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Abstract

We prove a central limit theorem for the d-dimensional distribution func-
tion of a class of stationary sequences. The conditions are expressed in terms
of some coefficients which measure the dependence between a given σ-algebra
and indicators of quadrants. These coefficients are weaker than the corre-
sponding mixing coefficients, and can be computed in many situations. In
particular, we show that they are well adapted to functions of mixing se-
quences, iterated random functions, and a class of dynamical systems.
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1 Introduction

In 1952, Donsker proved the weak convergence of the empirical distribution function

of iid random variables to a Brownian bridge, which provides as a straightforward

consequence the asymptotic behavior of the Kolmogorov-Smirnov statistics. Dud-

ley (1966) clarified the notion of weak convergence on nonseparable metric spaces,

and obtained a central limit theorem for the d-dimensional empirical distribution

function.

An early result of Billingsley (1968) extended Donsker’s theorem to φ-mixing

sequences in the sense of Ibragimov (1962), provided that
∑

k>0 k2
√

φ(k) < ∞.

In 1979, Yoshihara obtained the same result for α-mixing sequences in the sense

of Rosenblatt (1956) under the condition α(n) = O(n−a) for some a > 3, and
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Dhompongsa (1984) proved the weak convergence of the d-dimensional empirical

distribution function provided α(n) = O(n−a) for some a > 2 + d. The rate given

by Yoshihara has been first improved by Shao and Yu (1996) to a > 1 +
√

2 and

next by Rio (2000, Theorem 7.2) to a > 1. In fact, in Theorem 7.3 of his book, Rio

(2000) has shown that the rate α(n) = O(n−a) for some a > 1 is sufficient for the

weak convergence of the d-dimensional empirical distribution function. This last

result is remarkable, for the rate of mixing does not depend on the dimension d.

In the case of β-mixing sequences in the sense of Rozanov and Volkonskii (1959),

Rio (1998 Theorem 1, 2000 Corollary 8.2) obtained the slightly better condition∑
k>0 β(k) < ∞, as a consequence of more general results for classes of functions.

Unfortunately, mixing is a rather restrictive condition, and many simple Markov

chains are not mixing. For instance, if (εi)i≥1 is iid with marginal B(1/2), then the

stationary solution (Xi)i≥0 of the equation

Xn =
1

2
(Xn−1 + εn) , X0 independent of (εi)i≥1 (1.1)

is not α-mixing (more precisely α(σ(X0), σ(Xn)) = 1/4 for any n). This example

is not an exception: the chain satisfying (1.1) is the Markov chain associated to

the dynamical system generated by the map T (x) = 2x − [2x] on the space [0, 1]

equipped with the Lebesgue measure, and it is well known that such dynamical

systems are not α-mixing in the sense that α(σ(T ), σ(T n)) does not tend to zero as

n tends to infinity. Once again, the first work to mention in this framework is that of

Billingsley (1968, Theorem 2.2), who proved an empirical central limit theorem for

functions of φ-mixing processes. Functions of mixing processes cover a large class

of examples, such as linear processes or more general time series, as well as certain

dynamical systems. More precisely, assume that T is a map from [0, 1] to [0, 1], with

finite partition {I1, . . . , IN} of [0, 1] into intervals of continuity and monoticity of T

such that |T ′| ≥ λ > 1 on any interval of the partition. If moreover the absolutely

continuous T -invariant probability measure µ is unique and (T, µ) is weakly mixing,

Hofbauer and Keller (1982) have proved that the label process defined by ξn(x) = i

if T n(x) ∈ Ii, is β-mixing with exponential mixing rate, and T n = f((ξi)i≥n) for

some measurable f .

In their Theorem 5, Borovkova, Burton and Dehling (2001) obtained the weak

convergence of the empirical distribution function for functions Xk = f((ξi+k)i∈Z) of

β-mixing processes. Their assumption is two-part: a rate of mixing on the under-

lying sequence (ξi)i∈Z and a condition involving the rate of convergence to zero of

the quantities al = ‖f((ξi)i∈Z) − E(f((ξi)i∈Z)|σ(ξj, |j| ≤ l))‖1. Many examples are

given in this paper. In particular, the result applies to the empirical distribution

function of the sequence Xi = T i on the probability space ([0, 1], µ), when T is an

expanding map as described in the paper by Hofbauer and Keller (1982) (in that

case al decreases to zero with an exponential rate).
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The example of uniformly expanding maps T of [0, 1] has been also studied by

Collet, Martinez and Schmitt (2004). As in Hofbauer and Keller (1982), they assume

that there is a finite partition of [0, 1] into intervals of continuity and monoticity of

T , but the condition on T is weakened to: there exist A > 0 and λ > 1 such that

|(T n)′| ≥ Aλn for any positive integer n, on any interval of the partition associated

to T n. If moreover the absolutely continuous T -invariant probability measure µ is

unique and (T, µ) is weakly mixing, they have proved the weak convergence of the

empirical distribution function of the sequence Xi = T i on the probability space

([0, 1], µ). Their proof is classical: they use the spectral properties of the adjoint

operator of T to derive some covariance inequalities as well as some appropriate

moments inequalities, from which both finite dimensional convergence and tightness

follow. Note that in this context, it would have been much easier to apply a result

given in Doukhan and Louhichi (1999), which we shall recall hereafter.

The idea of Doukhan and Louhichi (1999) is simple: since the only functions

we want to control are indicators of half lines, a dependence condition involving

only the functions x → 1Ix≤t, or at most the differences fs,t(x) = 1Ix≤t − 1Ix≤s,

should be enough to obtain an empirical central limit theorem. Starting from a

tightness criterion given in Shao and Yu (1996), they proved the weak convergence

of the empirical distribution function of a stationary sequence (Xi)i>0 of real-valued

random variables provided

sup
s,t∈R

sup
i≤j,j+n≤k≤l

|Cov(fs,t(Xi)fs,t(Xj), fs,t(Xk)fs,t(Xl))| = O(n−a) for a > 5/2. (1.2)

Note that (1.2) is satisfied by the class of expanding maps T considered in Collet,

Martinez and Schmitt (2004): more precisely, using the spectral properties of the

adjoint operator of T in the space of bounded-variation functions, one can easily see

that the decay of the correlations is exponential (see Section 6.3 for more details).

