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1 Introduction

The problem of rates of convergence in the strong law of large numbers for i.i.d. random

variables with moments of order 1 ≤ p < 2 has been solved by Baum and Katz (1965) for

real-valued variables, and by de Acosta (1981) for variables with values in Banach spaces

of type p. To our knowledge the first extensions of this type of results to martingale

differences sequences were derived by Woyczyński (1981) who considered random variables

with values in smooth separable Banach spaces (see Definition 2 and Theorem 1, Section

2). Starting from Woyczyński’s result and using a coboundary decomposition due to

Gordin (1969), Theorem 1 can be extended to stationary sequences under mixingale-type

conditions (see Theorem 3, Section 2.2). At the boundary (the case p = 2), this criterion

is the same as that given by Gordin (1969) for the central limit theorem.

For strongly mixing real-valued random variables, this approach does not lead to

optimal results, as quoted in the introduction of Section 3. Concerning the convergence

rates in the strong law of large numbers for weakly dependent sequences of real-valued

random variables, we mention the papers by Lai (1977), Hipp (1982), Berbee (1987),

Peligrad (1985, 1989), Shao (1993) and Rio (1995). In the two latter ones, the optimality

of the results is discussed.

In Theorem 4 of Section 3, we establish convergence rates in the strong law for partial

sums of Hilbert-valued random variables under a projective criterion, which seems to be

new even in the real case. This criterion can be viewed as a mixingale-type condition,

since it is verified by martingale differences sequences and leads to the optimal results

for strongly mixing processes. At the boundary (the case p = 2) our condition is the

same as that obtained in Corollary 2(β) of Dedecker and Merlevède (2003) for the central

limit theorem in Hilbert spaces. This generalization is important since it covers a much

broader line of examples than mixing processes (see the examples in McLeish (1975) and

Dedecker and Doukhan (2003)). The key of the proof of Theorem 4 is a new maximal

inequality (see Proposition 1, Section 3) in which the dependence coefficients involved are

expressed in terms of conditional expectations. This maximal inequality is more precise

than a related one stated in Lemma 3.3 of Merlevède (2003). As in Merlevède’s paper,

the proof combines a martingale approximation of blocks as done in Shao (1993) and the

quantile method as developed in Rio (1995, 2000).

In Proposition 2 of Section 4, we apply Theorem 4 to describe the asymptotic behaviour

of Cramér-von Mises statistics obtained from dependent variables. In this context, it is
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natural to consider the empirical distribution function as a random variable with values

in L2(µ) for an appropriate measure µ on the real line. As a by-product, we obtain the

asymptotic behaviour of the supremum of the empirical process over generalized Sobolev

balls (the class W1(µ) defined in Lemma 1).

In Section 5, we study the empirical covariance operator Cn of a stationary Hilbert-

valued autoregressive process. Such processes may be useful when considering estimation

and forecasting problems for several classes of continuous time processes (see Bosq (2000)

for more details). In Proposition 3 we give the rates of convergence of Cn to the covariance

operator CX when the innovations have moments of order 2 < p ≤ 4.

2 The case of smooth separable Banach spaces

In order to develop our result, we need some definitions.

Definition 1. Let (Ω,A,P) be a probability space and (B, ‖ · ‖B) be a separable Banach

space. For any real p ≥ 1, denote by Lp
B the space of B-valued random variables such that

‖X‖p
Lp
B

= E(‖X‖p
B) is finite. Let (Mi)i>0 be an increasing sequence of σ-algebras of A.

We say that (Xi)i>0 is a sequence of B-valued martingale differences (with respect to the

filtration (Mi)i>0) if:

1. For any positive i, Xi is Mi-measurable and belongs to L1
B.

2. For any i > 1, E(Xi|Mi−1) = 0 almost surely.

Definition 2. Following Pisier (1975), we say that a Banach space (B, ‖ · ‖B) is r-smooth

(1 < r ≤ 2) if there exists an equivalent norm ‖ · ‖ such that

sup
t>0

{ 1

tr
sup{‖x + ty‖+ ‖x− ty‖ − 2 : ‖x‖ = ‖y‖ = 1}

}
< ∞ .

Clearly, if B is r-smooth, then it is r′-smooth for any r′ ≤ r. A Banach space is said to

be super-reflexive if it is r-smooth for some 1 < r ≤ 2. From Assouad (1975), we know

that if B is r-smooth and separable, then there exists a constant D such that, for any

sequence of B-valued martingale differences (Xi)i≥1,

(2.1) E(‖X1 + · · ·+ Xn‖r
B) ≤ D

n∑
i=1

E(‖Xi‖r
B) .

3



From (2.1), we see that r-smooth Banach spaces play the same role for martingales as

space of type r do for sums of independent variables. When the constant D needs to

be specified, we shall say that B is (r,D)-smooth. Note that, for any measure space

(T,A, ν), Lp(T,A, ν) is p∧ 2-smooth for any p > 1, and that any separable Hilbert space

is (2, 1)-smooth.

Definition 3. For any non-increasing cadlag function f from R+ to R+, define the gen-

eralized inverse f−1(u) = inf{t ≥ 0 : f(t) ≤ u}. For any nonnegative random vari-

able X, define the upper tail function LX(t) = P(X > t) and the quantile function

QX = L−1
X . Let (Xi)i>0 be a sequence of B-valued random variables. Following Woy-

czińsky (1981), we write (Xi) ≺ X is there exists a positive random variable X such that

QX ≥ supk≥1 Q‖Xk‖B .

2.1 The martingale case

In (1981), W. A. Woyczińsky proved the following theorem.

Theorem 1. Let B be a separable Banach space and (Xi)i>0 be a sequence of B-valued

martingale differences. Assume that (Xi) ≺ X for some positive random variable X and

define Sn = X1 + · · ·+ Xn.

1. Let 1 < p < 2. If X belongs to Lp
R and B is r-smooth for some r > p, then n−1/pSn

tends to 0 almost surely.

2. If E(X ln+(X)) < ∞ and B is super-reflexive, then n−1Sn tends to 0 almost surely.

The next theorem is slightly more precise than Woyczińsky’s result, as we shall see in

Remarks 1 and 2. The proof of this result is given in the appendix.

Theorem 2. Let B, (Xi)i>0, X and Sn be defined as in Theorem 1.

1. Let 1 < p < 2. If X belongs to Lp
R and B is r-smooth for some r > p, then, for any

1 ≤ 1/α ≤ p,

(2.2)
∞∑

n=1

nαp−2P
(

max
1≤k≤n

‖Sk‖B ≥ ε nα
)

< ∞ .

2. If E(X ln+(X)) < ∞ and B is super-reflexive, then

(2.3)
∞∑

n=1

1

n
P
(

max
1≤k≤n

‖Sk‖B ≥ ε n
)

< ∞ .

4



Remark 1. The sequence max1≤k≤n ‖Sk‖B being non decreasing, Property (2.2) with

αp = 1 is equivalent to

(2.4)
∞∑

N=1

P
(

max
1≤k≤2N

‖Sk‖B ≥ ε 2N/p
)

< ∞ .

We infer from (2.4) that n−1/pSn tends to 0 almost surely, so that Theorem 2 contains

Theorem 1.

Remark 2. Property (2.2) describes speed of convergence in the strong law. Indeed by

Lemma 4 in Lai (1977), it implies in case αp > 1 that

(2.5)
∞∑

n=1

nαp−2P
(

sup
k≥n

k−α‖Sk‖B ≥ ε
)

< ∞ .

Since the probabilities in (2.5) are non-increasing in n, it follows that

P
(

sup
k≥n

k−α‖Sk‖B ≥ ε
)

= o
( 1

nαp−1

)
.

Remark 3. The moment condition E(X ln+(X)) < ∞ in Item 2 of Theorems 1 and 2

cannot be removed. More precisely, Elton (1981) proved the following result: if Y is

any real-valued integrable and centered random variable such that E(|Y | ln+(|Y |)) = ∞,

then there exists a sequence (Xi)i>0 of martingale differences with the same marginal

distribution as Y and such that n−1Sn diverges almost surely.

