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Jérôme Dedecker∗, Florence Merlevède†and Dalibor Volný‡
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1 Introduction and notations

Let (Ω,A,P) be a probability space, and T : Ω 7→ Ω be a bijective bimeasurable transfor-

mation preserving the probability P. Let X0 be a square integrable random variable with

mean 0. Define then the stationary sequence (Xi)i∈Z by Xi = X0 ◦ T i, and let

Sn = X1 + · · ·+ Xn and σn = ‖Sn‖2.

In this paper, we shall address the central limit question and its invariance principle;

namely we want to find a sequence sn of positive numbers with sn →∞, and conditions

ensuring that s−1
n Sn converges in distribution to a mixture of normal distributions (CLT),

or more precisely that {s−1
n S[nt], t ∈ [0, 1]} converges in distribution in the Skorohod space

to a mixture of Wiener distributions (WIP).

We shall provide sufficient conditions involving quantities of the type E(Xk|M0), where

M0 is a sub-σ-algebra of A satisfying M0 ⊆ T−1(M0). We do not assume here that X0

is M0-measurable, since in many cases the natural filtration Mi = T−i(M0) is generated

by some auxiliary sequence, typically the innovations (εi)i∈Z of a linear process Xk =∑
i∈Z aiεk−i.

The first result to mention in this context was obtained by Gordin (1969), for sta-

tionary and ergodic sequences. As a consequence of a general result involving martingale

approximations, he proved that the CLT holds with sn =
√

n under the conditions

(1.1)
∑

k≥1

‖E(Xk|M0)‖2 < ∞ and
∑

k≥1

‖X−k − E(X−k|M0)‖2 < ∞.

Following Gordin’s approach, Heyde obtained the two following results for stationary and

ergodic sequences. For regular sequences (i.e. E(X0|M−n) → 0 and E(X0|Mn) → X0),

he proved in 1974 that Sn/
√

n converges to N (0, σ2) under the conditions

(1.2)∑

k∈Z
(E(Xk|M0)− E(Xk|M−1)) converges in L2 to m, and lim

n→∞
‖Sn‖2√

n
= ‖m‖2 = σ ,

which is close to optimality in the case where sn =
√

n (see our proposition 2). Next,

Heyde proved in 1975 that the WIP holds for sn =
√

n provided the two series

(1.3)
∑

k≥1

E(Xk|M0) and
∑

k≥1

(X−k − E(X−k|M0)) converge in L2,

which clearly improves on (1.1). Notice that (1.3) is a necessary and sufficient condition

in order to get the representation, X0 = m+g−g ◦T−1, where (m◦T i)i∈Z is a martingale
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difference sequence in L2 and g is in L2 (see Volný (1993)). Also (1.3) is a sufficient

condition for the functional law of the iterated logarithm (see Heyde (1975)).

Following Heyde’s approach (1974), our aim is to provide sufficient conditions based

on P0(Xk) = E(Xk|M0) − E(Xk|M−1), for the CLT (cf. Theorem 1, Section 2) and for

the WIP (cf. Theorem 2, Section 3) under general normalizations. For instance, as a

consequence of Theorem 1, we obtain that if X0 is M0-measurable and sn/
√

n is a slowly

varying function at infinity, then the CLT holds under the conditions

‖E(Sn|M0)‖2 = o (sn) , and

√
n

sn

n∑
i=0

P0(Xi) → m in L2.

Now, as a consequence of Theorem 2, we obtain that if the sequence is regular and

(1.4)
∑

i∈Z
‖P0(Xi)‖2 < ∞ ,

then the WIP holds under the normalization sn =
√

n. In Proposition 4, we give a

counterexample showing that (1.4) cannot be weakened to (1.2) for the WIP to hold with

sn =
√

n.

Of course, such results are well adapted to linear processes with dependent innova-

tions (see Section 4), but they can also be successfully applied to functions of linear

processes generated by independent innovations (see Section 5). For instance, we obtain

as a consequence of Corollary 6 that if

Xk = f
( ∑

i≥0

εk−i

i + 1

)
− E

(
f
( ∑

i≥0

εk−i

i + 1

))
,

where f is Lipschitz with continuous derivative f ′, and (εi)i∈Z is iid with mean zero and

finite variance, then
{ S[nt]√

n log n
, t ∈ [0, 1]

}
converges in distribution to ‖ε0‖2

∣∣∣E
(
f ′

( ∑
i≥0

εi

i + 1

))∣∣∣W

in the Skohorod space, where W is a standard Brownian motion.

In Section 6, we go back to conditions à la Gordin. More precisely we derive from

(1.4) the following improvement of (1.1): the WIP holds with sn =
√

n provided that

(1.5)
∑

k≥1

‖E(Xk|M0)‖2√
k

< ∞ and
∑

k≥1

‖X−k − E(X−k|M0)‖2√
k

< ∞.

Most of the results of this paper are new (except Corollary 1). However parts of them

were known in the particularly cases where X0 is M0-measurable and/or sn =
√

n. This

is the reason why we have made a lot of detailed remarks all along this paper.
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1.1 Notations

We have already introduced the map T and the sequence (Xi)i∈Z. We now fix the other

notations which we shall use in this paper.

We denote by I the σ-algebra of all T -invariant sets. The probability P is ergodic if

each element of I has measure 0 or 1.

We denote by (D([0, 1]), d) the space of all functions from [0, 1] to R which have left-

hand limits and are continuous from the right, equipped with the Skorohod distance d

(see Billingsley (1968), Chapter 3).

For a σ-algebra M0 satisfying M0 ⊆ T−1(M0), we define the nondecreasing filtration

(Mi)i∈Z by Mi = T−i(M0). Let M−∞ =
⋂

k∈ZMk and M∞ =
∨

k∈ZMk. Let Hi be the

space of Mi-measurable and square integrable random variables, and denote by HiªHi−1

the orthogonal of Hi−1 in Hi. Let Pi be the projection operator from L2 to Hi ª Hi−1,

that is

Pi(f) = E(f |Mi)− E(f |Mi−1) for any f in L2.

Definition 1. We say that the random variable X0 is regular if E(X0|M−∞) = 0 almost

surely, and X0 is M∞-measurable.

Definition 2. Following Definition 0.15 in Bradley (2002), a sequence (h(n))n≥1 of posi-

tive numbers is said to be slowly varying in the strong sense if there exists a continuous

function f : (0,∞) → (0,∞) such that f(n) = h(n) for all n ∈ N, and f(x) is slowly

varying as x tends to infinity. In what follows, we shall say that h(n) is a svf if the

sequence (h(n))n≥1 is slowly varying in the strong sense.

2 Sufficient conditions for the CLT.

As in the introduction, (sn)n≥1 denotes a sequence of positive numbers such that sn →∞.

In the theorem below, we give a necessary and sufficient condition for the normalized

partial sum Sn/sn to be well approximated by Mn/
√

n, where Mn is a martingale with

stationary increments adapted to the filtration Mn.

Theorem 1. Let m be an element of H0 ªH−1. The following conditions are equivalent

C0(sn): lim
n→∞

∥∥∥Sn

sn

− 1√
n

n∑
i=1

m ◦ T i
∥∥∥

2
= 0 .
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C1(sn):





(a) ‖E(Sn|M0)‖2 = o (sn) and ‖Sn − E(Sn|Mn)‖2 = o (sn) ,

(b) lim
n→∞

1

n

n∑

`=1

∥∥∥
√

n

sn

n−∑̀

i=1−`

P0(Xi)−m
∥∥∥

2

2
= 0 .

If one of these conditions holds then s−1
n Sn converges in distribution to

√
E(m2|I) N ,

where N is a standard Gaussian random variable independent of I.

Remark 1. Arguing as in the proof of Proposition 1 in Dedecker and Merlevède (2002), we

can prove that if C0(sn) holds, then s−1
n Sn satisfies the conditional central limit theorem,

that is: for any continuous function ϕ such that x → |(1 + x2)−1ϕ(x)| is bounded, and

any integer k,

lim
n→∞

∥∥∥E
(
ϕ(s−1

n Sn)|Mk

)−
∫

ϕ
(
x
√
E(m2|I)

)
g(x)dx

∥∥∥
1

= 0 ,

where g is the distribution of a standard normal. Recall that this implies the stable

convergence of s−1
n Sn in the sense of Rényi (1963).

Remark 2. If X0 is regular, the following orthogonal decomposition is valid:

(2.1) Xk =
∑

i∈Z
Pi(Xk) .

It follows that

(2.2) E(Xk|M0) =
∑
i≤0

Pi(Xk) and Xk − E(Xk|Mn) =
∑
i>n

Pi(Xk) .

Using the stationarity, we see that C1(sn)(a) is equivalent to

∞∑
i=0

∥∥∥
n+i∑

k=i+1

P0(Xk)
∥∥∥

2

2
= o

(
s2

n

)
and

∞∑
i=n+1

∥∥∥
n−i∑

k=1−i

P0(Xk)
∥∥∥

2

2
= o

(
s2

n

)
.

Remark 3. If C0(sn) holds and E(m2) > 0 then s−2
n σ2

n converges to E(m2). Hence C0(σn)

holds with m′ = m/‖m‖2. It follows that C1(σn)(a) holds, which implies that σn/
√

n is

a svf (see Theorem 8.13 in Bradley (2002)), and the same is true for sn/
√

n.

Remark 4. The condition C1(σn)(a) is equivalent to the existence of a sequence mn in

H0 ªH−1 such that

lim
n→∞

∥∥∥Sn

σn

− 1√
n

n∑
i=1

mn ◦ T i
∥∥∥

2
= 0 .

5



This has been proved by Wu and Woodroofe (2004) if X0 isM0-measurable, and extended

to the general case by Volný (2005). Note also that even in the adapted case, the condition

‖E(Sn|M0)‖2 = o (σn) alone is not sufficient for the CLT to hold even if σn/
√

n → 1 (see

Klicnarová and Volný (2006)).

In the following proposition, we give a sufficient condition for C1(sn)(b).

Proposition 1. The condition C1(sn)(b) holds as soon as

√
n

sn

n∑
i=−n

P0(Xi) converges to m in L2, and(2.3)

n∑

`=1

∥∥∥
n∑

k=`

P0(Xk)
∥∥∥

2

2
= o

(
s2

n

)
, and

n∑

`=1

∥∥∥
n∑

k=`

P0(X−k)
∥∥∥

2

2
= o

(
s2

n

)
.