In fact (1.2) is satisfied for many other non mixing processes, as one can see from

the examples of Section 6.

However, when applied to strongly mixing sequences, the condition (1.2) leads

to the rate α(n) = n−a for some a > 5/2: it is better than Yoshihara’s (1979),

but clearly worse than Rio’s (2000). Two natural questions are: can we obtain a

better rate than Doukhan and Louhichi, for some measure of dependence based on

indicator of half lines? If yes, can we obtain similar results for the d-dimensional

empirical distribution function? Let us now describe one of the main results of this

paper. Let (Xi)i∈Z be a stationary sequence of Rd-valued random variables with

common distribution function F (t) = P(X0 ≤ t) (as usual x ≤ t if and only if

x(i) ≤ t(i) for any 1 ≤ i ≤ d), and let M0 = σ(Xi, i ≤ 0). Define the function
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gt(x) = 1Ix≤t − F (t). If there exists a > 1 such that

sup
k≥n

∥∥∥ sup
t∈R

|E(gt(Xk)|M0)|
∥∥∥
∞

= O(n−a) and

sup
k>l≥n

∥∥∥ sup
s,t∈R

|E(gt(Xk)gs(Xl)|M0)− E(gt(Xk)gs(Xl))|
∥∥∥
∞

= O(n−a) , (1.3)

then we can prove a central limit theorem for the d-dimensional empirical distribu-

tion function in the space of bounded functions from Rd to R equipped with the

uniform norm. Here, as in Rio’s (2000) result for strongly mixing sequences, the

rate O(n−a) for a > 1 does not depend on the dimension d. Condition (1.3) is a

consequence of a more general result given in Theorem 1: one can take any other

Lp-norm instead of the L∞-norm in (1.3), but the rate will depend on p and on the

dimension d. For instance, for p = 1, we obtain the rate O(n−a) for a > 2d, which

is again better than the rate given by (1.2) in the one-dimensional case.

As one can see from (1.3), the dependence coefficients which appear are general-

ization of the coefficients introduced in Dedecker and Prieur (2005): the difference

is that we need to control the dependence between two points (Xk, Xl) in the future

and the σ-algebra M0. Nevertheless, we shall see in Section 6 that all the examples

given in our 2005 paper may be handled similarly for these new coefficients. The

main tools for the proof of the empirical central limit theorem are a Rosenthal-type

inequality given in Dedecker (2001) and a new tightness criterion inspired from that

given in Andrews and Pollard (1994). As in Theorem 8.4 in Rio (2000), another

important point is to control the size of the class F = {1Ix≤t, t ∈ Rd} with respect

to an appropriate measure Q related to the dependence structure of the sequence

(Xi)i∈Z (see equation (4.14) and inequality (4.15)).

2 Definitions

We first introduce the following dependence coefficients:

Definition 1 Let (Ω,A,P) be a probability space, let M be a sub σ-algebra of A,

and let d be a given positive integer. Let X = (X1, . . . , Xk) be a random variable

with values in Rkd. Let PX be the distribution of X and let PX|M be a conditional

distribution of X given M. For 1 ≤ i ≤ k and t in Rd, let gt,i(x) = 1Ix≤t−P(Xi ≤ t),

where x ≤ t means that x(j) ≤ t(j) for any 1 ≤ j ≤ d. Define the random variable

b(M, X1, . . . , Xk) = sup
(t1,...,tk)∈Rkd

∣∣∣
∫ k∏

i=1

gti,i(xi)PX|M(dx)−
∫ k∏

i=1

gti,i(xi)PX(dx)
∣∣∣ .

with PX|M(dx) = PX|M(dx1, . . . , dxk) and PX(dx) = PX(dx1, . . . , dxk). For any p

in [1,∞], define the coefficient

βp(M, X1, . . . , Xk) = ‖b(M, X1, . . . , Xk)‖p
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For p = 1 or ∞, we shall use the notations β1(M, X1, . . . , Xk) = β(M, X1, . . . , Xk)

and β∞(M, X1, . . . , Xk) = φ(M, X1, . . . , Xk).

Let Λ1(Rkd) be the space of functions f satisfying

|f(x1, . . . , xkd)− f(y1, . . . , ykd)| ≤
kd∑
i=1

|xi − yi| .

Let p ≥ 1 and assume that X
(j)
i belongs to Lp(P) for any 1 ≤ j ≤ d and any

1 ≤ i ≤ k. Define the coefficient

τp(M, X1, . . . , Xk) =
∥∥∥sup

{∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣, f ∈ Λ1(Rkd)

}∥∥∥
p
.

The coefficients τ1 and τ∞ have been introduced and studied in Dedecker and

Prieur (2005), Section 7. Note that the coupling properties of these coefficients,

given in Section 7.1 of our 2005 paper, follow immediately from Proposition 6 in

Rüschendorf (1985) (the reference to this article is clearly missing in our 2005 paper).

In the particular case where d = 1, the coefficients βp can be defined via some

appropriate function spaces.

Proposition 1 Let BV1 be the space of left continuous functions f whose bounded

variation norm is smaller than 1, that is df is a signed measure such that ‖df‖ =

sup{|df(g)|, ‖g‖∞ ≤ 1} ≤ 1. Let X = (X1, . . . , Xk) be a random variable with values

in Rk. If f is a function in BV1, let f (i)(x) = f(x) − E(f(Xi)). Keeping the same

notations as in Definition 1, we have the equality

b(M, X1, . . . , Xk) = sup
f1,...,fk∈BV1

∣∣∣
∫ k∏

i=1

f
(i)
i (xi)PX|M(dx)−

∫ k∏
i=1

f
(i)
i (xi)PX(dx)

∣∣∣ .