Remark 4. To be complete about strong laws of large numbers, let us quote the following

remarkable result, which is a particular case of Theorem 1 in Woyczyński (1975b). For a

separable Banach space B, the following two conditions are equivalent:

1. B is r-smooth.

2. For every sequence (Xn)n>0 of martingale-differences with values in B such that∑
n−rE(‖Xn‖r

B) < ∞ , we have that n−1Sn tends to 0 almost surely and in Lr
B.

2.2 Application to stationary sequences

Let (Ω,A,P) be a probability space and T : Ω 7→ Ω be a bijective bimeasurable trans-

formation preserving the probability P. An element A of A is said to be invariant if

T (A) = A. We denote by I the σ-algebra of all invariant sets. The probability P is

ergodic if each element of I has measure 0 or 1.
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Theorem 3. Let M0 be a σ-algebra of A satisfying M0 ⊆ T−1(M0) and define the

nondecreasing filtration (Mi)i∈Z by Mi = T−i(M0). Let B be a separable Banach space

and X0 be a random variable in L1
B with mean zero. Define the sequence (Xi)i∈Z by

Xi = X0 ◦ T i, and Sn = X1 + · · ·+ Xn. For 1 < p < 2, consider the condition

G(p) :
∞∑

n=0

E(Xn|M0) and
∞∑

n=0

(X−n − E(X−n|M0)) converge in Lp
B .

If G(p) holds and B is r-smooth for some r > p, then Property (2.2) holds for any

1 ≤ 1/α ≤ p.

Remark 5. For the strong law of large numbers (case p = 1), no additional condition is

needed. It follows from Mourier’s ergodic theorem (1953) that if E(‖X0‖B) < ∞, then

1

n

n∑

k=1

Xk converges almost surely to E(X0|I).

In fact, Mourier’s result holds in any separable Banach space B. Note that, if P is ergodic

and B = R, we cannot obtain Property (2.3) without additional assumptions (see the

example page 117 in Baum and Katz (1965)).

Remark 6. For the central limit theorem (case p = 2), Woyczyński (1975a) proved that:

if B is 2-smooth and has a Schauder basis, if the Xi of Theorem 3 are martingale-differences

with respect to the filtration Mi, and if P is ergodic, then

(2.6)
1√
n

n∑
i=1

Xi converges in distribution to a Gaussian measure on B .

In fact (2.6) still holds if we replace the martingale assumption by Condition G(2) (this

comes from the coboundary decomposition (2.7) below). For real-valued variables, this

result is due to Gordin (1969).

2.3 Proof of Theorem 3.

It is based on a coboundary decomposition due to Gordin (1969). More precisely, accord-

ing to Theorem 4.3 in Lesigne and Volnỳ (2001), G(p) holds if and only if

(2.7) X0 = M0 + Z0 − Z0 ◦ T ,
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where both M0 and Z0 belong to Lp
B, M0 is M0 measurable and E(M0|M−1) = 0 a.s..

Note that the result in Lesigne and Volnỳ (2001) is given for real valued variables. For

Banach valued variables, the proof is unchanged.

Let Mi = M0 ◦ T i and Zi = Z0 ◦ T i. Note that Qn = M1 + · · · + Mn is a martingale

adapted to the filtration Mn. Clearly Sk = Qk + Z1 − Zk+1 and

max
1≤k≤n

‖Sk‖B ≤ ‖Z1‖B + max
1≤k≤n

‖Qk‖B + max
2≤k≤n+1

‖Zk‖B .

According to Theorem 2, it suffices to prove that
∑∞

n=1 nαp−2P(max2≤k≤n+1 ‖Zk‖B ≥ ε nα)

is finite. By stationarity of Zk, we infer that

∞∑
n=1

nαp−2P
(

max
2≤k≤n+1

‖Zk‖B ≥ ε nα
)
≤

∞∑
n=1

nαp−1P (‖Z0‖B ≥ ε nα) .

Applying Fubini and using that Z0 belongs to Lp
B, we infer that the right hand term is

finite, which completes the proof.

3 The case of separable Hilbert spaces

Condition G(p) is expressed in terms of conditional expectations, so that it seems to be

a reasonable extension of the martingale case. However, it does not lead to the optimal

condition for strongly mixing sequences of real-valued variables, as we shall see in the

sequel.

In this section, we obtain a sufficient condition for Hilbert-valued variables, which

contains both the martingale case and the case of strongly mixing sequences. In order to

develop our results, we need more definitions.

Definition 4. For any nonnegative integrable random variable X with quantile function

QX , let HX be the function x → ∫ x

0
QX(u)du. Note that, on the set [0,P(X > 0)], HX is

an absolutely continuous and increasing function with values in [0,E(X)]. Denote by GX

the inverse of HX .

Definition 5. Let (Ω,A,P) be a probability space and (B, ‖ · ‖B) be a separable Banach

space. For any σ-algebra M of A and any random variable Y in L1(B), we consider the

coefficient γ(M, Y ) of weak dependence

(3.1) γ(M, Y ) = ‖E(Y |M)− E(Y )‖L1
B
.
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Denote by PY the distribution of Y and by PY |M a regular distribution of Y given M.

The strong mixing coefficient between M and σ(Y ) introduced by Rosenblatt (1956) may

be defined as follows (see for instance Bradley (2002), Proposition 3.22)

(3.2) α(M, σ(Y )) = sup
A∈B(R)

‖PY |M(A)− PY (A)‖1

(note that, with this definition, α(M, σ(Y )) is two times the usual one). Let (Xi)i>0 be

a sequence of B-valued random variables and let (Mi)i≥0 be a sequence of σ-algebras of

A. The sequences of coefficients γi and αi are then defined by

(3.3) γi = sup
k≥0

γ(Mk, Xi+k) and αi = sup
k≥0

α(Mk, σ(Xi+k))

Let (Xi)i∈Z and (Mi)i∈Z be defined as in Theorem 3, and assume furthermore that

X0 is M0-measurable and in Lp
H for some p in ]1, 2[. Let X = ‖X0‖H. We can prove (see

Subsection 6.2) that Condition G(p) holds as soon as

(3.4)
∑
i≥0

(i + 1)p−1

∫ γi

0

Qp−1
X ◦GX(u)du < ∞ .

According to the inequality 2GX(γk/18) ≤ αk, proved page 250 in Dedecker and Merlevède

(2003), we infer that (3.4) holds as soon as

(3.5)
∑
i≥0

(i + 1)p−1

∫ αi

0

Qp
X(u)du < ∞ .

From Rio (1995), we know that, for real-valued variables, Property (2.2) holds for αp = 1

and p in ]1, 2[ as soon as

(3.6)
∑
i≥0

(i + 1)p−2

∫ αi

0

Qp
X(u)du < ∞ ,

which is clearly less restrictive than (3.8). Comparing (3.4) and (3.6), a natural question

arises: does Property (2.2) still holds for H-valued random variables, under the condition

DM(p, γ,X) :
∑
i≥0

(i + 1)p−2

∫ γi

0

Qp−1
X ◦GX(u)du < ∞ .

which is implied by either (3.4) or (3.6)? We shall see in Theorem 4 below that the

answer is positive, even in the nonstationary case. Note that, in the stationary case, the

conditions G(p) and DM(p, γ, X) cannot be compared. However, it may happen that

G(p) does not hold for any p in ]1, 2[, while DM(p, γ, X) holds for any p in ]1, 2[ (see

again Subsection 6.2).
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Theorem 4. Let (Xk)k>0 be a sequence of H-valued random variables, and let Mk =

σ(Xi, i ≤ k). Let Sn =
∑n

i=1(Xi − E(Xi)) and define the coefficients (γi)i≥0 as in (3.3).