In particular if X0 is M0-measurable and sn/
√

n is a svf, then C0(sn) holds as soon as

(2.4) ‖E(Sn|M0)‖2 = o (sn) , and

√
n

sn

n∑
i=0

P0(Xi) → m in L2.

As a consequence, we obtain the following corollary.

Corollary 1. Consider the following conditions

C2 :
∑

i∈Z P0(Xi) converges to m in L2, and
‖Sn‖2√

n
→ ‖m‖2,

C3 : X0 is regular and
∑

i∈Z ‖P0(Xi)‖2 < +∞.

We have the implications C3 ⇒ C2 ⇒ C1(
√

n). Furthermore, if C3 holds then we have

E(m2|I) =
∑

k∈Z E(X0Xk|I).

Remark 5. The fact that C2 implies C0(
√

n) is due to Heyde (1974). Note that the

convergence of
∑

i∈Z P0(Xi) alone is not sufficient for the CLT, as shown by Theorem 4

in Volný (1993). However if we assume that the series
∑

i∈Z P0(Xi) is unconditionally

convergent, then C2 holds (see Theorem 5 in Volný (1993)). In particular, the series∑
i∈Z P0(Xi) converges unconditionally as soon as C3 holds (see Theorem 6 in Volný

(1993)). In Section 7, we shall give another proof of the implications C3 ⇒ C2 ⇒ C1(
√

n),

and we shall prove the last assertion of Corollary 1. Note also that C2 does not imply C3

as shown by Theorem 8 in Volný (1993).
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Remark 6. If X0 is M0-measurable, Heyde’s condition C2 is equivalent to (2.4) with

sn =
√

n. For a centered and square integrable function Xk = f(Yk) of a stationary

Markov chain (Yk)k≥0 with transition Kernel K and invariant distribution µ, the condition

C2 is equivalent to the two following items:

1. lim
n→∞

sup
m>0

[∥∥∥Kn

m−1∑

k=0

Kkf
∥∥∥

2

µ,2
−

∥∥∥Kn+1

m−1∑

k=0

Kkf
∥∥∥

2

µ,2

]
= 0 ,

2. lim
n→∞

∥∥∥ 1√
n

n∑

k=1

Kkf
∥∥∥

µ,2
= 0,

where ‖ · ‖µ,2 is the L2(µ)-norm (the condition 1. is just the Cauchy criterion for the con-

vergence of
∑n

k=1 P0(Xi) in L2, and the condition 2. means exactly that ‖E(Sn|M0)‖2 =

o(
√

n)). The conditions 1. and 2. are given in Theorem C of Derriennic and Lin (2001)

and are due to Gordin and Lifshitz (see the discussion on page 511 in Derriennic and Lin).

Note that, under ergodicity and a condition equivalent to 1., Woodroofe (1992) proved

that n−1/2(Sn − E(Sn|M0)) is asymptotically normal.

The following proposition shows that the condition C3 is close to optimality (a proof

can be found in Dedecker (1998), Annexe A, Section A.3).

Proposition 2. Let Ω = [0, 1]Z, A = BZ, where B is the Borel σ-algebra on [0, 1], and

P = λ⊗Z, where λ is the Lebesgue measure on [0, 1]. Let T be the shift from Ω to Ω defined

by (T (ω))i = ωi+1. For any sequence (vi)i≥0 of positive numbers such that
∑

i≥0 iv2
i < ∞

and
∑

i≥0 vi = ∞, there exists a strictly stationary sequence (Xi = X0 ◦ T i)i∈Z of square

integrable and centered random variables such that, taking Mi = σ(Xk, k ≤ i),

1. ‖P0(Xi)‖2 ≤ vi,

2. ‖Sn‖2
2 = n,

3. for any k, ` and any i 6= j, the variables Pi(Xk) and Pj(X`) are independent,

but n−1/2Sn does not converge in distribution.

3 Sufficients conditions for the WIP.

The first result of this section is a criterion for the uniform integrability of s−2
n max

1≤k≤n
S2

k .
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Proposition 3. We say that the condition C4(sn) holds if

C4(sn) :





(a)
∥∥∥ sup

1≤k≤n
|E(Sk|M0)|

∥∥∥
2

= o (sn) ,
∥∥∥ sup

1≤k≤n
|Sk − E(Sk|Mn)|

∥∥∥
2

= o (sn) ,

(b) for some positive sequence (ui)i∈Z such that

√
n

sn

n∑
i=−n

ui is bounded,

lim
A→∞

lim sup
n→∞

√
n

sn

n∑
i=−n

E
(

P 2
0 (Xi)

ui

1IP 2
0 (Xi)>Au2

i

)
= 0.

If C4(sn) holds, then

(3.1) the sequence
max1≤k≤n S2

k

s2
n

is uniformly integrable.

Remark 7. A sufficient condition for C4(sn)(a) is that

(3.2)
n∑

k=1

‖E(Xk|M0)‖2 = o(sn) and
n∑

k=1

‖Xk − E(Xk|Mn)‖2 = o(sn) .

Note that (3.2) implies that

(3.3) X0 is regular, and n

√∑

|k|≥n

‖P0(Xk)‖2
2 = o(sn) .

Now if sn =
√

nh(n) with h(n) a svf, then (3.2) and (3.3) are equivalent. The proof of

this equivalence will be done in Section 7.

Theorem 2. Assume that s[nt]/sn is bounded for any t ∈ [0, 1]. If C1(sn)(b) holds

and C4(sn) holds, then {s−1
n S[nt], t ∈ [0, 1]} converges in distribution in (D([0, 1]), d) to√

E(m2|I)W , where W is a standard Brownian motion independent of I.

Remark 8. Again, if C1(sn)(b) holds and C4(sn) holds, then Wn = {s−1
n S[nt], t ∈ [0, 1]}

satisfies the conditional WIP, that is: for any continuous function ϕ from (D([0, 1]), d) to

R such that x → |(1 + ‖x‖2
∞)−1ϕ(x)| is bounded, and any integer k,

lim
n→∞

∥∥∥E (ϕ(Wn)|Mk)−
∫

ϕ
(
x
√
E(m2|I)

)
PW (dx)

∥∥∥
1

= 0 ,

where PW is the distribution of a standard Wiener Process. Again, this implies the stable

convergence of the processes Wn.
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Remark 9. In the condition C4(sn), the fact that
√

ns−1
n

∑n
i=−n ui is bounded ensures

that lim infn→∞ n−1s2
n > 0. This excludes the general class of examples discussed in

Herrndorf (1983) for which the normalizing sequence satisfies lim infn→∞ n−1s2
n = 0, the

central limit theorem holds, but the invariance principle fails.

As a consequence of Theorem 2, we obtain the following corollary.

Corollary 2. If the condition C3 holds, then {n−1/2S[nt], t ∈ [0, 1]} converges in distrib-

ution in (D([0, 1]), d) to
√

ηW , where W is a standard Brownian motion independent of

I, and η =
∑

k∈Z E(X0Xk|I).

Remark 10. Let us recall a result due to Hannan (1979): if

1. X0 is M0-measurable and C3 holds,

2. P is weak mixing (which implies that P is ergodic), that is

lim
n→∞

1

n

n∑

k=1

|P(A ∩ T−kB)− P(A)P(B)| = 0 for any A, B in A,

3. lim inf
n→∞

√
n/σn > 0,

then {σ−1
n S[nt], t ∈ [0, 1]} converges in distribution in (D([0, 1]), d) to W , where W is a

standard Brownian motion. In fact, if C3 holds then n−1σ2
n converges to

∑
k∈Z E(X0Xk),

so that the last condition reduces to
∑

k∈Z E(X0Xk) > 0. Applying Corollary 2, we see

that the condition 2. of Hannan can be replaced by the weaker one E(X0Xk|I) = E(X0Xk)

almost surely, for any k ∈ Z. Finally, note that, if X0 is M0-measurable, Corollary 2 is

due to Dedecker and Merlevède (2003, Corollary 3).

By comparing the corollaries 1 and 2, one can ask if the WIP holds under the Heyde’s

condition C2. The following proposition gives a negative answer to this question.

Proposition 4. There exists X0 ∈ L2 measurable with respect to a σ-algebra M0, and

a bijective and bimeasurable transformation T preserving the probability P such that X0

is regular, P is ergodic and the condition C2 is satisfied, but the WIP does not hold for

sn =
√

n.
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4 Applications to linear processes with dependent in-

novations

Let X0 =
∑

i∈Z ai ε0 ◦ T−i with (ai)i∈Z belonging to `1. The following result shows that if

(ε0 ◦ T i)i∈Z satisfies C3, then (Xi)i∈Z satisfies C3 also.

Corollary 3. Let (ai)i∈Z be a sequence of real numbers in `1. Let ε0 be a regular random

variable in L2 and let εk = ε0 ◦ T k. Define then X0 =
∑

i∈Z aiε−i. If

(4.1)
∑

i∈Z
‖P0(εi)‖2 < ∞,

then C3 holds and {n−1/2S[nt], t ∈ [0, 1]} converges in distribution in (D([0, 1]), d) to
√

ηW ,

where W is a standard Brownian motion independent of I, and

η =
∑

k∈Z
E(X0Xk|I) =

( ∑

i∈Z
ai

)2 ∑

k∈Z
E(ε0εk|I) .

Remark 11. In Theorem 5 of Dedecker and Merlevède (2003), a similar result was given,

but for causal linear processes and causal innovations only, that is

X0 =
∑
i≥0

aiε−i, ε0 is regular and M0-measurable, and
∑
i≥0

‖P0(εi)‖2 < ∞.

Now, if (ai)i∈Z does not belong to `1, Theorem 2 can still be successfully applied. For

instance, if the innovations are square integrable martingale differences, we obtain the

following result.