Proof of Proposition 1. Assume without loss that fi(−∞) = 0. Then

f
(i)
i (x) = −

∫
(1Ix≤t − P(Xi ≤ t)) dfi(t)

Hence, with the notations of Definition 1,

∫ k∏
i=1

f
(i)
i (xi)PX|M(dx) = (−1)k

∫ ( ∫ k∏
i=1

gti,i(xi)PX|M(dx)
) k∏

i=1

dfi(ti) ,

and the same is true for PX instead of PX|M. From these inequalities and the fact

that |dfi|(R) ≤ 1, we infer that

sup
f1,...,fk∈BV1

∣∣∣
∫ k∏

i=1

f
(i)
i (xi)PX|M(dx)−

∫ k∏
i=1

f
(i)
i (xi)PX(dx)

∣∣∣ ≤ b(M, X1, . . . , Xk)

The converse inequality follows by noting that x → 1Ix≤t belongs to BV1. ¤
We now define the coefficients βk,p and τk,p for a sequence of σ-algebras and a

sequence of Rd-valued random variables.
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Definition 2 Let (Ω,A,P) be a probability space. Let (Xi)i≥0 be a sequence of

random variables with values in Rd, and let (Mi)i≥0 be a sequence of σ-algebras of

A. For any p ≥ 1, k ∈ N∗ ∪ {∞} and n ≥ 1, define

βk,p(n) = max
1≤l≤k

sup
i+n≤j1<···<jl

βp(Mi, Xj1 , . . . , Xjl
)

τk,p(n) = max
1≤l≤k

1

l
sup

i+n≤j1<···<jl

τp(Mi, Xj1 , . . . , Xjl
) .

For p = 1 or ∞, we shall use the notation βk(n) = βk,1(n) and φk(n) = βk,∞(n).

3 Results

Let (Xi)i∈Z be a stationary sequence of random variables with values in Rd and

common distribution function F , and letMi = σ(Xj, j ≤ i). Let Fn be the empirical

distribution function: for any t in Rd, Fn(t) = n−1
∑n

i=1 1IXi≤t. In Theorem 1

below, we give sufficient conditions for the process {√n(Fn(t) − F (t)), t ∈ Rd} to

converge in distribution to a tight Gaussian process on the space `∞(Rd) of bounded

functions from Rd to R equipped with the uniform norm | · |∞ (for more details on

weak convergence on the non separable space `∞(Rd), we refer to van der Vaart

and Wellner (1996); in particular, we shall not discuss any measurability problems,

which can be handled by using the outer probability).

Recall that a random variable X with values in `∞(Rd) is tight if for any positive

ε, there exists a compact set Kε of (`∞(Rd), | · |∞) such that P(X ∈ Kε) ≥ 1 − ε.

A random variable G with values in `∞(Rd) is a gaussian process if every one of

its finite dimensional marginals (G(t1), . . . , G(tk)) is normally distributed. If G is a

tight gaussian process then it is also Gaussian as an `∞(Rd)-valued random variable:

for every element d of the dual of `∞(Rd), the real-valued random variable d(G) is

normally distributed.

Consider the two conditions :

(C1) There exist ε in ]0, 1] and p′ > d(2 + ε)/2ε such that β2 ,p′(k) = O(k−1−ε).

(C2) There exists ε > 0 such that
∑+∞

k=1 k β2 , d+ε(k) < +∞.

Theorem 1 If either (C1) or (C2) holds, then {√n(Fn(t)−F (t)) , t ∈ Rd} converges

weakly in `∞(Rd) to a tight Gaussian process with covariance function

Γ(t, s) =
∑

k∈Z
Cov(1IX0≤t, 1IXk≤s) . (3.1)

In the next proposition, we give sufficient conditions for (C1) and (C2) to hold, in

terms of the coefficients φ2, β2, τ2,∞ and τ2,1. Consider the conditions (C3), (C4), (C5)

and (C6):
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(C3) There exists ε > 0 such that φ2(k) = O (k−1−ε).

(C4) There exists ε > 0 such that β2(k) = O (
k−2d−ε

)
.

(C5) Each component of X1 has a bounded density and there exists ε > 0 such that

τ2,∞(k) = O (k−2−ε).

(C6) Each component of X1 has a bounded density and there exists ε > 0 such that

τ2,1(k) = O (
k−4d−ε

)
.

Proposition 2 The following implications hold:

(C5) ⇒ (C3) ⇒ (C1) and (C6) ⇒ (C4) ⇒ (C2).

Remark 1. In this remark, we shall discuss on the optimality of the conditions

(C3) and (C4). This is a delicate matter, because very few is known on this subject.

A reasonable conjecture is C: the minimal conditions in terms of the coefficients

β2 (resp. φ2) to obtain the weak convergence of the empirical distribution function

are the minimal conditions in terms of the coefficients β2 (resp. φ2) to obtain the

central limit theorem for bounded random variables.

For the coefficient β2(i), the minimal condition to obtain the central limit the-

orem for bounded random variables is
∑

k>0 β2(k) < ∞ (for the optimality, use

Theorem 4 in Bradley (1997) and the fact that β(M, X1, X2) ≤ β(M, σ(X1, X2)),

according to Proposition 9 of Section 5). If the conjecture C is true, the condition

(C4) is not optimal, even if d = 1. By contrast Rio’s result (1998) for β-mixing

sequences in the sense of Rozanov and Volkonskii (1959) is optimal for any d.

For the coefficient φ2(i), we do not know what is the minimal condition to obtain

the central limit theorem for bounded random variables. What we can prove is that

it holds provided that
∑

k>0 k−1/2φ2(k) < ∞. It follows that, if the conjecture C

is true, the condition (C3) is not optimal. However, in that case, the loss does not

increase with the dimension.

Remark 2. If d = 1, Prieur (2002) proved an empirical central limit theorem

under a condition on the s-weak dependence coefficient θ(i), which is similar (but

weaker) to our coefficient τ∞,1(i). From Prieur’s result, we infer that if X0 has a

bounded density and τ∞,1(n) = O(n−2−2
√

2−ε) then the conclusion of Theorem 1

holds. Since τ2,1(n) ≤ τ∞,1(n), our condition (C6) gives a better rate. Moreover, for

all the examples studied in Prieur (2002), we can obtain the same bounds for τ∞,1(i)

as those obtained for θ(i).

Proof of Proposition 2. The facts that (C5) ⇒ (C3) and (C6) ⇒ (C4) follow from

Proposition 6 of Section 4. The fact that (C3) ⇒ (C1) is straightforward. Since

the random variable b(M, X, Y ) is almost surely bounded by 1 (see Proposition 9,

Section 5), we infer that β2,d+ε(k) ≤ (β2(k))1/(d+ε), so that (C4) ⇒ (C2). ¤
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4 Proof of Theorem 1

We first recall two moment inequalities given in Dedecker [9].