Let X be a positive random variable such that (Xi) ≺ X.

1. If E(Xp) < ∞ and DM(p, γ,X) holds for some p in ]1, 2[, then (2.2) holds for any

1 ≤ 1/α ≤ p.

2. If E(X ln+(X)) < ∞ and
∑

i≥1 γi/i < ∞, then (2.3) holds.

Remark 7. For a stationary sequence (Xi)i∈Z of centered H-valued random variables,

Condition DM(2, γ,X0) implies that n−1/2Sn converges weakly to a mixture of Gaussian

distributions in H. This result is proved in Corollary 2 of Dedecker and Merlevède (2003).

From Lemma 2 in Dedecker and Doukhan (2003), we obtain sufficient conditions for

DM(p, γ,X) to hold.

Corollary 1. Let 1 < p ≤ 2. Any of the following conditions implies DM(p, γ, X).

1. P(X > x) ≤ (c/x)r for some r > p, and
∑

i≥0(i + 1)p−2(γi)
(r−p)/(r−1) < ∞.

2. ‖X‖r < ∞ for some r > p, and
∑

i≥1 i(pr−2r+1)/(r−p)γi < ∞.

3. E(Xp(ln(1 + X))p−1) < ∞ and γi = O(ai) for some a < 1.

If H = R, the condition (3.6) may be weakened as shown in Rio (2000, Corollary 3.1).

Let FY (t) = PY (]−∞, t]) and FY |M(t) = PY |M(]−∞, t]). Define

(3.7) α(M, Y ) = sup
t∈R

‖FY |M(t)− FY (t)‖1 and α̃i = sup
k>0

α(Mk, Xi+k) .

From Dedecker and Prieur (2005, Proposition 2 Item 2), we know that, for real-valued

variables, GX(γk/2) ≤ α̃k, so that DM(p, γ, X) holds as soon as

(3.8)
∑
i≥0

(i + 1)p−2

∫ eαi

0

Qp
X(u)du < ∞ .

Consequently, for 1 < p < 2, Condition DM(p, γ, X) is weaker than Rio’s criterion (1995,

2000). For p = 1, Rio does not assume that E(X ln+(X)) is finite. In that case, the

difference between our result and Rio’s is the same as the difference between independent

variables and martingale differences for the strong law of large numbers. Note also that

Theorem 4 sharpens Theorem 1 in Shao (1993) in the special case where p ∈]1, 2[. However
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the maximal inequality stated in Proposition 1 below does not allow to obtain sharp results

in the case where 1 ≤ 1/α < 2 ≤ p < ∞, which is also considered by Shao.

To understand the difference between αi and α̃i, let us give the following example:

if (εi)i>0 is i.i.d. with marginal B(1/2), then, for the stationary solution (Xi)i>0 of the

equation 2Xn = Xn−1 + εn we have αi = 1/2 and α̃i ≤ 2−i.

Now to better understand the difference between α̃i and γi, note that one can build a

sequence of martingale differences (i.e. γi = 0 for i > 0) such that α̃i does not converge to

0. For the one-sided linear processes, γi can be easily computed: let (εi)i∈Z be a stationary

sequence of centered r.v.’s in L1
H, (ai)i≥0 a sequence of linear operators from H to H such

that
∑∞

i=0 ‖ai‖ < ∞, and Xn =
∑∞

i=0 ai(εn−i). For i ≥ 0, let γε
i = ‖E(εi|σ(εj, j ≤ 0))‖L1

H

and γX
i = ‖E(Xi|σ(Xj, j ≤ 0))‖L1

H
. We have the following upper bound

γX
n ≤

n−1∑
i=0

‖ai‖γε
n−i + ‖ε0‖L1

H

∞∑
i=n

‖ai‖ .

Now, according to the inequality GX(γk/2) ≤ α̃k and to the examples given in Rio

(1995), we can see that Condition DM(p, γ, X) is essentially optimal. For instance,

Corollary 2 below follows easily from Theorem 2 in Rio (1995) (apply Rio’s result with

a = r(p− 1)/(r − p) and b = r/(r − p)).

Corollary 2. For any 1 < p < 2 and any r > p, there exists a strictly stationary real-

valued Markov chain (Xi)i∈Z such that E(X0) = 0 and

1. For any nonnegative real x, P(|X0| > x) = min(1, x−r).

2. The sequence (γi)i≥0 satisfies supi>0 i(p−1) ln(i)(γi)
(r−p)/(r−1) < ∞.

3. lim sup
n→∞

|Sn|
n1/p

= +∞ almost surely.

We conclude this section by giving a maximal inequality (Proposition 1) which is the

key result to prove Theorem 4. The proof of the proposition 1 will be done in Appendix.

Definition 6. For any non-increasing sequence (δi)i≥0 of nonnegative numbers, define

δ−1(u) =
∑

i≥0 1Iu<δi
= inf{k ∈ N : δk ≤ u}. For any nonincreasing cadlag function

f , define the generalized inverse by f−1(u) = inf{t : f(t) ≤ u}. Note that δ−1 is the

generalized inverse of the cadlag function x → δ[x], [.] denoting the integer part.

10



Proposition 1. Let (Xk)k>0 be a sequence of random variables with values in a separable

Hilbert space (H, ‖ · ‖H) and let Mk = σ(Xi, i ≤ k). Let Sn =
∑n

i=1(Xi − E(Xi)) and

define the coefficients (γi)i≥0 as in (3.3). Let X be a positive random variable such that

(Xi) ≺ X. Let RX = ((γ/2)−1 ◦G−1
X ∧ n)QX and SX = R−1

X . For any x > 0 and r ≥ 1,

(3.9) P
(

max
1≤k≤n

‖Sk‖H ≥ 5x
)
≤ 14n

x

∫ SX(x/r)

0

QX(u)du +
4n

x2

∫ 1

SX(x/r)

RX(u)QX(u)du .

Remark 8. Note that for p ≥ 1, E(|Z|p) = p 5p
∫∞
0

xp−1P(|Z| ≥ 5x)dx. With the same

notations as in Proposition 1, we obtain from Inequality (3.9) that, for any fixed real

number p in ]1, 2[,

E
(

max
1≤k≤n

‖Sk‖p
H

)
≤ Cp n

∫ 1

0

Rp−1
X (u)QX(u)du ,

where Cp = 5p2p (12− 5p)(p− 1)−1(2− p)−1. By the definition of RX , it follows that

E
(

max
1≤k≤n

‖Sk‖p
H

)
≤ Cp n

n−1∑
i=0

(i + 1)p−2

∫ γi/2

0

Qp−1
X ◦GX(u)du .

3.1 Proof of Theorem 4.

Proof of Item 1. For the sake of brevity, write L,Q, R, S and G for LX , QX , RX , SX

and GX respectively. Applying Inequality (3.9) with x = xn = (εnα)/5 and r = 1, we

obtain that, for any ε ∈]0, 1],

(3.10) nαp−2P
(

max
1≤k≤n

‖Sk‖H ≥ εnα
)
≤ 70

ε
nα(p−1)−1

∫ S(xn)

0

Q(u)du

+
100

ε2
nα(p−2)−1

∫ 1

S(xn)

R(u)Q(u)du .

Since R is right-continuous and non-increasing,

(3.11) u < S(xn) ⇐⇒ R(u) > (εnα)/5 ⇐⇒ n <
(5R(u)

ε

)1/α

.

Ending the proof as in Rio (2000), page 59, we infer that there exists a finite constant C

depending only on α and on ε, such that for all ε ∈]0, 1],

∑
n≥1

nαp−2P
(

max
1≤k≤n

‖Sk‖H ≥ εnα
)

≤ C

∫ 1

0

Rp−1(u)Q(u)du

≤ C

∫ 1

0

((γ/2)−1 ◦G−1(u))p−1Qp(u)du .
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Setting v = H(u), the right hand side is finite as soon as

∫ 1

0

((γ/2)−1(u))p−1Qp−1 ◦G(u)du < ∞ ,

which is equivalent to DM(p, γ, X) (see for instance Rio (2000), Appendix C).