Corollary 4. Let (ai)i∈Z be a sequence of real numbers in `2. Let ε0 be a random variable

in H0ªH−1 and let εk = ε0◦T k. Define then X0 =
∑

i∈Z aiε−i. Let sn =
√

n|a−n+· · ·+an|.
If the two following conditions hold,

(1) lim sup
n→∞

∑n
i=−n |ai|∣∣∣∑n
i=−n ai

∣∣∣
< ∞,

(2) either
n∑

k=1

√∑

|i|≥k

a2
i = o(sn), or

∑
i∈Z |ai| < ∞,

then {s−1
n S[nt], t ∈ [0, 1]} converges in distribution in (D([0, 1]), d) to

√
E(ε2

0|I)W , where

W is a standard Brownian motion independent of I.
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Remark 12. Under the assumptions of Corollary 4, C0(sn) holds. Hence, according to

Remark 3, σn/sn converges to ‖ε0‖2. It follows that we can take sn = σn in Corollary

4 and consequently {σ−1
n S[nt], t ∈ [0, 1]} converges in distribution to

√
ηW where η =

E(ε2
0|I)/E(ε2

0) (in particular, η = 1 if P is ergodic). Note that, in Corollary 3 and 4 we

have only required that E(ε2
0) < ∞. Now, if we assume that E(|ε0|2+δ) < ∞ for some

δ > 0, then the conditions of Corollary 4 can be weakened. For instance, for causal

linear processes X0 =
∑

i≥0 aiε−i, Wu and Min (2005, Theorem 1), and independently

Merlevède and Peligrad (2005, Proposition 1), have proved that {σ−1
n S[nt], t ∈ [0, 1]}

converges in distribution to
√

ηW as soon as

(4.2)
n−1∑
i=0

( i∑

k=0

a2
k

)
→∞ and

∑
i≥0

( n+i∑

k=i+1

ak

)2

= o
( n−1∑

i=0

( i∑

k=0

a2
k

))
.

The condition (4.2) means exactly that σn → ∞, and ‖E(Sn|M0)‖2 = o(σn). However,

(4.2) together with E(ε2
0) < ∞ is not sufficient for the WIP (see the discussion in Wu and

Min (2005) and the counterexample given in Merlevède and Peligrad (2005, Section 3.2)).

To be complete on this question, note that in Wu and Min (2005), the WIP is proved under

(4.2) and E(|ε0|2+δ) < ∞ for innovations which are not necessarily in H0ªH−1, but which

satisfy both εi = F (. . . , ζi−1, ζi) for some iid sequence (ζi)i∈Z, and
∑

k≥0 ‖P0(εk)‖2+δ < ∞
(in particular, the first condition implies that P is ergodic, so that the limiting process is

a standard Brownian motion).

Remark 13. According to Remark 7, if sn =
√

nh(n) where h(n) is a svf, then

(4.3) n

√∑

|i|≥n

a2
i = o(sn)

is equivalent to the first part of the condition (2) of Corollary 4.

Remark 14. The condition (1) of Corollary 4 does not allow the following possibility:∑n
i=−n |ai| diverges but

∑n
i=−n ai converges. For instance if, for n < 0, an = 0 , and for

n ≥ 1, an = (−1)nun for some sequence (un)n≥1 of positive coefficients decreasing to zero,

such that
∑

n≥1 un = ∞, then Corollary 4 cannot be applied since the condition (1) fails

to hold. However, for this selection of (an)n∈Z, the condition given by Heyde (1975)

(4.4)
∞∑

n=1

( ∑

|k|≥n

ak

)2

< ∞

is satisfied as soon as
∑

n≥1 u2
n < ∞, which is a minimal condition.
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Remark 15. Notice that the conditions (1) and (2) of Corollary 4 are satisfied for se-

quences (ai)i∈Z such that for i 6= 0, ai = |i|−1h(|i|) where h(n) is a svf (this class of

sequences obviously does not satisfy (4.4)). The condition (2) of Corollary 4 excludes se-

quences (ai) such that for i 6= 0, ai = |i|−α, for 1/2 < α < 1. However, for iid innovations,

we know that for such sequences neither {σ−1
n S[nt], t ∈ [0, 1]} nor {s−1

n S[nt], t ∈ [0, 1]} can

converge in distribution to a Wiener process, since they both converge to a fractional

Brownian motion of index 1 − α (see Giraitis and Surgailis (1989)). In fact, if S[nt]/σn

converges weakly to the Brownian motion, then necessarily σ2
n has the representation

σ2
n = nh(n) with h(n) a svf. This is obviously not the case here since σn ∼ ‖ε0‖2n

3/2−α.

Remark 16. The condition (2) of Corollary 4 was used by Wang et al (2002) to prove

the invariance principle for linear processes (see their Theorem 2.1) under the normal-

ization s̃2
n = a2

0 +
∑n−1

j=1 s2
j/j. However instead of using in addition the condition (1) of

our corollary, they used (for one-sided linear processes such that a0 6= 0) the following

condition:

(4.5) lim
n→∞

(
1

s̃n

max
1≤j≤n

∣∣∣
j−1∑

k=0

ak

∣∣∣
)

= 0 .

It appears that this condition combined with the condition (2) is not enough to ensure the

weak invariance principle, so that their theorem is false. Indeed, Merlevède and Peligrad

(2005) have pointed out the following fact (see the construction of their example 1): there

exists a one-sided linear process for which
∑n

i=0 ai converges, an ∼ 1/(n log2(n)) and

such that s̃−1
n S[nt] cannot satisfy the weak invariance principle. In this counterexample,

s̃n ∼ sn =
√

n/ log(n + 1) and
∑n

k=1(
∑

|i|>k a2
i )

1/2 ≤ C
√

n/ log2 n. It follows that the

condition (2) of Corollary 4 is satisfied, as well as (4.5). However, the condition (1) of

Corollary 4 fails to hold since this condition imposes that lim infn→∞ n−1sn > 0. As

already mentioned in Wu and Min (2005), the wrong argument in the proof of Theorem

2.1 in Wang et al (2002) lies on page 134 between the equations (36) and (37) (the weak

invariance principle (6) cannot follow from (36) and (37) only; to derive (6) from (37), the

equality in (36) needs not only be true for any t ∈ [0, 1], but also for any finite dimensional

marginals of the two processes, which is clearly false).
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5 Application to functions of Linear processes

An important class of strictly stationary sequences is the class of processes which can be

written as functions of iid random variables. In our context this class can be described

as follows: let Ω = X Z and P = µ⊗Z, where µ is a probability measure on X . If x is

an element of X Z, let T be the shift defined by (T (x))i = xi+1. Let εi = ε0 ◦ T i be the

projection from X Z to X defined by εi(x) = xi. The sequence ε = (εi)i∈Z is a sequence of

iid random variables with marginal distribution µ. In this section, we assume that X0 is

a square integrable random variable, which can be written as

(5.1) X0 = G(ε), so that Xk = X0 ◦ T k = G(ε ◦ T k).

Note that, since P = µ⊗Z, the probability P is ergodic: for any A ∈ I, P(A) = 0 or 1.

Moreover, X0 is regular with respect to the σ-algebras

(5.2) Mi = σ(εj, j ≤ i).

For such sequences, the condition C3 may be written as

(5.3)
∑

k∈Z

∥∥∥E(G(ε ◦ T k)|M0)− E(G(ε ◦ T k)|M−1)
∥∥∥

2
< ∞ .

In this section, we shall focus on functions of real-valued linear processes

(5.4) Xk = G(ε ◦ T k) = f
( ∑

i∈Z
aiεk−i

)
− E

(
f
( ∑

i∈Z
aiεk−i

))
,

and we shall give sufficient conditions for the weak invariance principle in terms of the

regularity of the function f . As usual, we define the modulus of continuity of f on the

interval [−M, M ] by

w∞,f (h,M) = sup
|t|≤h,|x|≤M,|x+t|≤M

|f(x + t)− f(x)| .

Corollary 5. Let X = R, (ai)i∈Z be a sequence of real numbers in `1, and assume that∑
i∈Z aiεi is defined almost surely. Let Xk and Mk be defined as in (5.4) and (5.2)

respectively. Let (ε′i)i∈Z be an independent copy of (εi)i∈Z, and let

Mk = max
{∣∣∣

∑

i∈Z
aiε

′
i

∣∣∣,
∣∣∣akε0 +

∑

i6=k

aiε
′
i

∣∣∣
}

.
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If the following condition holds

(5.5)
∑

k∈Z

∥∥∥w∞,f

(|ak||ε0|,Mk

) ∧ ‖X0‖∞
∥∥∥

2
< ∞ ,

then C3 holds. In particular,

1. if f is γ-Hölder on any compact set, with w∞,f (h,M) ≤ ChγMα for some C > 0,

γ ∈]0, 1], and α ≥ 0, then (5.5) holds as soon as
∑ |ak|γ < ∞ and E(|ε0|2(α+γ)) < ∞.

2. if ‖ε0‖∞ = c < ∞, then (5.5) holds as soon as

∑

k∈Z
w∞,f

(
c|ak|, ‖X0‖∞

)
< ∞ .

Now, for functions of causal linear processes, that is

(5.6) Xk = G(ε ◦ T k) = f
( ∑

i≥0

aiεk−i

)
− E

(
f
( ∑

i≥0

aiεk−i

))
,

we can apply Theorem 2 to the case where
∑

i≥0 |ai| = ∞.

Corollary 6. Let X = R and assume that E(ε0) = 0 and that ‖ε0‖2 is finite. Let

(ak)k≥0 ∈ `2, be such that
∑

k≥0 |ak| = ∞, and let sn =
√

n|a0 + · · ·+ an|. Assume that

(5.7) lim sup
n→∞

∑n
i=0 |ai|∣∣∣ ∑n
i=0 ai

∣∣∣
< ∞, and

n∑

k=1

√∑

i≥k

a2
i = o(sn).

Let Xk, Mk be defined as in (5.6) and (5.2) respectively. If f is Lipschitz and f ′ is

continuous, then the process {s−1
n S[nt], t ∈ [0, 1]} converges in distribution in the space

D([0, 1], d) to
√

ηW , where W is a standard Brownian motion, and

(5.8)
√

η = ‖ε0‖2

∣∣∣E
(
f ′

( ∑
i≥0

aiεi

))∣∣∣.

Considering (5.8), we see that the normalization sn =
√

n|a0 + · · ·+ an| may be too large

in all the cases where

(5.9) E
(
f ′

( ∑
i≥0

aiεi

))
= 0 .

Notice that (5.9) arises in many situations such as: ε0 is symmetric and f is even. In

the following corollary, we give sufficient conditions for the condition C3 when (5.9) holds

and
∑

k≥0 |ak| is not necessarily finite.
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Corollary 7. Let X = R and assume that E(ε0) = 0 and that ‖ε0‖4 is finite. Let

(ak)k≥0 ∈ `2, be such that

(5.10)
∑

k≥0

|ak|
√√√√

∞∑

i=k+1

a2
i < ∞ .