Proposition 3 Let (Xi)i∈Z be a stationary sequence of centered and square inte-

grable random variables and let Sn = X1 + · · · + Xn. Let Mi = σ(Xj, j ≤ i). The

following upper bound holds

‖Sn‖p ≤ (pnV∞)1/2 +
(
3p2n

(
‖X3

0‖p/3 + M1(p) + M2(p) + M3(p)
))1/3

,

where

VN = E(X2
0 ) + 2

N∑

k=1

|E(X0Xk)|

M1(p) =
+∞∑

l=1

l−1∑
m=0

‖X0XmE(Xl+m|Mm)‖p/3

M2(p) =
+∞∑

l=1

+∞∑

m=l

‖X0E(XmXl+m − E(XmXl+m)|M0)‖p/3

M3(p) =
1

2

+∞∑

k=1

‖X0E(X2
k − E(X2

k)|M0)‖p/3 .

Proposition 4 We keep the same notations as in Proposition 3. For any positive

integer N , the following upper bound holds

‖Sn‖p ≤ (pn (VN−1 + 2M0(p)))1/2 +
(
3p2n

(
‖X3

0‖p/3 + M̃1(p) + M̃2(p) + M3(p)
))1/3

,

where

M0(p) =
+∞∑

l=N

‖X0E(Xl|M0)‖p/2

M̃1(p) =
N−1∑

l=1

l−1∑
m=0

‖X0XmE(Xl+m|Mm)‖p/3

M̃2(p) =
N−1∑

l=1

+∞∑

m=l

‖X0E(XmXl+m − E(XmXl+m)|M0)‖p/3 .

Next we recall the notion of number of brackets.

Definition 3 Let Q be a finite measure on a measurable space X . For any measur-

able function f from X to R, let ‖f‖Q,r = Q(|f |r)1/r. If ‖f‖Q,r is finite, one says that

f belongs to Lr
Q. Let F be some subset of Lr

Q. The number of brackets NQ,r(ε,F) is

the smallest integer N for which there exist some functions f−1 ≤ f1, . . . , f
−
N ≤ fN

in F such that: for any integer 1 ≤ i ≤ N we have ‖fi − f−i ‖Q,r ≤ ε, and for any

function f in F there exists an integer 1 ≤ i ≤ N such that f−i ≤ f ≤ fi.

8



Before proving Theorem 1 we state an uniform law of large numbers under a brack-

eting condition.

Proposition 5 Let (Xi)i>0 be a sequence of identically distributed random variables

with values in some measurable space X , with common marginal distribution P .

Assume that for any f in F , n−1
∑n

i=1 f(Xi) converges almost surely to P (f). If

NP,1(x,F) is finite for any x > 0, then

lim
n→∞

sup
f∈F

|Pn(f)− P (f)| = 0 P p.s.

Proof of Proposition 5. The same as for i.i.d. sequences (see for instance van der

Vaart and Wellner (1996), proof of Theorem 2.4.1 page 122). ¤

The main step in the proof of Theorem 1 is the following proposition, whose

proof is based on a decomposition given in Andrews and Pollard (1994) (see also

Louhichi (2000)).

Proposition 6 Let (Xi)i≥1 be a sequence of identically distributed random variables

with values in a measurable space X , with common distribution P . Let Pn be the

empirical measure Pn = n−1
∑n

i=1 δXi
, and let Zn be the normalized empirical process

Zn =
√

n(Pn − P ). Let Q be any finite measure on X such that Q− P is a positive

measure. Let F be a class of functions from X to R and G = {f− l, (f, l) ∈ F ×F}.
Assume that there exist r ≥ 2, p ≥ 1 and q > 2 such that for any function g of G,

we have

‖Zn(g)‖p ≤ C(‖g‖1/r
Q,1 + n1/q−1/2) ,

where the constant C does not depend on g nor n. If moreover
∫ 1

0

x(1−r)/r(NQ,1(x,F))1/pdx < ∞ and lim
x→0

xp(q−2)/qNQ,1(x,F) = 0 ,

then

lim
δ→0

lim sup
n→∞

E
(

sup
g∈G,‖g‖Q,1≤δ

|Zn(g)|p
)

= 0 . (4.1)

Proof of Proposition 6. It follows the line of Andrews and Pollard (1994) and

Louhichi (2000). It is based on the following inequality: given N real-valued random

variables, we have

‖ max
1≤i≤N

|Zi|‖p ≤ N1/p max
1≤i≤N

‖Zi‖p . (4.2)

For any positive integer k, denote by Nk = NQ,1(2
−k,F) and by Fk a family of

functions fk,−
1 ≤ fk

1 , . . . , fk,−
Nk

≤ fk
Nk

in F such that ‖fk
i − fk,−

i ‖Q,1 ≤ 2−k, and for

any f in F , there exists an integer 1 ≤ i ≤ Nk such that fk,−
i ≤ f ≤ fk

i .

First step. We shall construct a sequence hk(n)(f) belonging to Fk(n) such that

lim
n→∞

∥∥∥sup
f∈F

|Zn(f)− Zn(hk(n)(f))|
∥∥∥

p
= 0 . (4.3)
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For any f in F , there exist two functions g−k and g+
k in Fk such that g−k ≤ f ≤ g+

k

and ‖g+
k −g−k ‖Q,1 ≤ 2−k. Since Q−P is a positive measure, we have the inequalities

Zn(f)− Zn(g−k ) ≤ Zn(g+
k )− Zn(g−k ) +

1√
n

n∑
i=1

E((g+
k − f)(Xi))

≤ |Zn(g+
k )− Zn(g−k )|+√

n2−k .