Proof of Item 2. We apply Inequality (3.9) with x = xn = (εn)/5 and r = 1:

(3.12) n−1P
(

max
1≤k≤n

‖Sk‖H ≥ εnα
)
≤ I1(n) + I2(n) + I3(n)

where

I1(n) =
70

nε

∫ 1

0

Q(u)1Iu<L(xn)du

I2(n) =
70

nε

∫ S(xn)

0

Q(u)1Iu≥L(xn)du

I3(n) =
100

ε2n2

∫ 1

S(xn)

R(u)Q(u)du

Note first that, for any positive real A we have,

(3.13) QX1I(X>A)(u) = Q(u)1Iu<L(A) .

Applying first (3.13), we obtain that (ε/70)
∑

n≥1 I1(n) =
∑

n≥1 n−1E(X1IX>nε/5). Then

applying Fubini, it follows that
∑

n≥1 I1(n) < ∞ as soon as E(X ln+(X)) < ∞. On the

other hand, using the fact that L(xn) ≤ u < S(xn) if and only if Q(u) ≤ xn < R(u), we

get
ε

70

∑
n≥1

I2(n) ≤
∫ 1

0

Q(u)
( ∑

1∨5Q(u)/ε≤n<5R(u)/ε

1

n

)
du .

Next, using the elementary inequalities ln(K + 1) − ln 2 ≤ ∑K
n=2 n−1 ≤ ln(K), we easily

infer that

ε

70

∑
n≥1

I2(n) ≤
∫ 1

0

Q(u)du +

∫ 1

0

Q(u) ln(1 + (γ/2)−1 ◦G−1(u)
)
du .

Then, setting v = H(u), it follows that

ε

70

∑
n≥1

I2(n) ≤ E‖X‖H +

∫ E‖X‖H

0

ln(1 + γ−1(u))du ,
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and the right hand side is finite if and only if
∑

i≥1 γi/i < ∞.

Finally, using again (3.11), we obtain that

∑
n≥1

n−21I(u ≥ S(xn)) =
∑

n≥1∨ 5R(u)/ε

n−2 ≤ 2
(5R(u)

ε
∨ 1

)−1

.

Consequently ε2
∑

n≥1 I3(n) ≤ K E(‖X‖H) for some K, which completes the proof. ¥

4 Cramér-von Mises statistics

Let (Ω,A,P), T and I be as in Section 2.2. Let X0 be a real-valued random variable and

Xi = X0 ◦ T i. Let F be the distribution function of X0 and define

Fn(t) =
1

n

n∑
i=1

1IXi≤t .

Let µ be a σ-finite measure on R and suppose that F satisfies

(4.1)

∫

R−
(F (t))2µ(dt) +

∫

R+

(1− F (t))2µ(dt) < ∞.

Under this assumption, the process {t → Fn(t)−F (t), t ∈ R} may be viewed as a random

variable with values in the Hilbert space L2(µ). Define then

Dn(µ) =
(∫

(Fn(t)− F (t))2µ(dt)
)1/2

.

When µ = dF , Dn(µ) is known as the Cramér-von Mises statistics, and is commonly used

for testing goodness of fit. It is also interesting to write Dn(µ) as the supremum of the

empirical process over a particular class of functions. For this task, we need the following

lemma, whose proof will be done in the appendix.

Lemma 1. For any two distibutions functions F and G satisfying (4.1), define

D(F, G, µ) =
(∫

(F (t)−G(t))2µ(dt)
)1/2

.

Let W1(µ) be the set of functions
{

f : f(t) = f(0) +
(∫

[0,t[

g(x)µ(dx)
)
1It>0 −

(∫

[t,0[

g(x)µ(dx)
)
1It≤0,

∫
(g(x))2µ(dx) ≤ 1

}
.

With these notations, we have that

D(F, G, µ) = sup
f∈W1(µ)

∣∣∣
∫

fdF −
∫

fdG
∣∣∣ .
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According to Lemma 1, since Dn(µ) = D(Fn, F, µ), we get that

Dn(µ) = sup
f∈W1(µ)

∣∣∣∣∣
1

n

n∑
i=1

(
f(Xi)− E(f(Xi))

)
∣∣∣∣∣ .

In particular, if µ is the Lebesgue measure on the real line, W1(µ) contains the unit ball

of the Sobolev space of order 1.

We now define the dependence coefficients which naturally appear in this context.

Let X be a real valued random variable and M be a σ-algebra of A. Keeping the same

notations as in Definition 5, define the coefficient τµ(M, X) by

τµ(M, X) =
∥∥∥
(∫

(FX|M(t)− FX(t))2µ(dt)
)1/2∥∥∥

1

The sequence (τµ(i))i≥0 of (Xi)i∈Z is then defined by

τµ(i) = τµ(M0, Xi) for M0 = σ(Xi, i ≤ 0) .

With the help of this coefficient, we can describe the asymptotic behavior of Dn(µ).

Proposition 2. Assume that the distribution function F of X0 satisfies (4.1). Define the

function Fµ by: Fµ(x) = µ([0, x[) if x ≥ 0 and Fµ(x) = −µ([x, 0[) if x ≤ 0. Define also

Yµ =
√|Fµ(X0)|.

1. If FX0|I = F and Yµ is integrable, then Dn(µ) converges to 0 almost surely.

2. If DM(p, τµ, Yµ) holds for some p in ]1, 2[, then n(p−1)/pDn(µ) converges to 0 almost

surely.

3. If DM(2, τµ, Yµ) holds, then
√

nDn(µ) converges in distribution to
√∫

G2(x)µ(dx),

where G is a mixture of gaussian processes.

Proof of Proposition 2. Define the variable Zi = {t → 1IXi≤t − F (t), t ∈ R} which

belongs to H = L2(µ) as soon as (4.1) holds. Clearly

(4.2) ‖Zi‖H ≤
(∫

]−∞,0[

(1IXi≤t)
2µ(dt) +

∫

[0,∞[

(1− 1IXi≤t)
2µ(dt)

)1/2

+
(∫

]−∞,0[

(F (t))2µ(dt) +

∫

[0,∞[

(1− F (t))2µ(dt)
)1/2

,
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so that ‖Zi‖H ≤
√|Fµ(Xi)|+E(

√|Fµ(Xi)|) and E(‖Zi‖H) ≤ 2E(Yµ). Item 1 follows from

(4.2) and Mourier’s ergodic theorem, as quoted in Remark 5. Now, by definition of γk, we

have that γk = E(‖E(Zk|M0)‖H) = τµ(k). On the other hand, we infer from (4.2) that

(4.3) Q‖Zi‖H ≤ QYµ+E(Yµ) ≤ QYµ + E(Yµ) .

Since E‖Yµ ‖H ≤
∫ 1

0
QYµ(u)du and since QYµ is non-increasing, we get for all x ∈ [0, 1],

(4.4)

∫ x

0

Q‖Z0 ‖H(u)du ≤
∫ x

0

QYµ(u)du + x

∫ 1

0

QYµ(u)du ≤ 2

∫ x

0

QYµ(u)du .

Now for two increasing continuous functions f and g, we have that f ≤ g if and only if

f−1 ≥ g−1. In addition [2g(x)]−1 = g−1(x/2) and consequently G‖Z0‖H(u) ≥ GYµ(u/2).

From (4.3) and the last inequality, we infer that, for any 1 < p ≤ 2,
∫ γk

0

Qp−1
‖Z0‖H ◦G‖Z0‖H(u)du ≤

∫ γk

0

Qp−1
Yµ

◦G‖Z0‖H(u)du +

∫ γk

0

(E(Yµ))p−1du

≤ 2

∫ γk/2

0

Qp−1
Yµ

◦GYµ(u)du + γk(E(Yµ))p−1 .(4.5)

Since γk = τµ(k), we infer from (4.5) that DM(p, γ, ‖Z0‖H) holds as soon as DM(p, τµ, Yµ)

does. Hence Item 2 follows from Theorem 4 (together with Remark 1) and Item 3 from

Corollary 2 in Dedecker and Merlevède (2003) (the covariance structure of G conditionally

to I is given in Example 2 of the same paper).