Let Xk, Mk be defined as in (5.6) and (5.2) respectively. If f is differentiable, f ′ is

Lipschitz and (5.9) holds, then C3 holds.

Remark 17. Let ai = i−1 for i > 0. Then the condition (5.7) holds, and Corollary 6

applies. Now, if in addition (5.9) holds, then Corollary 7 applies. Note also that (5.10)

holds as soon as
∑

i>0

√
ia2

i is finite. In particular, for f(x) = x2, we obtain the weak

invariance principle as soon as E(ε0) = 0, E(ε4
0) < ∞ and

∑
i>0

√
ia2

i < ∞.

In all the results above, no assumption was made on the law of ε0, except moment

assumptions. Now, if we assume that ε0 has a density bounded by C, then, for the

sequences defined by (5.6), the regularity assumption on f in the condition (5.5) may

be weakened by considering the Lp-modulus of continuity. As usual, we define the Lp-

modulus of continuity of f by

wp,f (h) = sup
|t|≤h

( ∫
|f(x + t)− f(x)|pdx

)1/p

.

Corollary 8. Let (ai)i≥0 be a sequence of real numbers in `1, and assume that
∑

i≥0 aiεi

is defined almost surely. Let Xk and Mk be defined as in (5.6) and (5.2) respectively.

Assume that ε0 has a density bounded by C. If there exists p ∈ [1,∞] such that

(5.11)
∑

k≥0

‖wp,f (|ak||ε0|)‖2 < ∞,

then C3 holds.

Remark 18. In particular (5.11) holds for any function f of bounded variation as soon

as there exists p ∈ [1,∞[ such that
∑

k≥0 |ak|1/p < ∞ and E(|ε0|2/p) < ∞.

6 Other types of dependence

We have seen that conditions based on the sequence (P0(Xi))i∈Z can be verified for certain

functions X0 = G((εi)i∈Z) of stationary processes. However, in many situations (for
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instance when we know some property of a Markov kernel), we rather have informations on

the decrease of ‖E(Xk|M0)‖2 and of ‖X−k−E(X−k|M0)‖2. In the following proposition,

we give sufficient conditions, based on such quantities, for C3 to hold.

Proposition 5. Consider the two conditions

C5 : There exist two sequences (ak)k>0 and (bk)k>0 of positive numbers such that

(6.1)
∞∑
i=1

( i∑

k=1

ak

)−1

< ∞,

∞∑
i=1

( i∑

k=1

bk

)−1

< ∞,

and ∑

k≥1

ak‖E(Xk|M0)‖2
2 < ∞,

∑

k≥1

bk‖X−k − E(X−k|M0)‖2
2 < ∞.

C6 :
∑

k≥1

‖E(Xk|M0)‖2√
k

< ∞ and
∑

k≥1

‖X−k − E(X−k|M0)‖2√
k

< ∞.

We have the implications C6 ⇒ C5 ⇒ C3.

Remark 19. The condition C5 is a mixingale type condition, in the sense of McLeish

(1975). In the case where X0 is M0-mesurable, the fact that C5 implies the WIP with the

normalization sn =
√

n has been established in Proposition 2 of Dedecker and Merlevède

(2002). In the same context, Peligrad and Utev (2005) have proved that the WIP holds

under the normalization sn =
√

n provided that

(6.2)
∑
n>0

‖E(Sn|M0)‖2

n3/2
< ∞ .

In that case, since ‖X−k − E(X−k|M0)‖2 = 0, we have the implication C6 ⇒ (6.2).

Let us give a simple application of Proposition 5 to functions of adapted sequences.

Definition 3. Let Y0 be a M0-measurable real valued random variable, and let Yk =

Y0 ◦T k. Let FYk|M0 be the conditional distribution function of Yk given M0, and let F be

the distribution function of the Yi’s. For any p ∈ [1,∞], define the dependence coefficients

βp(i) of the sequence (Yk)k∈Z by

βp(i) =
∥∥∥ sup

t∈R
|FYi|M0(t)− F (t)|

∥∥∥
p
.

For p = ∞, we shall use the notation φ(i) = β∞(i).
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Corollary 9. Let Y0 be a M0-measurable real valued random variable, and assume that

(6.3) X0 = (f − g)(Y0)− E((f − g)(Y0)) ,

where f and g are two non decreasing functions. If both f(Y0) and g(Y0) belong to Lp for

some p ≥ 2, and if the dependence coefficients of the sequence (Yk)k∈Z satisfy

(6.4)
∑

k≥1

(
β2(p−1)/(p−2)(k)

)(p−1)/p

√
k

< ∞ ,

then the condition C3 holds. In particular, for p = 2 and p = ∞, the condition (6.4)

becomes respectively

∑

k≥1

√
φ(k)

k
< ∞ and

∑

k≥1

β2(k)√
k

< ∞ .

Remark 20. Using the notations of Definition 3, define the dependence coefficients α(i)

of the sequence (Yk)k∈Z by

α(i) = sup
t∈R

‖FYi|M0(t)− F (t)‖1 .

From Dedecker and Rio (2000), we know that, if X0 is M0-measurable and the sequence

X0E(Sn|M0) converges in L1, then {n−1/2S[nt], t ∈ [0, 1]} converges in distribution in

(D([0, 1], d)) to
√

ηW , where W is a standard Brownian motion independent of I and

η =
∑

k∈Z E(X0Xk|I). If X0 is defined by (6.3), we infer from inequality (1.11c) in Rio

(2000) that X0E(Sn|M0) converges in L1 as soon as

(6.5)
∑

k≥1

∫ α(k)

0

Q2(u)du < ∞ ,

where Q = Qf ∨ Qg, and Qf is the generalized inverse of x → P(|f(Y0)| > x). Since

α(i) ≤ β1(i), it follows that if both f(Y0) and g(Y0) belong to Lp for some p > 2, then

(6.5) holds as soon as

(6.6)
∑

k≥1

k2/(p−2)β1(k) < ∞ .

Of course, (6.6) cannot be compared to (6.4), since the coefficients β1(i) are smaller than

β2(p−1)/(p−2)(i) for any p ≥ 2. However, if β1(i) is of the same order than β2(p−1)/(p−2)(i),

then the rate given in (6.4) is better.

17



Example 1. Linear processes. Assume that X0 is defined by (6.3), with Y0 such that

Y0 =
∑

i≥0 aiε−i and (εi)i∈Z is the iid sequence defined in Section 5. LetM0 = σ(εi, i ≤ 0).

If Y0 has a density bounded by K, then one can prove that (see Dedecker and Prieur (2005),

Section 4.1)

β2(i) ≤ 2
√

2‖ε0‖2

√
K

∑

k≥i

|ak| and φ(i) ≤ 2K‖ε0‖∞
∑

k≥i

|ak| .

This leads us to consider the condition

(6.7)
∑

k≥1

√∑
k≥i |ak|
k

< ∞ .

If (6.7) holds, it follows from Corollary 9 that the condition C3 is satisfied as soon as

1. ‖ε0‖2 < ∞ and f(Y0), g(Y0) belong to L∞. This holds in particular if X0 = h(Y0)

for some function h of bounded variation. Note that the condition (6.7) is stronger

than the condition
∑

k≥0 |ak| given in Remark 18, but we have not assumed here

that ε0 has a density.

2. ‖ε0‖∞ < ∞ and f(Y0), g(Y0) belong to L2. Here, the moment assumptions on

f(Y0) and g(Y0) are sharp, and this result cannot be deduced from any results given

in Section 5. This result applies in particular to the well known example where

ai = 2−i−1 and ε0 is a Bernoulli-distributed random variable with parameter 1/2.

In that case, Y0 is uniformly distributed over [0, 1], so that C3 holds as soon as

the increasing functions f, g satisfy λ(f 2) < ∞ and λ(g2) < ∞, for the Lebesgue

measure λ over [0, 1]. Note that, for this particular example, it follows from Lemma

1 in Woodroofe (1992) that the condition C3 holds for X0 = f(Y0) − E(f(Y0)) if

and only if the Fourier coefficients f̂(k) of f are such that

∞∑

k=1

√√√√
∞∑

p=0

|f̂((2p + 1) 2k)|2 < ∞ .

Example 2. Uniformly expanding maps. Let τ be a Borel-measurable map from [0, 1]

to [0, 1]. If the probability µ is invariant by τ , the sequence (τ i)i≥0 of random variables

from ([0, 1], µ) to [0, 1] is strictly stationary. Define the operator K from L1([0, 1], µ) to

L1([0, 1], µ) via the equality
∫ 1

0

(Kh)(x)k(x)µ(dx) =

∫ 1

0

h(x)(k ◦ τ)(x)µ(dx)
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where h ∈ L1([0, 1], µ) and k ∈ L∞([0, 1], µ). It is easy to check that (τ, τ 2, . . . , τn) has the

same distribution as (Yn, Yn−1, . . . , Y1) where (Yi)i∈Z is a stationary Markov chain with

invariant distribution µ and transition kernel K. Hence, we can obtain informations on

the distribution of Sn(h) = h ◦ τ + · · · + h ◦ τ i by studying that of h(Y1) + · · · + h(Yn).

Assume now that τ is uniformly expanding, that is: it satisfies the conditions given in

Broise, Section 2.1, page 11, with an unique invariant probability µ which is mixing in the

ergodic-theoretic sense (note that under Broise’s conditions, µ is absolutely continuous

with respect to the Lebesgue measure, with a bounded density). For such maps, Dedecker

and Prieur (2005) have proved that the coefficients φ(k) of the Markov chain (Yi)i∈Z
satisfy φ(k) ≤ Cρk for some C > 0 and ρ ∈]0, 1[. It follows from Corollary 9, that if

h = (f − g) − µ(f − g) for two non decreasing functions f, g such that µ(f 2) < ∞ and

µ(g2) < ∞, then the process {n−1/2S[nt](h), t ∈ [0, 1]} converges in distribution in the

space (D([0, 1]), d) to
√

ηW , where W is a standard Brownian motion and

η = µ(h2) + 2
∑

k≥1

µ(h · h ◦ τ k) .