Since g−k ≤ f , we also have that Zn(g−k ) − Zn(f) ≤ √
n2−k, which enables us to

conclude that |Zn(f)− Zn(g−k )| ≤ |Zn(g+
k )− Zn(g−k )|+√

n2−k. Consequently

sup
f∈F

|Zn(f)− Zn(g−k )| ≤ max
1≤i≤Nk

|Zn(fk
i )− Zn(fk,−

i )|+√
n2−k . (4.4)

Combining (4.2) and (4.4), we obtain that
∥∥∥sup

f∈F
|Zn(f)− Zn(g−k )|

∥∥∥
p
≤ N 1/p

k max
1≤i≤Nk

‖Zn(fk
i )− Zn(fk,−

i )‖p +
√

n2−k . (4.5)

Starting from (4.5) and applying the inequality of Proposition 6, we obtain
∥∥∥sup

f∈F
|Zn(f)− Zn(g−k )|

∥∥∥
p
≤ C(N 1/p

k 2−k/r +N 1/p
k n1/q−1/2) +

√
n2−k . (4.6)

From the integrability condition on NQ,1(x,F), and since x → x(1−r)/rN (x,F)1/p is

non increasing, we infer that N 1/p
k 2−k/r tends to 0 as k tends to infinity. Take k(n)

such that 2k(n) =
√

n/an for some sequence an decreasing to zero. Then
√

n2−k(n)

tends to 0 as n tends to infinity. Il remains to control the second term on right hand

in (4.6). By definition of Nk(n), we have that

Nk(n)n
p(1/q−1/2) = NQ,1

( an√
n

,F
)( 1√

n

)p(q−2)/q

. (4.7)

Since xp(q−2)/pNQ,1(x,F) tends to 0 as x tends to zero, we can find a sequence an

such that the right hand term in (4.7) converges to 0. The function hk(n)(f) = g−k(n)

satisfies (4.3).

Second step. We shall prove that for any ε > 0 and n large enough, there exists a

function hm(f) in Fm such that
∥∥∥sup

f∈F
|Zn(hm(f))− Zn(hk(n)(f))

∥∥∥
p
≤ ε . (4.8)

Given h in Fk, choose a function Tk−1(h) in Fk−1 such that ‖h−Tk−1(h)‖Q,1 ≤ 2−k+1.

Denote by πk,k = Id and for l < k, πl,k(h) = Tl ◦ · · · ◦ Tk−1(h). We consider the

function hm(f) = πm,k(n)(hk(n)(f)). We have that

∥∥∥sup
f∈F

|Zn(hm)− Zn(hk(n))|
∥∥∥

p
≤

k(n)∑

l=m+1

∥∥∥sup
f∈F

|Zn(πl,k(n)(hk(n))− Zn(πl−1,k(n)(hk(n))|
∥∥∥

p
.

(4.9)
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Clearly
∥∥∥sup

f∈F
|Zn(πl,k(n)(hk(n))− Zn(πl−1,k(n)(hk(n))|

∥∥∥
p
≤

∥∥∥max
f∈Fl

|Zn(f)− Zn(Tl−1(f))|
∥∥∥

p
.

Applying the inequality of Proposition 6 to (4.9) we obtain

∥∥∥sup
f∈F

|Zn(hm)− Zn(hk(n))|
∥∥∥

p
≤ C

k(n)∑

l=m+1

(21/rN 1/p
l 2−l/r +N 1/p

l n1/q−1/2)

Clearly
∞∑

l=m+1

N 1/p
l 2−l/r ≤ 2

∫ 2−m−1

0

x(1−r)/r(NQ,1(x,F))1/pdx ,

which by assumption is as small as we wish. To control the second term, write

n1/q−1/2

k(n)∑

l=m+1

N 1/p
l ≤ n1/q−1/2

k(n)∑

l=0

2lN 1/p
l 2−l ≤ 2n1/q−1/2

∫ 1

2−k(n)

1

x
(NQ,1(x,F))1/pdx .

It is easy to see that if xp(q−2)/qNQ,1(x,F) tends to 0 as x tends to 0, then

lim
x→0

x(q−2)/q

∫ 1

x

1

y
(NQ,1(y,F))1/pdy = 0 .

Consequently, we can choose the decreasing sequence an such that

lim
n→∞

( 1√
n

)(q−2)/q
∫ 1

ann−1/2

1

x
(NQ,1(x,F))1/pdx = 0 .

The function hm(f) = πm,k(n)(hk(n)(f)) satisfies (4.8).

Third step. From steps 1 and 2, we infer that for any ε > 0 and n large enough,

there exists hm(f) in Fm such that
∥∥∥sup

f∈F
|Zn(f)− Zn(hm(f))|

∥∥∥
p
≤ 2ε .

Using the same argument as in Andrews and Pollard (1994) (see the paragraph

“Comparison of pairs” page 124), we obtain that, for any f and g in F ,
∥∥∥ sup
‖f−g‖Q,1≤δ

|Zn(f)− Zn(g)|
∥∥∥

p
≤ 8ε +N 2/r

m sup
‖f−g‖Q,1≤δ

‖Zn(f)− Zn(g)‖p .

We conclude the proof by noting that

lim sup
δ→0

lim sup
n→∞

∥∥∥ sup
g∈G,‖g‖Q,1≤δ

|Zn(g)|
∥∥∥

p
≤ 8ε . ¤

Proof of Theorem 1. Let F = {x → 1Ix≤t , t ∈ Rd}, and let G = {f − h , f, h ∈ F} .

Using Theorem 1 of Dedecker and Rio (2000), we get the convergence of the finite
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dimensional distributions of {√n(Fn(t) − F (t)) , t ∈ Rd} to that of the Gaussian

process with covariance function Γ as soon as the sequence (Xi)i∈Z is ergodic and∑
i>0 β1(i) is finite. To be precise, let f = (f1, . . . , fk) be an element of Fk and for

any x in Rk let < x, f − P (f) >= x1(f1 − P (f1)) + · · ·+ xk(fk − P (fk)). Define the

matrix C by Ci,j = Γ(ti, tj), where ti is such that fi = 1Ix≤ti . Since (Xi)i∈Z is ergodic,

we infer from Dedecker and Rio (2000) that the random variable Zn(< x, f−P (f) >)

converges in distribution to a mean-zero normal distribution with variance xtCx as

soon as
∑
i≥0

‖ < x, f − P (f) > (X0)E(< x, f − P (f) > (Xi)|M0)‖1 < ∞ . (4.10)

Consequently, if (4.10) holds, the random vector (Zn(f1), . . . , Zn(fk)) converges in

distribution to a Gaussian vector with covariance matrix C. By Definition 1, we

obtain that

‖ < x, f − P (f) > (X0)E(< x, f − P (f) > (Xi)|M0)‖1

≤ ‖ < x, f − P (f) > (X0)‖∞
( k∑

j=1

xj

)
β1(M0, Xi) , (4.11)

so that (4.10) holds as soon as
∑

i≥0 β1(i) is finite.