4.1 Examples

The coefficients τµ(M, X) may be compared to α(M, σ(X)), α(M, X) and to other de-

pendence coefficients introduced in Dedecker and Prieur (2005). Define τ(M, X) and

β(M, X) by

τ(M, X) =

∫
‖FX|M(t)− FX(t)‖1dt

β(M, X) = ‖ sup
t∈R

|FX|M(t)− FX(t)| ‖1

Lemma 2. For any real random variable X and any σ-algebra M, we have

1. Let Yµ =
√|Fµ(X)|. We have the bound τµ(M, X) ≤ 36

∫ α(M,σ(X))/2

0

QYµ(u)du.

2. If µ is a probability measure, τµ(M, X) ≤
√

α(M, X) and τµ(M, X) ≤ β(M, X).
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3. If Fµ is K-Lipschitz, then τµ(M, X) ≤
√

Kτ(M, X).

Recall that τ(M, X) has the following property: if X∗ is any random variable inde-

pendant of M and distributed as X, then τ(M, X)) ≤ ‖X − X∗‖1. Further, if Ω is

rich enough, one can choose X∗ such that τ(M, X)) = ‖X − X∗‖1. Due to this prop-

erty, the coefficient τ is easy to compute in many situations. Among the large variety

of examples given in Dedecker and Prieur (2005), let us choose two important cases: if

Xn =
∑

j≥0 ajξn−j, where (ξi)i∈Z is i.i.d., then τ(M0, Xn) ≤ 2‖ξ0‖1(
∑

j≥n |aj|) and also

τ(M0, Xn) ≤ (2Var(ξ0)
∑

j≥n a2
j)

1/2. If (Xn)n≥0 is the stationary solution of the equa-

tion Xn = f(Xn−1) + ξn, where f is κ-Lipshitz for some κ < 1 and (ξi)i∈Z is i.i.d, then

τ(M0, Xn) ≤ 2‖X0‖1κ
n. Note also that the coefficient β(M, X) is well adapted to dy-

namical systems (see Dedecker and Prieur (2005), Section 4.4).

Proof of Lemma 2. Define the variable Z = {t → 1IX≤t − F (t), t ∈ R} which belongs

to H = L2(µ) as soon as (4.1) holds. Using the definition of τ(M, X) and an inequality

of Dedecker and Merlevède (2003) (stated at the end of the proof of their Corollary 2),

we infer that

(4.6) τµ(M, X) = E(‖E(Z|M)‖H) ≤ 18

∫ α(M,σ(X))/2

0

Q‖Z‖H(u)du .

Now, it follows from (4.3) that Q‖Z‖H ≤ QYµ + E(Yµ). Since QYµ is nonincreasing, Item 1

follows from (4.4) and (4.6).

If µ is a probability measure, then

τµ(M, X) ≤
( ∫

‖FX|M(t)− FX(t)‖1µ(dt)
)1/2

≤
√

α(M, X) .

The second inequality of Item 2 follows from the bound

τµ(M, X) ≤
∥∥∥
(∫ (

sup
t∈R

|FX|M(t)− FX(t)|
)2

µ(dt)
)1/2∥∥∥

1
= β(M, X) .

We now prove Item 3. Since Fµ is K-Lipschitz, µ is absolutely continuous with respect

to the Lebesgue measure, with a density bounded by K. Consequently

τµ(M, X) ≤
(
K

∫
‖FX|M(t)− FX(t)‖1dt

)1/2

=
√

Kτ(M, X) .
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5 Estimation of the covariance operator of an Hilbertian

autoregressive process

Let H be a separable Hilbert space with norm ‖ · ‖H and inner product 〈·, ·〉H. Denote

by L(H) the class of bounded linear operators from H to H and by ‖ · ‖L(H) the usual

norm on L(H). A strictly stationary H-valued process X = (Xn)n∈Z is an autoregressive

process of order 1 (ARH(1)) if it satisfies

(5.1) Xn − µ = ρ(Xn−1 − µ) + ξn, n ∈ Z ,

where µ ∈ H, ρ ∈ L(H) and (ξn)n∈Z is a strictly stationary sequence of centered random

variables in L1
H. The existence of such a process is ensured by the mild condition (see

Bosq (2000))

(5.2) there exists an integer j0 ≥ 1 such that ‖ρj0‖L(H) < 1.

Indeed if (5.2) holds then (5.1) has an unique stationary solution given by

Xn = µ +
∑
j≥0

ρj(ξn−j), n ∈ Z ,

where the series is convergent almost surely and in L1
H. These types of processes with

values in functional spaces facilitate the study of estimation and forecasting problems for

several classes of continuous time processes. For more details we refer to Bosq (2000).

Consider an ARH(1) X = (Xn)n∈Z generated by a sequence ξ = (ξn)n∈Z of i.i.d.

random variables in L2
H. Define the covariance operator CX0 of X0 by

CX0(x) = E(〈X0, x〉HX0), x ∈ H .

The natural estimator of CX0 is the empirical covariance operator, defined as

Cn(x) =
1

n

n∑
i=1

〈Xi, x〉HXi, x ∈ H .

We wish to study the behaviour of the random variable Cn−CX0 with values in a certain

functional space. Such results are useful for the estimation of the eigenelements of CX0

which allows to derive results on the estimation of ρ (see Chapter 8 in Bosq (2000)). The

main tool for studying Cn is an autoregressive representation. Set

(5.3) Zi(x) = 〈Xi, x〉HXi − CX0(x), x ∈ H, i ∈ Z .
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Let S be the space of Hilbert-Schmidt operators on H, that is the space of bounded linear

operators s from H to H such that the quantity ‖s‖S =
( ∑

1≤i≤∞ ‖s(gi)‖2
H
)1/2

is finite for

any orthonormal basis (gi)i≥1 of H. This is a separable Hilbert space with respect to the

scalar product

〈s1, s2〉S =
∑

1≤i,j≤∞
〈s1(gi), hj〉H〈s2(gi), hj〉H ,

where (gi)i≥1 and (hj)j≥1 are two arbitrary orthonormal bases of H. According to Lemma

4.1 in Bosq (2000), the S-valued process Z = (Zn)n∈Z admits the following ARS(1)

representation

(5.4) Zi = R(Zi−1) + Ei, i ∈ Z ,

where R ∈ L(S) is defined by R(s) = ρsρ∗ for all s ∈ S and satisfies ‖Rh‖L(S) ≤ ‖ρh‖2
L(H),

and E = (En)n∈Z is a sequence of S-valued martingale differences with respect to the

filtration σ(ξk, k ≤ n). Note that En belongs to Lp
S as soon as ξ belongs to L2p

H . Concerning

the behaviour of the random variable ‖Cn − CX0‖S , the following results hold:

Proposition 3. Let ρ be an operator of L(H) satisfying (5.2). Assume that (ξn)n∈Z is an

i.i.d. sequence of random variables in L2
H. Let (Xn)n∈Z be the strictly stationary solution

of (5.1).

1. The sequence ‖Cn − CX0‖S converges almost surely to 0.

2. If E‖ξ0‖2p
H < ∞ for some p in ]1, 2[, then n(p−1)/p‖Cn − CX0‖S converges almost

surely to 0.

3. If E‖ξ0‖4
H < ∞, then

√
n‖Cn − CX0‖S converges in distribution to ‖G‖S, where G

is an S-valued centered Gaussian random variable.

Remark 9. Item 3 has been proved by Bosq (2000), Corollary 4.6 and can be proved

also by noting that Condition G(2) is satisfied (see Remark 6). The covariance operator

of the S-valued Gaussian random variable G is given by Bosq.