This result seems to be new, although these dynamical systems have been widely studied.

The moment assumptions on f and g are sharp. Usually, the central limit theorem for

n−1/2Sn(h) is given for h belonging to some class of bounded functions of [0, 1], such as

bounded variation functions or γ-Hölder functions for some γ > 0.

7 Proofs

Proof of Theorem 1. We first show that C0(sn) implies C1(sn). To this aim, define

Mn =
∑n

i=1 m ◦ T i, and notice that E(Mn|M0) = 0. Then

∥∥∥E
(Sn

sn

∣∣∣M0

)∥∥∥
2

=
∥∥∥E

(Sn

sn

− Mn√
n

∣∣∣M0

)∥∥∥
2
≤

∥∥∥Sn

sn

− Mn√
n

∥∥∥
2

which proves that C0(sn) implies the first part of C1(sn)(a). Notice now that E(Mn|Mn) =

Mn. It follows that

‖Sn − E(Sn|Mn)‖2

sn

=
∥∥∥Sn

sn

− Mn√
n
− E

(Sn

sn

− Mn√
n

∣∣∣Mn

)∥∥∥
2

≤ 2
∥∥∥Sn

sn

− Mn√
n

∥∥∥
2
,
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which proves that C0(sn) implies the second part of C1(sn)(a). Noticing now that the

following decomposition holds

(7.1) Sn = Sn − E(Sn|Mn) + E(Sn|M0) + E(Sn|Mn)− E(Sn|M0) ,

we write that
∥∥∥Sn

sn

− Mn√
n

∥∥∥
2

=
∥∥∥Sn − E(Sn|Mn)

sn

+
E(Sn|M0)

sn

+
E(Sn|Mn)− E(Sn|M0)

sn

− Mn√
n

∥∥∥
2
.

Next by orthogonality, we derive that

(7.2)∥∥∥Sn

sn

−Mn√
n

∥∥∥
2

2
=

∥∥∥Sn − E(Sn|Mn)

sn

∥∥∥
2

2
+

∥∥∥E(Sn|M0)

sn

∥∥∥
2

2
+

∥∥∥E(Sn|Mn)− E(Sn|M0)

sn

−Mn√
n

∥∥∥
2

2
.

Consequently, if C0(sn) holds,

lim
n→∞

∥∥∥E(Sn|Mn)− E(Sn|M0)

sn

− Mn√
n

∥∥∥
2

2
= 0 .

Since E(Sn|Mn) − E(Sn|M0) =
∑n

i=1

∑n
k=1 Pi(Xk), we have, by orthogonality and sta-

tionarity,

∥∥∥E(Sn|Mn)− E(Sn|M0)

sn

− Mn√
n

∥∥∥
2

2
=

∥∥∥ 1√
n

n∑
i=1

(√n
∑n

k=1 Pi(Xk)

sn

−m ◦ T i
)∥∥∥

2

2

=
1

n

n∑
i=1

∥∥∥
√

n
∑n

k=1 Pi(Xk)

sn

−m ◦ T i
∥∥∥

2

2
(7.3)

=
1

n

n∑
i=1

∥∥∥
√

n
∑n

k=1 P0(Xk−i)

sn

−m
∥∥∥

2

2
,

which ends the proof of C0(sn) ⇒ C1(sn). The fact now that C1(sn) ⇒ C0(sn) follows

directly from (7.2) and (7.3).

Proof of Proposition 1. The fact that (2.3) implies C1(sn)(b) is straightforward. Now,

if X0 is M0-measurable, then C1(sn)(a) reduces to ‖E(Sn|M0)‖2 = o(sn). In the same

way, (2.3) reduces to

(7.4)

√
n

sn

n∑
i=0

P0(Xi) → m in L2, and
n∑

`=1

∥∥∥
n∑

k=`

P0(Xk)
∥∥∥

2

2
= o

(
s2

n

)
.

Let sn =
√

nh(n). Using the decomposition

√
n

sn

n∑

i=`

P0(Xi) =

√
n

sn

n∑
i=0

P0(Xi)−
√

`− 1

s`−1

`−1∑
i=0

P0(Xi)+

√
`− 1

s`−1

`−1∑
i=0

P0(Xi)
(
1−h(`− 1)

h(n)

)
,
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we see that the first part of (7.4) implies the second part of (7.4) provided that

(7.5)
1

n

n∑

`=1

(
1− h(`− 1)

h(n)

)2

converges to 0.

Now (7.5) is true as soon as h(n) is a svf. To see this, note that h2(n) is a svf also, and

that, for any svf sequence g(n),

1

ng(n)

n∑

`=1

g(`− 1) converges to 1.

Proof of Corollary 1. Clearly, if the first part of C2 holds, then (2.3) holds with

sn =
√

n and m =
∑

i∈Z P0(Xi), and consequently C1(
√

n)(b) holds. Now, from the

decomposition (7.1), we obtain that

(7.6)
‖Sn‖2

2

n
=

1

n
‖Sn − E(Sn|Mn)‖2

2 +
1

n
‖E(Sn|M0)‖2

2 +
1

n
‖E(Sn|Mn)− E(Sn|M0)‖2

2 .

By assumption n−1‖Sn‖2
2 converges to ‖m‖2

2. Since C1(
√

n)(b) holds, it follows from (7.3)

that n−1‖E(Sn|Mn)−E(Sn|M0)‖2
2 converges to ‖m‖2

2. Consequently, we infer from (7.6)

that C1(
√

n)(a) holds also, so that C2 ⇒ C1(
√

n).

Clearly, if C3 holds, then the first part of C2 does. Next, we shall prove that

(7.7)
1

n
E(S2

n|I) →
∑

k∈Z
E(X0Xk|I) a.s., and E(m2|I) =

∑

k∈Z
E(X0Xk|I) a.s.,

which clearly implies the second part of C2, so that C3 ⇒ C2. To prove (7.7), note that,

since X0 is regular, the decomposition (2.1) is valid. Then

E(X0Xk|I) =
∑

i∈Z

∑

j∈Z
E(Pi(X0)Pj(Xk)|I) .

Here we need the following lemma whose proof will be done at the end of this paragraph.

Lemma 1. If i 6= j, then E(Pi(X0)Pj(Xk)|I) = 0 almost surely.

By Lemma 1 and stationarity,

E(X0Xk|I) =
∑

i∈Z
E(P0(Xi)P0(Xk+i)|I).
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Hence

‖E(X0Xk|I)‖1 ≤
∑

i∈Z
‖P0(Xi)‖2‖P0(Xi+k)‖2 ,

so that ∑

k∈Z
‖E(X0Xk|I)‖1 ≤

( ∑

i∈Z
‖P0(Xi)‖2

)2

,

which is finite under C3. It follows that, almost surely, the series
∑

k∈Z E(X0Xk|I) con-

verges absolutely and that

(7.8)
∑

k∈Z
E(X0Xk|I) =

∑

i∈Z

∑

j∈Z
E(P0(Xi)P0(Xj)|I) a.s. .

Consequently
1

n
E(S2

n|I) =
n∑

k=−n

(
1− |k|

n

)
E(X0Xk|I)

converges almost surely to
∑

k∈Z E(X0Xk|I) and the first part of (7.7) is proved. Now

E(m2|I) =
∑

i∈Z

∑

j∈Z
E(P0(Xi)P0(Xj)|I) a.s.,

and the second part of (7.7) follows from (7.8).

Now we turn to the proof of Lemma 1. By the L1-ergodic theorem, we get that for

j ≥ i and every integer N ,

( 1

n

n∑

`=1

Pi+`(X`)Pj+`(Xk+`)
)
◦ T−n−j−N → E(P0(Xi)P0(Xj)|I) in L1.

It follows that

E(P0(Xi)P0(Xj)|I) = E{E(P0(Xi)P0(Xj)|I)|M−N} almost surely.

Letting N tend to infinity, we obtain that

E(P0(Xi)P0(Xj)|I) = E{E(P0(Xi)P0(Xj)|I)|M−∞} almost surely.

Applying again the L1-ergodic theorem and taking the conditional expectation with re-

spect to M−∞, we get that

1

n

n∑

`=1

E(Pi+`(X`)Pj+`(Xk+`)|M−∞) → E(P0(Xi)P0(Xj)|I) in L1.
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Now by orthogonality if j > i, E(Pi+`(X`)Pj+`(Xk+`)|M−∞) = 0 almost surely, so that

E(P0(Xi)P0(Xj)|I) = 0 almost surely.

Proof of Proposition 3. We first consider the following decomposition: for every

1 ≤ k ≤ n,

(7.9) Sk = Sk − E(Sk|Mn) + E(Sk|M0) + E(Sk|Mn)− E(Sk|M0) .

Then, due to the condition C4(sn)(a), {s−2
n max1≤k≤n S2

k} will be uniformly integrable as

soon as

(7.10) lim
λ→∞

lim sup
n→∞

s−2
n E((S̃+

n − λsn)2
+) = 0 and lim

λ→∞
lim sup

n→∞
s−2

n E((S̃−n − λsn)2
+) = 0 ,

with S̃k = E(Sk|Mn)−E(Sk|M0), S̃+
n = max(0, S̃1, ..., S̃n) and S̃−n = max(0,−S̃1, ...,−S̃n).

We shall only prove the first part of (7.10), the second part being similar. First, note that

S̃k =
k∑

j=1

j−1∑
i=j−n

Pj−i(Xj) =
k−1∑

i=1−n

k∧(n+i)∑

j=1∨(i+1)

Pj−i(Xj) .

For any positive integer i, let (Yi,k,n)k≥1 be the martingale

Yi, k,n =

k∧(n+i)∑

j=1∨(i+1)

Pj−i(Xj) and define Y +
i,j,n = max{0, Yi,1,n, . . . , Yi,j,n} .

With these notations, S̃k =
∑k−1

i=1−n Yi, k,n and therefore setting bi,n = ui

( ∑n
`=−n u`

)−1
, we

have for all k ≤ n,

(S̃k − λsn)+ ≤
k−1∑

i=1−n

(Yi, k,n − λbi,nsn)+ .