If we do not assume that the sequence (Xi)i∈Z is ergodic, the limit may be non

Gaussian. However the ergodicity assumption may be dropped by assuming instead

that
∑

i>0 β2(i) < +∞. Let T be the shift operator from RZ to RZ : (T (x))i = xi+1.

Let I be the σ-algebra of T -invariant elements of B(RZ). Let X := (Xi)i∈Z. Since

β2(n) tends to 0 as n tends to infinity, we can prove that E(f(X0)g(Xk)|X−1(I)) =

E(f(X0)g(Xk)) for any measurable functions f, g. Once again, we conclude by using

Theorem 1 in Dedecker and Rio (2000).

To obtain the weak convergence of the empirical distribution function in the

space `∞(Rd), it remains to prove that the process {Zn(f), f ∈ F} is asymptotically

tight, that is there exists a semi metric ρ on F such that (F , ρ) is totally bounded,

and, for every ε > 0,

lim
δ→0

lim sup
n→∞

P
(

sup
ρ(f,g)≤δ, f,g∈F

|Zn(f)− Zn(g)| > ε
)

= 0 . (4.12)

Since NQ,1(x,F) = O(x−d) for any finite measure Q on Rd, the set (F , ‖ · ‖Q,1) is

totally bounded. Consequently, the property (4.12) follows from (4.1) by applying

Markov’s inequality.

Let us prove that condition (C2) implies (4.1) for some appropriate measure Q.

For any s, t in Rd, let fs,t(x) = 1Ix≤t − 1Ix≤s and f̃s,t(x) = fs,t(x) − ∫
fs,t(x)P (dx).

Applying Proposition 3 to (f̃s,t(Xi))i∈Z, we obtain that, for any p ≥ 1,

‖Zn(f̃s,t)‖p ≤
√

pV∞ + n1/3−1/2
(
3p2(‖f̃s,t(X0)

3‖p/3 + M1(p) + M2(p) + M3(p))
)1/3

,

(4.13)
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where V∞, M1(p), M2(p) and M3(p) are defined in Proposition 3. Define now the

measure Q on X by

Q(dx) = B(x) P (dx) = (1 + 4
+∞∑

k=1

bk(x)) P (dx) , (4.14)

where bk(x) is the function from Rd to [0, 1] such that b(σ(X0), Xk) = bk(X0) and P

is the law of X0. Note that Q is finite as soon as
∑+∞

k=1 β1(k) is finite. For any k in

N∗, we have that

|Cov(fs,t(X0), fs,t(Xk))| = |E(fs,t(X0)E(f̃s,t(Xk)|X0))|
≤ 2E(|fs,t(X0)bk(X0)|) = 2

∫
|fs,t(x)|bk(x)P (dx)

Consequently,

V∞ = Var(fs,t(X0)) + 2
+∞∑

k=1

|Cov(fs,t(X0), fs,t(Xk))| ≤
∫
|fs,t(x)|Q(dx) . (4.15)

In the same way, since ‖f̃s,t(·)‖∞ ≤ 1,

M1(p) ≤ 2
+∞∑

l=1

l−1∑
m=0

‖b(Mm, Xl+m)‖p/3 = 2
+∞∑

k=1

k β1 , p/3(k) . (4.16)

Since

f̃s,t(Xm)f̃s,t(Xl) = f̃−∞,t(Xm)f̃−∞,t(Xl) + f̃−∞,s(Xm)f̃−∞,s(Xl)

− f̃−∞,t(Xm)f̃−∞,s(Xl)− f̃−∞,s(Xm)f̃−∞,t(Xl) , (4.17)

we have that

|E(f̃s,t(Xm)f̃s,t(Xl)|M0)− E(f̃s,t(Xm)f̃s,t(Xl))| ≤ 4b(M0, Xm, Xl) .

Hence,

M2(p) ≤ 4
+∞∑

l=1

+∞∑

m=l

‖b(M0, Xm, Xl+m)‖p/3 ≤ 4
+∞∑

k=1

k β2 , p/3(k) . (4.18)

Applying (4.17) with m = l = k, since

(f̃−∞,t(Xk))
2 − E((f̃−∞,t(Xk))

2) = (1− 2F (t))f̃−∞,t(Xk) ,

and since

f̃−∞,t(Xk)f̃−∞,s(Xk)− E(f̃−∞,t(Xk)f̃−∞,s(Xk))

= f̃−∞,s∧t(Xk)− F (t)f̃−∞,s(Xk)− F (s)f̃−∞,t(Xk) ,
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we have that

M3(p) ≤ 4
+∞∑

k=1

‖b(M0, Xk)‖p/3 = 4
+∞∑

k=1

β1,p/3(k) . (4.19)

Since ‖f̃s,t(X0)
3‖p/3 ≤ 1, we obtain from (4.15), (4.16), (4.18), (4.19) and Proposition

3, that for any g in G,

‖Zn(g)‖p ≤ (p ‖g‖Q,1)
1/2 + n1/3−1/2

(
3p2

(
1 + 10

+∞∑

k=1

kβ2,p/3(k)
))1/3

.

We then apply Proposition 6 with r = 2 and q = 3. Since NQ,1(x,F) = O(x−d), we

obtain that {Zn(f), f ∈ F} is asymptotically tight as soon as p > 3d. The result

follows.

