show that this result can be applied to the class of
functions F = Bm,m′(0, 1).

5.6. Proof of Proposition 4.1. We describe here a general method to handle the models
(4.1) and (4.2) and prove the following result that implies Proposition 4.1 (see Ango Nzé
and Doukhan (2004) and Doukhan et al. (2006) for related results).

Proposition 5.1. Let Yt and σt satisfy either (4.1) or (4.2). For Model (4.1), let (η′t)t∈Z
be an independent copy of (ηt)t∈Z, and for t > 0, let σ∗t = f(ηt−1, . . . , η1, η

′
0, η

′
−1, . . .).

For Model (4.2), let σ∗0 be a copy of σ0 independent of (σ0, ηt)t∈Z, and for t > 0 let
σ∗t = f(σ∗t−1, ηt−1). Let δn be a non increasing sequence such that

(5.43) 2E(|σ2
n − (σ∗n)2|) ≤ δn .

Then
(1) The process ((Y 2

t , σ2
t ))t≥0 is τ -dependent with τ∞(n) ≤ δn.

(2) Assume that Y 2
0 , σ2

0 have densities satisfying max(fσ2(x), fY 2(x)) ≤ C| ln(x)|αx−ρ

in a neighborhood of 0, for some α ≥ 0 and 0 ≤ ρ < 1. The process ((Xt, Zt))t≥0

is τ -dependent with τ∞(n) = O((δn)(1−ρ)/(2−ρ)| ln(δn)|(1+α)/(2−ρ)).
Consider Model (4.4) with E(η2

0) = 1, and assume that c =
∑

j≥1 aj < 1. Let then
((Yt, σt))t∈Z be the unique strictly stationary solution of the form (4.1). Then (5.43) holds
with

δn = O
(

inf
1≤k≤n

{
cn/k +

∞∑

i=k+1

ai

})
.
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Let us �rst explain how Proposition 5.1 implies Proposition 4.1. First, if σ2
0 and η2

0 have
bounded densities, then fY 2(x)) ≤ C| ln(x)| in a neighborhood of 0, so that Proposition
4.1(2) holds with ρ = 0 and α = 1.

Under the assumptions of Proposition 5.1(2), we obtain straightforwardly the rates given
in the �rst two cases for Model (4.4) and in the third case, the general rate τ∞(n) =

O(n−b(1−ρ)/(2−ρ)(ln(n))(b+2)(1+α)/2). Taking here ρ = 0 and α = 1 gives the result.
For Model (4.2), if there exists κ < 1 such that (4.8) is satis�ed, then one can take

δn = 4E(σ2
0)κ

n. Hence, under the assumptions of Proposition 4.1(2), ((Xt, Zt))t>0 is geo-
metrically τ dependent, and substituting δn gives the order of τ∞(n).

Proof of Proposition 5.1. To prove (1), let for t > 0, Y ∗
t = ηtσ

∗
t . Note that the sequence

((Y ∗
t , σ∗t ))t≥1 is distributed as ((Yt, σt))t≥1 and independent of Mi = σ(σj , Yj , 0 ≤ j ≤ i).

Hence, by the coupling properties of τ (see (5.1)), we have that, for n + i ≤ i1 < · · · < il,

τ(Mi, (Y 2
i1 , σ

2
i1), . . . , (Y

2
il
, σ2

il
)) ≤ 1

l

l∑

j=1

‖(Y 2
ij , σ

2
ij )− ((Y ∗

ij )
2, (σ∗ij ))

2‖R2 ≤ δn ,

and (1) follows.
To prove (2), de�ne the function fε(x) = ln(x)1Ix>ε + 2 ln(ε)1Ix≤ε and the function

gε(x) = ln(x)− fε(x). Clearly, for any ε > 0 and any n + i ≤ i1 < . . . < il, we have

(5.44) τ(Mi, (Zi1 , Xi1), . . . , (Zil , Xil)) ≤ 2E(|gε(Y 2
0 )|+ |gε(σ2

0)|)
+ τ(Mi, (fε(Y 2

i1), fε(σ2
i1)), . . . , (fε(Y 2

il
), fε(σ2

il
)))

For 0 < ε < 1, the function fε is 1/ε-Lipschitz. Hence, applying (1),

τ(Mi, (fε(Y 2
i1), fε(σ2

i1)), . . . , (fε(Y 2
il
), fε(σ2

il
))) ≤ δn

ε
.

Since max(fσ2(x), fY 2(x)) ≤ C| ln(x)|αx−ρ in a neighborhood of 0, we infer that for small
enough ε,

E(|gε(Y 2
0 )|+ |gε(σ2

0)|) ≤ K1ε
1−ρ| ln(ε)|1+α ,

for K1 a positive constant. From (5.44), we infer that there exists a positive constant K2

such that, for small enough ε,

τ(Mi, (Zi1 , Xi1), . . . , (Zil , Xil)) ≤ K2

(δn

ε
+ ε1−ρ| ln(ε)|1+α

)
.

The result follows by taking ε = (δn)1/(2−ρ)| ln(δn)|−(1+α)/(2−ρ).
Now, we go back to the model (4.4). If

∑∞
j=1 aj < 1, the unique stationary solution to

(4.4) is given by Giraitis et al. (2000):

σ2
t = a + a

∞∑

`=1

∞∑

j1,...,jl=1

aj1 . . . ajl
η2

t−j1 . . . η2
t−(j1+···+jl)

.
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for any 1 ≤ k ≤ n, let

σ2
t (k, n) = a + a

[n/k]∑

`=1

k∑

j1,...,jl=1

aj1 . . . ajl
η2

t−j1 . . . η2
t−(j1+···+jl)

.

Clearly E(|σ2
n − (σ∗n)2|) ≤ 2E(|σ2

0 − σ2
0(k, n)|) . Now

E(|σ2
0 − σ2

0(k, n)|) ≤
( ∞∑

l=[n/k]+1

cl +
∞∑

l=1

cl−1
∑

j>k

aj

)
.

This being true for any 1 ≤ k ≤ n, the proof of Proposition 5.1 is complete.
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