Next applying Hölder’s inequality, and taking the maximum on k on both sides, we get

(S̃+
n − λsn)2

+ ≤
( n−1∑

`=1−n

u`

)( n−1∑
i=1−n

1

ui

(Y +
i,n,n − λbi,nsn)2

+

)

Taking the expectation and applying Proposition 1(a) of Dedecker and Rio (2000) to the

martingale (Yi,k,n)k≥1, we get that

s−2
n E

(
(S̃+

n − λsn)2
+

)
≤ 4s−2

n

( n−1∑

`=1−n

u`

)( n−1∑
i=1−n

1

ui

( n∧(n+i)∑

j=1∨(i+1)

E(P 2
j−i(Xj)1IΓ(i,j,λbi,nsn))

))
,
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where Γ(i, j, λbi,nsn) = {Y +
i,j,n > λbi,nsn}. Since {ui}i∈Z is such that

√
n

sn

n∑
i=−n

ui is bounded,

the first part of (7.10) will hold if we can prove that

(7.11) lim
λ→∞

lim sup
n→∞

1√
nsn

n−1∑
i=1−n

1

ui

( n∑
j=1

E(P 2
j−i(Xj)1IΓ(i,n,λbi,nsn))

)
= 0 .

With this aim, notice that for any positive A, we have

E(P 2
j−i(Xj)1IΓ(i,n,λbi,nsn)) ≤ E(P 2

j−i(Xj)1IP 2
j−i(Xj)>Au2

i
) + Au2

iP(Γ(i, n, λbi,nsn)) .

Using this inequality and the stationarity, we get that for any positive A

1√
nsn

n−1∑
i=1−n

1

ui

( n∑
j=1

E(P 2
j−i(Xj)1IΓ(i,n,λbi,nsn))

)
≤

√
n

sn

n−1∑
i=1−n

1

ui

(
E(P 2

0 (Xi)1IP 2
0 (Xi)>Au2

i

)

+
A
√

n

sn

n−1∑
i=1−n

uiP(Γ(i, n, λbi,nsn))

The condition C4(sn)(b) ensures that the first term in the right hand side converges to

zero by first letting n tend to infinity and after A. Now to treat the second one, we use

Doob’s inequality followed by stationarity which leads to

P(Γ(i, n, λbi,nsn)) ≤ 4

λ2b2
i,ns

2
n

n∑

j=1∨(i+1)

E(P 2
j−i(Xj)) ≤ 4n

λ2b2
i,ns

2
n

E(P 2
0 (Xi)) .

By taking into account the choice of bi,n, it follows that

(7.12)
A
√

n

sn

n∑
i=−n

uiP(Γ(i, n, λbi,nsn)) ≤ 4
A

λ2

(√n

sn

n∑
i=−n

E(P 2
0 (Xi))

ui

)(√n

sn

n∑

`=−n

u`

)2

.

Now notice that
√

n

sn

n∑
i=−n

E(P 2
0 (Xi))

ui

≤
√

n

sn

n∑
i=−n

E
(

P 2
0 (Xi)

ui

1IP 2
0 (Xi)>Au2

i

)
+ A

√
n

sn

n∑
i=−n

ui .

Then by taking into account the selection of {ui}i∈Z and the condition C4(sn)(b), it follows

that

(7.13) sup
n≥1

√
n

sn

n∑
i=−n

E(P 2
0 (Xi))

ui

< +∞ .
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Starting from (7.12) and using (7.13) together with the selection of {ui}i∈Z, it follows that

for any positive A,

lim sup
λ→∞

lim sup
n→∞

A
√

n

sn

n∑
i=−n

uiP(Γ(i, n, λbi,nsn)) = 0 ,

which ends the proof of (7.11).

Proof of Remark 7. Notice first that (3.2) is equivalent to

(7.14)
n∑

k=1

√∑

|i|≥k

‖P0(Xi)‖2
2 = o(sn) .

Then (3.2) implies (3.3). Now notice that, for 2r−1 ≤ n < 2r, we have that

n∑

k=1

√∑

|i|≥k

‖P0(Xi)‖2
2 ≤

r−1∑

k=0

2k+1−1∑

`=2k

√∑

|i|≥`

‖P0(Xi)‖2
2 ≤

r−1∑

k=0

2k

√ ∑

|i|≥2k

‖P0(Xi)‖2
2 .

Hence, using (3.3), we derive that

n∑

k=1

√∑

|i|≥k

‖P0(Xi)‖2
2 ≤

√∑

|i|≥0

‖P0(Xi)‖2
2

N∑

k=0

2k + εNs2r−1

r−1∑

k=N+1

s2k

s2r−1

,

where εN is such that limN→∞ εN = 0. Now if sn =
√

nh(n) with h(n) a svf, we infer

from the properties of the slowly varying functions that
∑r−1

k=N+1 s2ks−1
2r−1 < C, where C

is a constant not depending on N nor r. Then, by first letting r →∞ and next N →∞,

it follows easily that
n∑

k=1

√∑

|i|≥k

‖P0(Xi)‖2
2 = o(s2r−1) .

Now, since 2r−1 ≤ n < 2r, it follows that if sn =
√

nh(n) where h(n) is a svf, then

s2r−1 = O(sn). This completes the proof.

Proof of Theorem 2. Since C4(sn) holds, the sequence s−2
n max1≤k≤n S2

k is uniformly

integrable, and the process {s−1
n S[nt], t ∈ [0, 1]} is tight (apply (8.17) in Billingsley (1968)

and Markov inequality). It remains to prove that for any 0 ≤ t1 < t2 < · · · < tk ≤ 1, the

k-tuple
( 1

sn

[nt1]∑

k=1

Xk,
1

sn

[nt2]∑

k=1

Xk, . . . ,
1

sn

[ntk]∑

k=1

Xk

)
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converges in distribution to
√
E(m2|I) (W (t1),W (t2), . . . , W (tk)). Clearly, this will follow

from the invariance principle for stationary martingale difference sequences, provided that,

for any t ∈ [0, 1],

(7.15) lim
n→∞

∥∥∥S[nt]

sn

− 1√
n

[nt]∑

k=1

m ◦ T k
∥∥∥

2
= 0.

To prove (7.15), note that C4(sn)(a) together with C1(sn)(b) implies that C0(sn) holds

(see Theorem 1). Two cases arise: either E(m2) > 0, and then sn/
√

n is a svf (cf. Remark

3), so that (7.15) is equivalent to C0(sn); or m = 0 almost surely, and (7.15) follows from

C0(sn) and the fact that s[nt]/sn is bounded.

Proof of Corollary 2. From Corollary 1, we know that C3 implies C1(
√

n). From

Theorem 2, it remains to prove that C3 implies C4(
√

n). The fact that C3 implies

C4(
√

n)(b) is clear, by taking ui = ‖P0(Xi)‖2. To prove that C3 implies C4(
√

n)(a), note

first that, since X0 is regular,

E(Sk|M0) =
∞∑
i=1

k∧i∑
j=1

Pj−i(Xj) and Sk − E(Sk|Mn) =
k−n−1∑
i=−∞

k∑

j=1∨(i+n+1)

Pj−i(Xj) .

Let

Yi,k =
k∧i∑
j=1

Pj−i(Xj) and Zi,k,n =
k∑

j=1∨(i+n+1)

Pj−i(Xj) .

Obviously

sup
1≤k≤n

|E(Sk|M0)| ≤
∞∑
i=1

sup
1≤k≤n

|Yi,k| and sup
1≤k≤n

|Sk − E(Sk|Mn)| ≤
−1∑

i=−∞
sup

1≤k≤n
|Zi,k,n|

Next, taking ui = ‖P0(Xi)‖2 and denoting C =
∑

i∈Z ‖P0(Xi)‖2, we obtain that

sup
1≤k≤n

|E(Sk|M0)|2 ≤ C

∞∑
i=1

1

ui

sup
1≤k≤n

|Yi,k|2 , and

sup
1≤k≤n

|Sk − E(Sk|Mn)|2 ≤ C

−1∑
i=−∞

1

ui

sup
1≤k≤n

|Zi,k,n|2 .

Applying Doob’s maximal inequality to the martingales (Yi,k)k≥1 and (Zi,k,n)k≥1, we infer

that

(7.16)
∥∥∥ sup

1≤k≤n
|E(Sk|M0)|

∥∥∥
2

2
≤ C

∞∑
i=1

(i ∧ n)‖P0(Xi)‖2 ,
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and

(7.17)
∥∥∥ sup

1≤k≤n
|Sk − E(Sk|Mn)|

∥∥∥
2

2
≤ C

−1∑
i=−∞

(n ∧ (−i))‖P0(Xi)‖2 .

From (7.16) and (7.17), we easily infer that, under C3,

lim
n→∞

1

n

∥∥∥ sup
1≤k≤n

|E(Sk|M0)|
∥∥∥

2

2
= 0 and lim

n→∞
1

n

∥∥∥ sup
1≤k≤n

|Sk − E(Sk|Mn)|
∥∥∥

2

2
= 0 ,

which is exactly C4(
√

n)(a).

Proof of Proposition 4. Notice that it is sufficient to find a centered random vari-

able X0, a transformation T , and a sigma-algebra M0 such that (1/n)‖∑n
i=1 Xi‖2

2 → 0,∑∞
i=0 P0(Xi) converges in L2 to a constant zero, but the tightness condition in the Donsker

invariance principle is not satisfied.

Let (Ω,A,P) =
(
[0, 1],B([0, 1]), λ

)Z
, where λ is the Lebesgue measure, and let T be

the left shift i.e. (T (ω))i = ωi+1 for all i ∈ Z. For all i ∈ Z, let πi : Ω → [0, 1] be the

projections such that πi(ω) = ωi, and let Mk = σ(πi, i ≤ k). For k ≥ 1 and 1 ≤ j ≤ k, let

Āk,j be independent subsets of [0, 1] such that λ(Āk,j) = 1/(k4k), and let Ak,j = π−1
0 (Āk,j).

Notice that for all k ≥ 1, 1 ≤ j ≤ k and i ∈ Z, the sets Ak,j ◦ T i are independent hence

the random variables 1IAk,j
◦ T i, i ∈ Z are mutually independent. We define

ẽk,j = 2k−j1IAk,j
and ek,j = ẽk,j − E(ẽk,j) ,

nj =

j−1∑
i=1

2i, mk =
k−1∑

`=1

n`+1,

fk,j =
( 2j−1∑

i=0

ek,j ◦ T−i −
2j+1−1∑

i=2j

ek,j ◦ T−i
)
◦ T−2(mk+nj), fk =

k∑
j=1

fk,j

and finally X0 =
∑

k≥1

f2k .