Proof of Proposition 3. The fact that (ξn)n∈Z is an i.i.d. sequence ensures the ergodicity

of the sequence (Zn)n∈Z defined by (5.3). Hence, Item 1 follows from Mourier’s ergodic

theorem (1953) as quoted in Remark 5. To prove Item 2, note that E0 belongs to Lp
S and

that

‖E(Zn|M0)‖Lp
S
≤ ‖E0‖Lp

S

∑
j≥n

‖Rj‖L(S) .
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Since (5.2) is satisfied and ‖Rj‖L(S) ≤ ‖ρj‖2
L(H), we infer that condition G(p) of Theorem

3 holds. This completes the proof.

6 Appendix

6.1 Proof of Theorem 2.

Proof of Item 1. Define the four variables

X ′
i = Xi1I (‖Xi‖B ≤ nα) and X ′′

i = Xi1I (‖Xi‖B > nα)

Y ′
i = X ′

i − E(X ′
i|Mi−1) and Y ′′

i = X ′′
i − E(X ′′

i |Mi−1) .

Since (Xi)i≥1 is a sequence of martingale differences, it follows that Xi = Y ′
i +Y ′′

i . Hence,

for every positive ε,

(6.1)

P
(

max
1≤k≤n

‖Sk‖B ≥ 2ε nα
)
≤ P

(
max
1≤k≤n

∥∥∥
k∑

j=1

Y ′
j

∥∥∥
B
≥ ε nα

)
+ P

(
max
1≤k≤n

∥∥∥
k∑

j=1

Y ′′
j

∥∥∥
B
≥ ε nα

)
.

Applying Markov’s inequality, we obtain that

(6.2)

P
(

max
1≤k≤n

∥∥∥
k∑

j=1

Y ′′
j

∥∥∥
B
≥ ε nα

)
≤ 2

ε nα

n∑

k=1

E(‖X ′′
k‖B) =

2

ε nα

n∑

k=1

E(‖Xk‖B1I (‖Xk‖B > nα)) .

Note that for any k ≥ 1,

(6.3) E‖Xk‖B1I (‖Xk‖B > nα) =

∫ 1

0

Q‖Xk‖B1I(‖Xk‖B>nα)(u)du ≤
∫ 1

0

QX1I(X>nα)(u)du .

For simplicity, let Q = QX and L = LX . From (6.2), (6.3) and (3.13), we infer that

P
(

max
1≤k≤n

∥∥∥
k∑

j=1

Y ′′
j

∥∥∥
B
≥ ε nα

)
≤ 2 n1−α

ε

∫ 1

0

Q(u)1I(u < L(nα)) .(6.4)

Since u < L(nα) if and only if n < Q1/α(u), we infer that there exists a finite constant C

depending only on p and α such that

∑
n≥1

nαp−2P
(

max
1≤k≤n

∥∥∥
k∑

j=1

Y ′′
j

∥∥∥
B
≥ ε nα

)
≤ 2

ε

∫ 1

0

Q(u)
( [Q1/α(u)]∑

n=1

nα(p−1)−1
)
du

≤ C

∫ 1

0

Qp(u)du = C E(Xp) .(6.5)
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It remains to control the first term on right hand in (6.1). Applying Doob’s inequality to

the submartingale ‖∑k
j=1 Y ′

j ‖B we have that

P
(

max
1≤k≤n

∥∥∥
k∑

j=1

Y ′
j

∥∥∥
B
≥ ε nα

)
≤ 1

εrnrα
E

(∥∥∥
n∑

j=1

Y ′
j

∥∥∥
r

B

)
.

Since B is (r,D)-smooth, we obtain, applying Inequality (2.1)

P
(

max
1≤k≤n

∥∥∥
k∑

j=1

Y ′
j

∥∥∥
B
≥ ε nα

)
≤ D

εrnrα

n∑
j=1

E(‖Y ′
j ‖r
B) ≤

2rD

εrnrα

n∑
j=1

E(‖X ′
j‖r
B) .

Bearing in mind the definition of X ′
j we infer that

(6.6) P
(

max
1≤k≤n

∥∥∥
k∑

j=1

Y ′
j

∥∥∥
B
≥ ε nα

)
≤ 2rD

εrnrα

n∑
i=1

∫ 1

0

Qr
‖Xi‖B1I(‖Xi‖B≤nα)(u)du .

Note that for any A > 0 and any k ≥ 1, ‖Xk‖B1I(‖Xk‖B ≤ A) ≤ ‖Xk‖B∧A. Now, for any

u ∈ [0, 1],

(6.7) Q‖Xk‖B1I(‖Xk‖B≤A)(u) ≤ Q‖Xk‖B∧A(u) ≤ QX∧A(u) ≤ Q(u) ∨ A .

From (6.6), (6.7) and the fact that A < Q(u) if and only if u < L(A), we infer that

(6.8)
∑
n≥1

nαp−2P
(

max
1≤k≤n

∥∥∥
k∑

j=1

Y ′
j

∥∥∥
B
≥ ε nα

)
≤ 2rD

εr
(A1(n) + A2(n)) ,

where

A1(n) =
∑
n≥1

nα(p+1−r)−1

∫ 1

0

Qr−1(u)1I(u < L(nα))du

A2(n) =
∑
n≥1

nα(p−r)−1

∫ 1

0

Qr(u)1I(L(nα) ≤ u ≤ 1)du .

Now, since u ≥ L(nα) if and only if n ≥ Q1/α(u), there exists two finite constants K1 and

K2 depending only on α, p and r, such that

A1(n) ≤
∫ 1

0

Qr−1(u)
([Q1/α(u)]∑

n=1

nα(p+1−r)−1
)
du ≤ K1

∫ 1

0

Qp(u)du(6.9)

A2(n) ≤
∫ 1

0

Qr(u)
( ∑

n≥Q1/α(u)

nα(p−r)−1
)
du ≤ K2

∫ 1

0

Qp(u)du ,(6.10)
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Finally, A1(n) and A2(n) are finite as soon as E(Xp) is finite, which completes the proof.

Proof of Item 2. Since B is super-reflexive, it is r-smooth for some 1 < r ≤ 2. Without

loss of generality, assume that r < 2. According to Inequality (6.3), for all k ≥ 1,

E‖Xk‖B1I (‖Xk‖B > n) ≤ E(X1I(X > n)) .

Consequently, by applying Fubini, we infer from (6.2) that if E(X ln+(X)) < ∞, then

∑
n≥1

1

n
P
(

max
1≤k≤n

∥∥∥
k∑

j=1

Y ′′
j

∥∥∥
B
≥ εn

)
< ∞ .

It remains to prove that
∑

n≥1 n−1P
(
max1≤k≤n ‖

∑k
j=1 Y ′

j ‖B ≥ εn
)

< ∞. Starting from

(6.8) with α = p = 1 and applying Inequalities (6.9) and (6.10), we infer that A1(n) and

A2(n) are finite as soon as E(X) is finite, which completes the proof.

6.2 Comparison of the conditions G(p), (3.4) and DM(p, γ,X).

In this section, we consider a stationary sequences (Xi)i∈Z with values in some separable

space H, such that X0 is M0-measurable. Let X = ‖X0‖H.

Proof of the implication : (3.4) ⇒ G(p). Notice first that G(p) can be rewritten as

(6.11) lim
m→∞

sup
n>m

∥∥∥E
( n∑

i=m+1

Xi

∣∣∣M0

)∥∥∥
Lp
H

= 0 .

Since p > 1, using first the duality between Lp
H and Lq

H for q = (p− 1)/p, followed by the

inequality (3.29) in Dedecker and Merlevède (2003), we successively have

∥∥∥E
( n∑

i=m+1

Xi

∣∣∣M0

)∥∥∥
Lp
H

= sup
Y ∈M0,‖Y ‖Lq

H
≤1

E
〈
Y,

n∑
i=m+1

Xi

〉
H

≤ sup
‖Y ‖Lq

H
≤1

n∑
i=m+1

∫ 1

0

QY (u)QX(u)1Iu≤GX(γi)du .