Let us prove that condition (C1) implies (4.1). Applying Proposition 4 to the

sequence (f̃s,t(Xi))i∈Z, we obtain, for any p ≥ 1,

‖Zn(f̃s,t)‖p ≤ (p(V∞ + 2M0(p)))1/2

+ n1/3−1/2
(
3p2

(
‖f̃(X0)

3‖p/3 + M̃1(p) + M̃2(p) + M3(p)
))1/3

,

where V∞, M0(p), M̃1(p), M̃2(p) and M3(p) are defined in Proposition 4. It remains

to bound M0(p), M̃1(p) and M̃2(p). Since ‖f̃s,t(X0)‖∞ ≤ 1,

M0(p) ≤
+∞∑

l=N

β1,p/2(l) (4.20)

In the same way,

M̃1(p) ≤ 2
N−1∑

k=1

k β1 , p/3(k) (4.21)

Using (4.17), we obtain that

M̃2(p) ≤ 4
N−1∑

l=1

∞∑

m=l

β2 , p/3(m) = 4
∞∑

k=1

β2 , p/3(k)(k ∧ (N − 1)) . (4.22)

Hence, using (4.15), (4.20), (4.21), (4.22), (4.19) and applying Proposition 4, we get

‖Zn(g)‖p ≤ (p‖g‖Q,1)
1/2 +

(
2p

+∞∑

k=N

β2,p/2(k)
)1/2

+ n1/3−1/2
(
3p2

(
1 + 2

N∑

k=1

kβ2,p/2(k) + 4
∞∑

k=1

β2 , p/3(k)(k ∧N) + 4
+∞∑

k=1

β2,p/2(k)
))1/3

.

(4.23)

We take now p = 2p′ and N = nα with α = 1/(2 + ε). If (C1) holds, we infer

from (4.23) that there exists some positive constant C such that, for any g in G,

‖Zn(g)‖p ≤ C‖g‖1/2
Q,1 + Cn−ε/(4+2ε). To conclude we apply Proposition 6 with r =

2 and q = 2 + ε. Since NQ,1(x,F) = O(x−d), the process {Zn(f), f ∈ F} is

asymptotically tight as soon as p′ > d(2 + ε)/2ε. The result follows. ¤
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5 Comparison of coefficients

The following proposition is a useful tool to compute upper bounds for the coeffi-

cients βk,p.

Proposition 7 Let (Ω,A,P) be a probability space, X = (X1, . . . , Xd) and Y =

(Y1, . . . , Yd) two random variables with values in Rd, and M a σ-algebra of A. If

(X∗, Y ∗) is distributed as (X, Y ) and independent of M then, assuming that each

component Xk and Yk has a continuous distribution function FXk
and FYk

, we get

for any x1, . . . , xd, y1, . . . , yd in [0, 1],

βp(M, X) ≤
∥∥∥

d∑

k=1

xk + P(|FXk
(X∗

k)− FXk
(Xk)| > xk|M)

∥∥∥
p
. (5.1)

βp(M, X, Y ) ≤
∥∥∥

d∑

k=1

xk + P(|FXk
(X∗

k)− FXk
(Xk)| > xk|M)

∥∥∥
p

+
∥∥∥

d∑

k=1

yk + P(|FYk
(Y ∗

k )− FYk
(Yk)| > yk|M)

∥∥∥
p
. (5.2)

Proof of Proposition 7. Let Z be a random variable with values in Rm and let f be

a function from Rm to R such that |f(z1, . . . , zi, . . . , zm) − f(z1, . . . , z
′
i, . . . , zm)| ≤

|1Izi≤ai
− 1Iz′i≤ai

| for some real numbers a1, . . . , am. Let U be a σ-algebra and let Z∗

be a random variable distributed as Z and independent of U . Then

|f(Z)− f(Z∗)| =
∣∣∣

m∑

k=1

f(Z1, . . . Zk, Z
∗
k+1, . . . Z

∗
m)− f(Z1, . . . Zk−1, Z

∗
k , . . . Z

∗
m)

∣∣∣

≤
m∑

k=1

|1IZk≤ak
− 1IZ∗k≤ak

| .

Hence

|E(f(Z)|U)− E(f(Z))| ≤ E(|f(Z)− f(Z∗)| |U) ≤
m∑

k=1

E
(|1IZk≤ak

− 1IZ∗k≤ak
| |U)

.

(5.3)

We first apply (5.3) to Z = X, Z∗ = X∗, U = M, and f(z) = 1Iz≤t with a1 =

t1, . . . , ak = tk. Since F−1
Xk

(FXk
(Xk)) = Xk almost surely, we obtain that

|E(1IX≤t|M)− P(X ≤ t)| ≤
d∑

k=1

E(|1IXk≤tk − 1IX∗
k≤tk | |M)

≤
d∑

k=1

E(|1IFXk
(Xk)≤FXk

(tk) − 1IFXk
(X∗

k)≤FXk
(tk)| |M) .
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Using the same arguments as in Lemma 2 of Dedecker and Prieur (2005), the in-

equality (5.1) follows.

In the same way, applying (5.3) to Z = (Z(1), Z(2)) = (X, Y ), Z∗ = (X∗, Y ∗),
U = M and

f(z(1), z(2)) = (1Iz(1)≤s − FX(s))(1Iz(2)≤t − FY (t)) ,

we obtain that

|E((1IX≤s − FX(s))(1IY≤t − FY (t))|M)− E((1IX≤s − FX(s))(1IY≤t − FY (t)))|

≤
d∑

k=1

E(|1IXk≤sk
− 1IX∗

k≤sk
| |M) +

d∑

k=1

E(|1IYk≤tk − 1IY ∗k ≤tk | |M) ,

and we conclude the proof of (5.2) by using the same arguments as for (5.1). ¤

Next, we apply Proposition 7 to compare βp(M,X) and τp(M, X).

Proposition 8 If each component of X and Y has a density bounded by K, then

we have the following upper bounds

βp(M, X) ≤ 2
√

Kd τp(M, X) and βp(M, X, Y ) ≤ 2
√

2Kd τp(M, X, Y ) .

Proof of Proposition 8. Starting from (5.1) with x1 = · · · = xk = x and applying

Markov’s inequality, we infer that

βp(M, X) ≤ dx +
K

x

∥∥∥E
( d∑

k=1

|Xk −X∗
k |

∣∣∣M
)∥∥∥

p
.