Note that
∑

k≥1

∑2k

j=1 ‖f2k,j‖2 < +∞, so that X0 is well defined in L2.

1. We prove that
1

n

∥∥∥
n∑

i=1

Xi

∥∥∥
2

2
→ 0.
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Notice first that each of the functions fk,j is a coboundary:

fk,j = gk,j − gk,j ◦ T−1

where

gk,j =
( 2j−1∑

i=0

2j−1∑

`=0

ẽk,j ◦ T−(i+`)
)
◦ T−2(mk+nj)

=
( 2j−1∑

i=0

(i + 1)ẽk,j ◦ T−i +
2j+1−1∑

i=2j

(2j+1 − i− 1)ẽk,j ◦ T−i
)
◦ T−2(mk+nj) .

We then have that

(7.18)
n∑

`=1

fk,j ◦ T ` = gk,j ◦ T n − gk,j .

Since
∥∥gk,j − E(gk,j)

∥∥2

2
≤ 2

2j−1∑
i=0

(i + 1)2‖ek,j‖2
2 ≤

2j+1

k
.

Then, for all n ≥ 1 (and in particular for n ≥ 2j),

(7.19)
∥∥∥

n∑

`=1

fk,j ◦ T `
∥∥∥

2

2
≤ 2j+3

k
.

On an other hand,

n∑

`=1

fk,j ◦ T ` =
( n∑

`=1

2j−1∑
i=0

ek,j ◦ T `−i −
n∑

`=1

2j+1−1∑

i=2j

ek,j ◦ T `−i
)
◦ T−2(mk+nj)

=
( n∑

m=2−2j

(ek,j ◦ Tm)a(n,m, j)−
n−2j∑

m=2−2j+1

(ek,j ◦ Tm)b(n,m, j)
)
◦ T−2(mk+nj) ,

where a(n,m, j) =
∑n

`=1 1Im≤`≤m+2j−1 and b(n,m, j) =
∑n

`=1 1Im+2j≤`≤m+2j+1−1. Then

∥∥∥
n∑

`=1

fk,j ◦ T `
∥∥∥

2
≤

∥∥∥
n∑

m=2−2j

(ek,j ◦ Tm)a(n,m, j)
∥∥∥

2
+

∥∥∥
n−2j∑

m=2−2j+1

(ek,j ◦ Tm)b(n,m, j)
∥∥∥

2
.

Now using the independence of the random variables (ek,j ◦ Tm)m∈Z, we get that

∥∥∥
n∑

m=2−2j

(ek,j ◦ Tm)a(n,m, j)
∥∥∥

2

2
=

n∑

m=2−2j

‖ek,j‖2
2

(
a(n,m, j)

)2 ≤ n2(n + 2j)‖ek,j‖2
2
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and

∥∥∥
n−2j∑

m=2−2j+1

(ek,j ◦ Tm)b(n,m, j)
∥∥∥

2

2
=

n−2j∑

m=2−2j+1

‖ek,j‖2
2

(
b(n,m, j)

)2 ≤ n2(n + 2j)‖ek,j‖2
2 .

It follows that if n ≤ 2j then

(7.20)
∥∥∥

n∑

`=1

fk,j ◦ T `
∥∥∥

2

2
≤ 4n2(n + 2j)‖ek,j‖2

2 ≤
8n2

k2j
.

Consequently, from (7.19) and (7.20), we get that

• for n > 2k:
∥∥∥

n∑

`=1

fk,j ◦ T `
∥∥∥

2
≤ 2

√
2

k
2k/22(j−k)/2 ≤ 2

√
n

√
2

k
2(j−k)/2

• for 2 ≤ 2j−1 ≤ n < 2j ≤ 2k:

∥∥∥
n∑

`=1

fk,m ◦ T `
∥∥∥

2
≤ 2

√
2

k
2(j−1)/22(m−j+1)/2 ≤ 2

√
n

√
2

k
2(m−j+1)/2 for m ≤ j − 1

∥∥∥
n∑

`=1

fk,m ◦ T `
∥∥∥

2
≤ 2

√
n

√
2

k

√
n2−m/2 < 2

√
n

√
2

k
2(j−m)/2 for m ≥ j .

From these last considerations, it follows that uniformly in k and in n ≥ 2, there exists a

positive constant C such that

(7.21)
1√
n

∥∥∥
n∑

`=1

fk ◦ T `
∥∥∥

2
≤ C

1√
k

.

Using (7.21), we then derive that

(7.22)
1√
n

∥∥∥
n∑

i=1

Xi

∥∥∥
2
≤

N∑

k=1

1√
n

∥∥∥
n∑

`=1

f2k ◦ T `
∥∥∥

2
+ C

∞∑

k=N+1

1

2k/2

Since each of the functions f2k is a coboundary, it follows that for all n,
∥∥ ∑n

`=1 f2k◦T `
∥∥

2
≤

C(k), where C(k) is a constant only depending on k. Then starting from (7.22) and letting

n tend to infinity and after N , we get that (1/n)
∥∥ ∑n

i=1 Xi

∥∥2

2
→ 0.

2. We prove that
N∑

`=0

P0(X`) converges in L2 to zero.

Notice first that for ` = 2(m2k + nj) + i and 0 ≤ i ≤ 2j − 1, we have that

P−`(X0) = e2k,j ◦ T−` ,

29



and that for ` = 2(m2k + nj) + i and 2j ≤ i ≤ 2j+1 − 1, we have

P−`(X0) = −e2k,j ◦ T−` .

In addition if ` 6= 2(m2k + nj) + i, for 0 ≤ i ≤ 2j+1 − 1, k ≥ 1 and 1 ≤ j ≤ 2k, then we

get P−`(X0) = 0. The sequence of P0(X`) is then a sequence where 2j terms equal e2k,j

are followed by 2j terms equal −e2k,j. Then since

E(2je2k,j)
2 ≤ 1

2k
,

the sum
∑N

`=1 P0(X`) converges in L2 to zero.

3. We prove that
{ 1√

n

[nt]∑
i=1

Xi, 0 ≤ t ≤ 1
}

is not tight.

Notice first that
∑

m≥1

∑2m

j=1 g2m,j is almost surely finite and that

X0 =
∑
m≥1

2m∑
j=1

g2m,j −
(∑

m≥1

2m∑
j=1

g2m,j

)
◦ T−1 .

Then X0 is a coboundary and according to Theorem 1 in Volný and Samek (2000),

in order for the process {n−1/2
∑[nt]

i=1 Xi, 0 ≤ t ≤ 1} to be tight, it is necessary that

n−1/2 max1≤`≤n |
∑`

i=1 Xi| converges to zero in probability. Using (7.18) and the fact that

the functions gk,j are nonnegative, notice first that for all k ≥ 1,

max
1≤`≤n

|
∑̀
i=1

Xi| ≥ max
1≤`≤n

( 2k∑
j=1

g2k,j ◦ T ` +
∑

m≥1,m6=k

2m∑
j=1

g2m,j ◦ T `
)
−

∑
m≥1

2m∑
j=1

g2m,j

≥ max
1≤`≤n

2k∑
j=1

g2k,j ◦ T ` −
∑
m≥1

2m∑
j=1

g2m,j .

Then, since the functions gk,j are nonnegative, to show that {n−1/2
∑[nt]

i=1 Xi, 0 ≤ t ≤ 1}
is not tight, it suffices to prove that there exists a subsequence n(k) such that

(7.23)
1√
n(k)

max
1≤`≤n(k)

2k∑
j=1

g2k,j ◦ T ` does not converge to 0 in probability.

Take n(k) = 42k
and notice that

P
(

max
1≤`≤n(k)

2k∑
j=1

g2k,j ◦ T ` ≥
√

n(k)

2

)
= P

( 42k⋃

`=1

{ 2k∑
j=1

g2k,j ◦ T ` ≥ 22k

2

})
.
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Now let Bk be the sets defined by

Bk = {ω ∈ Ω such that ω is in only one of the sets A2k,j ◦ T−(2j−1)−2(m
2k+nj)+`

for 1 ≤ ` ≤ 42k

and 1 ≤ j ≤ 2k}
On Bk, one of the functions g2k,j ◦ T ` atteints its maximum which is equal to 22k

and the

others are nonnegative. Then it follows that

P
(

max
1≤`≤n(k)

2k∑
j=1

g2k,j ◦ T ` ≥
√

n(k)

2

)
≥ P(Bk) >

(
1− 1

2k42k

)2k42k

→ 1/e ,

which proves (7.23).

Proof of Corollary 3. Clearly, if ε0 is regular, then so is X0. It remains to see that∑
k∈Z ‖P0(Xk)‖2 is finite. Clearly

∑

k∈Z
‖P0(Xk)‖2 ≤

( ∑

i∈Z
|ai|

)(∑

k∈Z
‖P0(εk)‖2

)
,

and C3 follows from (4.1). The approximating martingale is given by

m =
∑

k∈Z
P0(Xk) =

( ∑

i∈Z
ai

) ∑

k∈Z
P0(εk) .

The identification of the variance follows by applying Corollary 1 (for the second equality,

note that, by assumption, C3 holds for (εi)i∈Z).

Proof of Corollary 4. First note that if (ai)i∈Z is a sequence of real numbers in

`1, Corollary 4 follows easily from Corollary 3, since, according to the condition (1),

sn/
√

n converges to |∑i∈Z ai| > 0 (in that case the approximating martingale is m =

sign(
∑

i∈Z ai)ε0). We shall now focus on the case where
∑

i∈Z |ai| = ∞. According to

Theorem 2, it is enough to prove that C1(sn)(b) and C4(sn) hold (the fact that s[nt]/sn

is bounded follows from the condition (1)). Since the condition (1) holds, we can take

ui = |ai| in C4(sn)(b). We first prove C4(sn). From Remark 7, C4(sn)(a) follows from

(3.2), which is equivalent to (since X0 is regular)

(7.24)
n∑

k=1

√∑

i≥k

‖P0(Xi)‖2
2 = o(sn) and

n∑

k=1

√∑

i≥k

‖P0(X−i)‖2
2 = o(sn) .