Then Hölder’s inequality yields

∥∥∥E
( n∑

i=m+1

Xi

∣∣∣M0

)∥∥∥
Lp
H
≤ sup

‖Y ‖Lq
H
≤1

(∫ 1

0

Qq
Y (u)

)1/q
(∫ 1

0

Qp
X(u)

( n∑
i=m+1

1Iu≤GX(γi)

)p

du

)1/p

.
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Since ( ∞∑
i=m+1

1Iu≤GX(γi)

)p

≤
∞∑

j=m+1

(j + 1)p1IGX(γj+1)≤u≤GX(γj)

and since, for 1 < p ≤ 2, (j + 1)p ≤ 2
∑j

`=0(` + 1)p−1, we get:

( ∞∑
i=m+1

1Iu≤GX(γi)

)p

≤ 2
∞∑

j=m+1

( j∑

`=0

(` + 1)p−1
)
1IGX(γj+1)≤u≤GX(γj) .

Then,

∥∥∥E
( n∑

i=m+1

Xi

∣∣∣M0

)∥∥∥
Lp
H
≤ 21/p

( ∞∑
i=0

(i + 1)p−1

∫ GX(γi)∧GX(γm+1)

0

Qp
X(u)du

)1/p

≤ 21/p

( ∞∑
i=0

(i + 1)p−1

∫ γi∧γm+1

0

Qp−1
X ◦GX(u)du

)1/p

,

which implies that (6.11) holds (and hence G(p)) as soon as (3.4) does.

Some examples showing that G(p) and DM(p, γ,X) cannot be compared. Con-

sider the simple case Xn =
∑

i≥0 aiεn−i, where (εi)i∈Z is a sequence of iid real-valued

random variables with distribution N (0, 1). Let Mi be the natural σ-algebra Mi =

σ(εj, j ≤ i). Since E(Xn|M0) is gaussian with mean 0 and variance
∑

i≥n a2
i , one has that

γn =

√
2

π

∑
i≥n

a2
i .

On an other hand, for any p in ]1, 2[, the condition G(p) holds if and only if

n∑

k=0

ak converges, and
∑
i=0

( ∞∑

k=i

ak

)2

< ∞ .

Consequently, if ai = (−1)i(
√

i + 1 ln(i+1))−1, then the condition G(p) holds for any p in

]1, 2[, while
∑

i>0 γi/i = ∞, so that DM(p, γ, X) cannot holds for any p in ]1, 2[. On the

contrary, if ai = (i+1)−3/2, then G(p) does not hold for any p in ]1, 2[, while DM(p, γ, X)

holds for any p in ]1, 2[ (to see this, apply Corollary 1 item 2. with r > 1/(2− p)).

6.3 Proof of Proposition 1.

We need the following preliminary result.
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Proposition 4. Let (Ω,A,P) be a probability space and (Xk)1≤k≤n be n random variables

with values in a (r,D)-smooth separable Banach space B such that P (‖Xk‖B ≤ T ) = 1

for any 1 ≤ k ≤ n. For i ≤ n, define the σ-algebras Mi by: Mi = {∅, Ω} if i ≤ 0 and

Mi = σ(Xj, 1 ≤ j ≤ i) if 1 ≤ i ≤ n. Let S0 = 0B and Sk =
∑k

i=1(Xi − E(Xi)). Define

the random variables Ui by: U[n/q]+1 = Sn−Sq[n/q] and Ui = Siq −Siq−q for 1 ≤ i ≤ [n/q].

For any x ≥ Tq, the following inequality holds

(6.12) P
(

max
1≤k≤n

‖Sk‖B ≥ 4x
)
≤ D

xr

[n/q]+1∑
i=1

E(‖Ui − E(Ui|M(i−2)q)‖r
B)

+
1

x

[n/q]+1∑
i=3

E(‖E(Ui|M(i−2)q)‖B).

Proof of Proposition 4. Any integer j being distant from at most [q/2] of an element

of qN, we have that

max
1≤k≤n

‖Sk‖B ≤ 2[q/2]T + max
1≤j≤[n/q]+1

∥∥∥
j∑

i=1

Ui

∥∥∥
B
.

Hence Inequality (6.12) follows from the bound

(6.13) P
(

max
1≤j≤[n/q]+1

∥∥∥
j∑

i=1

Ui

∥∥∥
B
≥ 3x

)
≤ D

xr

[n/q]+1∑
i=1

E(‖Ui − E(Ui|M(i−2)q)‖r
B)

+
1

x

[n/q]+1∑
i=3

E(‖E(Ui|M(i−2)q)‖B).

Consider the σ-algebras FU
i = Miq and define the variables Ũi as follows: Ũ1 = U1, and

Ũ2i−1 = U2i−1 − E(U2i−1|FU
2(i−1)−1) for i > 1, Ũ2 = U2 and Ũ2i = U2i − E(U2i|FU

2(i−1)) for

i > 1. Substituting Ũi to Ui, we obtain the inequality

(6.14)

max
1≤j≤[n/q]+1

∥∥∥
j∑

i=1

Ui

∥∥∥
B
≤ max

2≤2j≤[n/q]+1

∥∥∥
j∑

i=1

Ũ2i

∥∥∥
B
+ max

1≤2j−1≤[n/q]+1

∥∥∥
j∑

i=1

Ũ2i−1

∥∥∥
B
+

[n/q]+1∑
i=1

‖Ui−Ũi‖B .

Note that (Ũ2i)i≥1 (resp. (Ũ2i−1)i≥1) is a B-valued martingale difference sequence with

respect to the filtration (FU
2i)i≥1 (resp. (FU

2i−1)i≥1). Applying Doob’s inequality, to the

submartingale ‖∑j
i=1 Ũ2i‖B and next Inequality (2.1), we obtain that

(6.15)

P
(

max
2≤2j≤[n/q]+1

∥∥∥
j∑

i=1

Ũ2i

∥∥∥
B
≥ x

)
≤ 1

xr
E

(∥∥∥
([n/q]+1)/2∑

i=1

Ũ2i

∥∥∥
r

B

)
≤ D

xr

([n/q]+1)/2∑
i=1

E(‖Ũ2i‖r
B) .
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In the same way

(6.16) P
(

max
1≤2j−1≤[n/q]+1

∥∥∥
j∑

i=1

Ũ2i−1

∥∥∥
B
≥ x

)
≤ D

xr

[n/q]/2+1∑
i=1

E(‖Ũ2i−1‖r
B) .

On the other hand, we have

(6.17) P
( [n/q]+1∑

i=1

‖Ui − Ũi‖B ≥ x
)
≤ 1

x

[n/q]+1∑
i=3

E‖E(Ui|M(i−2)q)‖B .

Inequality (6.13) follows from (6.14), (6.15), (6.16) and (6.17). ¥

End of the proof of Proposition 1. For every v ∈ [0, 1], we introduce the variables

X ′
i = Xi1I (‖Xi‖H ≤ Q(v)) and X ′′

i = Xi1I (‖Xi‖H > Q(v)) .