Since P0(Xi) = aiε0, (7.24) follows from

(7.25)
n∑

k=1

√∑

|i|≥k

a2
i = o(sn) .
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Now, with ui = |ai|, C4(sn)(b) holds as soon as

lim
A→∞

lim sup
n→∞

∑n
i=−n |ai|∣∣ ∑n
i=−n ai

∣∣E
(
ε2
01Iε2

0>A

)
= 0 ,

which follows from the condition (1). It remains to prove C1(sn)(b). By Corollary 1,

it is enough to prove (2.3). Since
∑

i∈Z |ai| = ∞, we infer from the condition (1) that

a−n + · · ·+ an converges to +∞ or to −∞. Hence

√
n

sn

n∑
i=−n

P0(Xi) = ε0

∑n
i=−n ai∣∣ ∑n
i=−n ai

∣∣

converges in L2 to ε0 or to −ε0. Now, according to the condition (1), the second condition

in (2.3) will hold as soon as

(7.26) lim
n→∞

1

n

n∑

`=1

(∑
`≤|k|≤n |ak|∑
|k|≤n |ak|

)2

= 0.

We shall prove that (7.26) holds without the square, which is clearly sufficient. Applying

Hölder’s inequality, we have that

1

n

n∑

`=1

∑
`≤|k|≤n |ak|∑
|k|≤n |ak| ≤ 1√

n
∑

|k|≤n |ak|
n∑

`=1

√ ∑

`≤|k|≤n

a2
k ,

and the right hand term converges to 0 according to the condition (1) and (7.25). This

completes the proof.

Proof of Corollary 5. Since X0 is regular, we only have to prove that
∑

k∈Z ‖P0(Xk)‖2 is

finite. Let ε′ be an independent copy of ε, and denote by Eε(·) the conditional expectation

with respect to ε. Clearly

(7.27)

P0(Xk) = Eε

(
f
( ∑

i<k

aiε
′
k−i + akε0 +

∑

i>k

aiεk−i

)
− f

( ∑

i<k

aiε
′
k−i + akε

′
0 +

∑

i>k

aiεk−i

))
.

Since w∞,f (t1 + t2,M) ≤ w∞,f (t1,M) + w∞,f (t2,M), it follows that

(7.28)

|P0(Xk)| ≤ Eε

(
2‖X0‖∞ ∧

(
w∞,f (|ak||ε0|, |Y1| ∨ |Y2|) + w∞,f (|ak||ε′0|, |Y1| ∨ |Y2|)

))
,

where Y1 =
∑

i≤k aiε
′
k−i +

∑
i>k aiεk−i and Y2 =

∑
i<k aiε

′
k−i +

∑
i≥k aiεk−i. The result

follows by noting that (ε0, |Y1|+ |Y2|) and (ε′0, |Y1|+ |Y2|) are both distributed as (ε0,Mk),

and by taking the L2-norm in (7.28). Items 1 and 2 are straightforward.
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Proof of Corollary 6. Starting from (7.27) (with ai = 0 for i < 0), we obtain that

(7.29) P0(Xk) = akEε

(
(ε0 − ε′0)

∫ 1

0

f ′
( k∑

i=0

aiε
′
k−i + tak(ε0 − ε′0) +

∑

i>k

aiεk−i

)
dt

)
.

Since f ′ is continuous and bounded, and |ak|(|ε0| + |ε′0|) + |∑i>k aiεk−i| converges in

probability to 0, it follows that

(7.30)

Zk = Eε

(
(ε0 − ε′0)

∫ 1

0

(
f ′

( k∑
i=0

aiε
′
k−i + tak(ε0 − ε′0) +

∑

i>k

aiεk−i

)
− f ′

( k−1∑
i=0

aiε
′
k−i

))
dt

)

converges to 0 in L2. Since
∑k−1

i=0 aiε
′
k−i is independent of (ε0 − ε′0) and converges in

distribution to
∑∞

i=0 aiεi, it follows that

(7.31)

lim
k→∞

Eε

(
(ε0 − ε′0)

∫ 1

0

f ′
( k∑

i=0

aiε
′
k−i + tak(ε0 − ε′0) +

∑

i>k

aiεk−i

)
dt

)
= ε0E

(
f ′

( ∞∑
i=0

aiεi

))
,

in L2. Since sn/
√

n tends to infinity and, by the first condition in (5.7),

lim
n→∞

∑n
k=0 ak∣∣∣ ∑n
k=0 ak

∣∣∣
= a with |a| = 1,

it follows from (7.29) and (7.31) that

(7.32) lim
n→∞

√
n

sn

n∑

k=0

P0(Xk) = aε0E
(
f ′

( ∞∑
i=0

aiεi

))
in L2.

Now, since (5.7) implies that sn/
√

n is a svf (see Remark 12), it follows from Corollary

1 that C1(sn)(b) holds. According to Theorem 2, it remains to prove that C4(sn) holds.

Since, from (7.29),

|P0(Xk)| ≤ ‖f ′‖∞|ak|(|ε0|+ ‖ε0‖1) ,

the proof may be done as in Theorem 4, by choosing ui = |ai|. To conclude, note that

the limiting variance is given by the variance of the right hand term in (7.32).

Proof of Corollary 7. Starting from (7.29) and using (5.9), we obtain that

P0(Xk) = ak

(
Zk + ε0E

(
f ′

( k−1∑
i=0

aiεi

)
− f ′

( ∞∑
i=0

aiεi

)))
,
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where Zk is defined in (7.30). Since f ′ is Lipschitz, we obtain

‖P0(Xk)‖2 ≤ 2a2
k‖f ′′‖∞‖(|ε0|+ |ε′0|)2‖2 + ‖f ′′‖∞(‖ε0‖2 + ‖ε0 − ε′0‖2)|ak|

∥∥∥
∑

i>k

aiεi

∥∥∥
2
.

Since

|ak|
∥∥∥

∑

i>k

aiεi

∥∥∥
2

= ‖ε0‖2|ak|
√∑

i>k

a2
i ,

the condition C3 follows from (5.10).

Proof of Corollary 8. Assume without loss that a0 6= 0. Let Yk =
∑k−1

i=0 aiεk−i. The

density of Yk is given by fYk
= |a0|−1fε0(·/a0) ? · · · ? |ak−1|−1fε0(·/ak−1) and hence, it is

bounded by C|a0|−1. Starting from (7.27) (with ai = 0 for i < 0), we have that

P0(Xk) =

∫ ∫ (
f(y + akε0 +

∑

i>k

aiεk−i)− f(y + akx +
∑

i>k

aiεk−i)
)
fYk

(y)fε0(x)dydx .

Consequently

|P0(Xk)| ≤
∫ ( ∫ ∣∣∣f(y+akε0+

∑

i>k

aiεk−i)−f(y+akx+
∑

i>k

aiεk−i)
∣∣∣
p

fYk
(y)dy

)1/p

fε0(x)dx .

Now since fYk
is bounded by C|a0|−1 and wp,f (|t1 + t2|) ≤ wp,f (|t1|)+wp,f (|t2|), we obtain

that

(7.33) |P0(Xk)| ≤ (C|a0|−1)1/p (wp,f (|ak||ε0|) + E (wp,f (|ak||ε0|))) .

The result follows by taking the L2-norm in (7.33).

Proof of Proposition 5. Note first that C5 implies that E(X0|M−∞) = 0 and that

E(X0|M∞) = X0 almost surely, so that X0 is regular. Consequently the decomposition

(2.2) is valid. It follows that

∑

k>0

ak‖E(Xk|M0)‖2
2 =

∑

k>0

ak

∑
i≤0

‖Pi(Xk)‖2
2 =

∑
i>0

( i∑

k=1

ak

)
‖P0(Xi)‖2

2

∑

k>0

bk‖X−k − E(X−k|M0)‖2
2 =

∑

k>0

bk

∑
i>0

‖Pi(X−k)‖2
2 =

∑
i<−1

( −i−1∑

k=1

bk

)
‖P0(Xi)‖2

2 .

Now, by Hölder’s inequality in `2,

∑
i>0

‖P0(Xi)‖2 ≤
( ∑

i≥1

( i∑

k=1

ak

)−1)1/2( ∑
i>0

( i∑

k=1

ak

)
‖P0(Xi)‖2

2

)1/2

∑
i<−1

‖P0(Xi)‖2 ≤
( ∑

i≥1

( i∑

k=1

bk

)−1)1/2( ∑
i<−1

( −i−1∑

k=1

bk

)
‖P0(Xi)‖2

2

)1/2

,
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which proves that C5 implies C3. To prove that C6 implies C5, it suffices to prove that,

under C6, the sequences a−1
k =

√
k‖E(Xk|M0)‖2 and b−1

k =
√

k‖X−k − E(X−k|M0)‖2

satisfy (6.1). Since the sequences ‖E(Xk|M0)‖2 and ‖X−k − E(X−k|M0)‖2 are non in-

creasing, we have that

i∑

k=1

ak ≥
√

i

2‖E(X[i/2]|M0)‖2

and
i∑

k=1

bk ≥
√

i

2‖X−[i/2] − E(X−[i/2]|M0)‖2

,

and (6.1) follows easily from C6.

Proof of Corollary 9. Let S1(M0) be the set of all M0-measurable random variables

Z such that E(Z2) = 1. Clearly, if X0 is defined by (6.3), then

(7.34) ‖E(Xk|M0)‖2 = sup
Z∈S1(M0)

|cov(Z, (f − g)(Yk))|

Let b(M0, Yk) = supt∈R |FYk|M0(t)−F (t)|. Applying Corollary 2.2 in Dedecker (2004), we

have, for any conjugate exponents p, q,

|cov(Z, (f − g)(Yk))| ≤ 2(‖f(Y0)‖p + ‖g(Y0)‖p)
{
E(|Z|qb(M0, Yk))

}1/q
.

Let p ≥ 2. Applying Hölder’s inequality on the last term of the right hand side, we obtain,

for Z such that E(Z2) = 1,

(7.35) |cov(Z, (f − g)(Yk))| ≤ 2(‖f(Y0)‖p + ‖g(Y0)‖p)
(
β2(p−1)/(p−2)(k)

)(p−1)/p
.

Combining (7.34) and (7.35), we obtain that

‖E(Xk|M0)‖2 ≤ 2(‖f(Y0)‖p + ‖g(Y0)‖p)
(
β2(p−1)/(p−2)(k)

)(p−1)/p
.

Hence, C6 follows from (6.4), and Corollary 9 follows from Proposition 5.
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