Let S ′n =
∑n

i=1(X
′
i − EX ′

i) and S ′′n =
∑n

i=1(X
′′
i − EX ′′

i ) and write

P
(

max
1≤k≤n

‖Sk‖H ≥ 5 x
)

≤ P
(

max
1≤k≤n

‖S ′k‖H ≥ 4 x
)

+ P
(

max
1≤k≤n

‖S ′′k‖H ≥ x
)

.(6.18)

Arguing as for (6.4) and using the fact that

u < L(Q(v)) ⇐⇒ Q(v) < Q(u) ⇐⇒ u < v ,

we obtain that

P
(

max
1≤k≤n

‖S ′′k‖H ≥ x
)

≤ 2n

x

∫ v

0

Q(u)du .(6.19)

To control the first term in decomposition (6.18), we apply Inequality (6.12) with r = 2

and D = 1. Since in Hilbert spaces, E(‖U ′
i −E(U ′

i |M(i−2)q)‖2
H) ≤ E‖U ′

i‖2
H, we get that for

any integer q smaller than n and any x ≥ qQ(v),

(6.20) P
(

max
1≤k≤n

‖S ′k‖H ≥ 4x
)
≤ 1

x2

[n/q]+1∑
i=1

E‖U ′
i‖2
H +

1

x

[n/q]+1∑
i=3

E‖E(U ′
i |M(i−2)q)‖H ,

where U ′
i = S ′iq − S ′iq−q for 1 ≤ i ≤ [n/q], and U ′

[n/q]+1 = S ′n − S ′q[n/q]. Define the random

variables

Yk = Xk − EXk , Y ′
k = X ′

k − EX ′
k and Y ′′

k = X ′′
k − EX ′′

k .

For all 1 ≤ i ≤ [n/q], we have that

E‖U ′
i‖2
H =

iq∑

j=(i−1)q+1

iq∑

`=(i−1)q+1

E〈Y ′
` , Y

′
j 〉H =

iq∑

j=(i−1)q+1

iq∑

`=(i−1)q+1

E〈X ′
` , Y ′

j 〉H .
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Let 1 ≤ i ≤ [n/q]. Clearly

(6.21) E‖U ′
i‖2
H ≤ 2

iq∑

j=(i−1)q+1

j∑

`=(i−1)q+1

E
(‖X ′

` ‖H‖E(Y ′
j |M`)‖H

) ≤ A1 + A2 ,

where

A1 =

iq∑

j=(i−1)q+1

j∑

`=(i−1)q+1

2E
(‖X ′

` ‖H‖E(Yj|M`)‖H
)

A2 =

iq∑

j=(i−1)q+1

j∑

`=(i−1)q+1

2E
(‖X ′

` ‖H‖E(Y ′′
j |M`)‖H

)

Since ‖X ′
k‖H ≤ Q(v), it follows that

A2

2Q(v)
≤

iq∑

j=(i−1)q+1

j∑

`=(i−1)q+1

E‖E(Y ′′
j |M`)‖H ≤

iq∑

j=(i−1)q+1

(j − (i− 1)q)E‖Y ′′
j ‖H

≤ 2

iq∑

j=(i−1)q+1

(j − (i− 1)q)E‖X ′′
j ‖H .

Next arguing as in (6.3) and using (3.13), we easily obtain that for all j ≥ 1,

(6.22) E‖X ′′
j ‖H ≤

∫ v

0

Q(u)du .

It follows that

(6.23) A2 ≤ 2q(q + 1)Q(v)

∫ v

0

Q(u)du .

On the other hand, applying Inequality (3.29) in Dedecker and Merlevède (2003), we infer

that

A1 ≤ 2

iq∑

j=(i−1)q+1

j∑

`=(i−1)q+1

∫ γj−`

0

Q‖X′
` ‖H ◦G‖Yj ‖H(u)du .(6.24)

Note that, for all j ≥ 1, Q‖Yj ‖H ≤ Q‖Xj ‖H + E‖Xj ‖H. Arguing as in (4.4), we infer that

G‖Yj ‖H(u) ≥ G(u/2). From this inequality and (6.24), we obtain the bound

A1 ≤ 4

iq∑

j=(i−1)q+1

j∑

`=(i−1)q+1

∫ γj−`
2

0

Q‖X′
` ‖H ◦G(u)du .
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Since H is absolutely continuous and monotonic, we can make the change-of-variables

v = H(u) (see Theorem 6.26 in Rudin (1986) and the example given page 156), which

yields

A1 ≤ 4

iq∑

j=(i−1)q+1

j∑

`=(i−1)q+1

∫ G(γj−`/2)

0

Q‖X′
` ‖H(u)Q(u)du .

Applying (6.7), we infer that for any ` ≥ 1 and any u ∈ [0, 1],

(6.25) Q‖X′
` ‖H(u) ≤ Q(v ∨ u) .

Using (6.25), we get that

A1 ≤ 4

q−1∑

k=0

(q − k)

∫ G(γk/2)

0

Q(v ∨ u)Q(u)du .(6.26)

Starting from (6.21) and collecting (6.23) and (6.26), we infer that for all 1 ≤ i ≤ [n/q],

(6.27) E‖U ′
i‖2
H ≤ 4q

(
2qQ(v)

∫ v

0

Q(u)du+

∫ 1

0

(
(γ/2)−1◦G−1

)
(u)Q2(u)1I(v ≤ u ≤ 1)du

)
.

On the other hand, for all 3 ≤ i ≤ [n/q],

E‖E(U ′
i |M(i−2)q)‖H ≤ E‖E(Ui|M(i−2)q)‖H + 2

iq∑

k=(i−1)q+1

E‖X ′′
k‖H .(6.28)

Applying Inequality (6.22), we obtain that

iq∑

k=(i−1)q+1

E‖X ′′
k‖H ≤ q

∫ v

0

Q(u)du .

According to the definition of the coefficients γi, we have that

E‖E(Ui|M(i−2)q)‖H ≤ qγq = 2qH ◦G(γq/2) = 2q

∫ G(γq/2)

0

Q(u)du .

Starting from (6.28), we infer that for all 3 ≤ i ≤ [n/q],

E‖E(U ′
i |M(i−2)q)‖H ≤ 2q

( ∫ G(γq/2)

0

Q(u)du +

∫ v

0

Q(u)du
)

.(6.29)

The terms involving the quantity U ′
[n/q]+1 are treated similarly: we obtain the same bound

as (6.27) and (6.29) but with n− q[n/q] instead of q. Starting from Inequality (6.18) and

26



collecting (6.19), (6.20), (6.27) and (6.29), we obtain that for any v ∈ [0, 1], any positive

integer q smaller than n and any x ≥ qQ(v),

P
(

max
1≤k≤n

‖Sk‖H ≥ 5 x
)

≤ 12n

x

∫ v

0

Q(u)du +
2n

x

∫ G(γq/2)

0

Q(u)du

+
4n

x2

∫ 1

v

(
(γ/2)−1 ◦G−1

)
(u)Q2(u)du .(6.30)

Now choose v = S(x/r) and q = ((γ/2)−1◦G−1(v))∧n. This choice implies that G(γq/2) ≤
v and that

qQ(v) = R(v) = R(S(x/r)) ≤ x/r ≤ x .

Applying Inequality (6.30), we obtain the desired result. ¥

6.4 Proof of Lemma 1.

Take f ∈ W1(µ). We first check that under (4.1), |f | is integrable with respect to dF .

Without loss of generality, assume that f(0) = 0. Clearly
∫
|f |dF ≤

∫

R+

(∫

[0,t[

|g(x)|µ(dx)
)
dF (t) +

∫

R−

(∫

[t,0[

|g(x)|µ(dx)
)
dF (t) .

Applying Fubini, we obtain that
∫
|f |dF ≤

∫

R+

|g(x)|(1− F (x))µ(dx) +

∫

R−
|g(x)|F (x)µ(dx) .

Since g belongs to L2(µ), the right hand side is finite as soon as (4.1) holds. In the same

way, we have both
∫

fdF =

∫

R+

g(x)(1− F (x))µ(dx)−
∫

R−
g(x)F (x)µ(dx)

∫
fdG =

∫

R+

g(x)(1−G(x))µ(dx)−
∫

R−
g(x)G(x)µ(dx).

Consequently ∫
fdF −

∫
fdG =

∫
g(x)(G(x)− F (x))µ(dx) .

The result follows by noting that

D(F, G, µ) = sup
‖g‖L2(µ)≤1

∣∣∣
∫

R
g(x)(F (x)−G(x))dµ(x)

∣∣∣ . ¥
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