Now, from Proposition 6 in Rüschendorf (1985) (see also the equality (7.5) in

Dedecker and Prieur (2005)), one can choose X∗ such that

∥∥∥E
( d∑

k=1

|Xk −X∗
k |

∣∣∣M
)∥∥∥

p
= τp(M, X)

Hence

βp(M, X) ≤ dx +
Kτp(M, X)

x
,

and the first inequality follows by minimizing in x. The second inequality may be

proved in the same way. ¤

In the last part of this section, we show that the coefficient β(M, X1, . . . , Xk)

(resp. φ(M, X1, . . . , Xk)), defined in Definition 1, is smaller than the usual β-mixing

coefficient β(M, σ(X1, . . . , Xk)) (resp. φ-mixing coefficient φ(M, σ(X1, . . . , Xk)))

of Rozanov and Volkonskii (1959) (resp. Ibragimov (1962)). Let X be some Polish

space, and let Λ1(X , d0) be the set of measurable functions from X to R which are

1-lipschitz with respect to the discrete metric d0(x, y) = 1Ix6=y. Let (Ω,A,P) be a
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probability space. For any random variable with values in X , and any σ-algebra M
of A, define

b(M, σ(X)) = sup
f∈Λ1(X ,d0)

∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣ ,

and recall that the mixing coefficients β(M, X) and φ(M, X) may be defined as

β(M, σ(X)) = ‖b(M, σ(X)‖1 and φ(M, σ(X)) = ‖b(M, σ(X))‖∞. In the next

section, we shall give many non-mixing sequences for which the coefficient β2,p(n)

of Definition 2 tends to zero as n tends to infinity.

Proposition 9 Let (X1, . . . Xk) be a random variable with values in Rkd. We have

that b(M, (X1, . . . , Xk)) ≤ b(M, σ(X1, . . . , Xk)) ≤ 1 almost surely.

Proof of Proposition 9. The second inequality follows easily from the fact that

|f(x) − f(y)| ≤ 1 for any f in Λ1(Rkd, d0). To prove the first one, it suffices to see

that the function g : (x1, . . . , xk) → Πk
i=1gti,i(xi) defined in Definition 1 belongs to

Λ1(Rkd, d0) (this can be done by induction on k). ¤

6 Examples

In this section, we present three classes of examples for which we can compute upper

bounds for β2,p(n) for any p ≥ 1 and any n ≥ 1. For the coefficients τk,p(n), many

examples are given in Dedecker and Prieur (2005), Section 7.2.

6.1 Example 1 : causal functions of stationary sequences

Let (ξi)i∈Z be a stationary sequence of random variables with values in a measur-

able space X . Assume that there exists a function H defined on a subset of X N,
with values in Rd and such that H(ξ0, ξ−1, ξ−2, . . . , ) is defined almost surely. The

stationary sequence (Xn)n∈Z defined by Xn = H(ξn, ξn−1, ξn−2, . . .) is called a causal

function of (ξi)i∈Z.
Assume that there exists a stationary sequence (ξ′i)i∈Z distributed as (ξi)i∈Z and

independent of (ξi)i≤0. Define X∗
n = H(ξ′n, ξ

′
n−1, ξ

′
n−2, . . .). Clearly X∗

n is independent

of σ(Xi, i ≤ 0) and distributed as Xn. For any x = (x1, . . . , xd) in Rd let |x|∞ =

max(|x1|, . . . , |xd|). For any α > 0 (α may be infinite) define the sequence (δi,α)i>0

by

(E( |Xi −X∗
i |α∞))1/α = δi,α . (6.1)

Let Mi = σ(Xj, j ≤ i). Since (Xi)i∈Z is a strictly stationary sequence, we can

write :

β2,p(n) = max

(
βp(M0, Xn), sup

j2>j1≥n
βp(M0, Xj1 , Xj2)

)
. (6.2)
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Let Fi be the distribution function of X
(i)
0 . Using Proposition 7, we obtain for any

x ∈ [0, 1] and any y ∈ [0, 1],

βp(M0, Xj1 , Xj2) ≤ dx +
∥∥∥

d∑

k=1

P(|Fk((X
∗
j1

)(k))− Fk(X
(k)
j1

)| > x|M0)
∥∥∥

p

+ dy +
∥∥∥

d∑

k=1

P(|Fk((X
∗
j2

)(k))− Fk(X
(k)
j2

)| > y|M0)
∥∥∥

p
. (6.3)

Assume now that each component of X0 has a continuous distribution function, and

let w be the maximum of the modulus of continuity, that is

w(x) = max
1≤k≤d

sup
|y−z|≤x

|Fk(y)− Fk(z)| . (6.4)

Define the function gr by gr(y) = y(w(y))1/r. Clearly

dw(x) +
∥∥∥

d∑

k=1

P(|Fk((X
∗
j1

)(k))− Fk(X
(k)
j1

)| > w(x)|M0)
∥∥∥

p

≤ dw(x) +
∥∥∥

d∑

k=1

P(|(X∗
j1

)(k) −X
(k)
j1
| > x|M0)

∥∥∥
p
. (6.5)

Now, using Markov inequality at order r > 0,

dw(x) +
∥∥∥

d∑

k=1

P(|(X∗
j1

)(k) −X
(k)
j1
| > x|M0)

∥∥∥
p
≤ dw(x) + d

(
δj1,pr

x

)r

(6.6)

Combining (6.2), (6.3), (6.5) and (6.6), and taking x = g−1
r (δj1,pr), y = g−1

r (δj2,pr),

we conclude that

β2,p(n) ≤ 2d sup
j2>j1≥n

((
δj1,pr

g−1
r (δj1,pr)

)r

+

(
δj2,pr

g−1
r (δj2,pr)

)r)
. (6.7)

From (6.2) and (6.3), we also have that

φ2(n) ≤ 2d sup
j2>j1≥n

w(δj1,∞ ∨ δj2,∞). (6.8)

If each component of X0 has a density bounded by K, we obtain :

dw(x) +
∥∥∥

d∑

k=1

P(|(X∗
j1

)(k) −X
(k)
j1
| > x|M0)

∥∥∥
p
≤ dKx + d

(
δj1,pr

x

)r

.

Minimizing the right hand term in this inequality, we get :

β2,p(n) ≤ C(r)dK
r

r+1 sup
j2>j1≥n

(
δ

r
r+1

j1,pr + δ
r

r+1

j2,pr

)
, (6.9)
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with C(r) = r
1

r+1 + r−
r

r+1 (note that C(r) ≤ 2 and C(∞) = 1).

In particular, the bounds (6.7)-(6.8) and (6.9) apply to the case where the se-

quence (ξi)i∈Z is β-mixing. According to Theorem 4.4.7 in Berbee (1979), if Ω is

rich enough, there exists (ξ′i)i∈Z distributed as (ξi)i∈Z and independent of (ξi)i≤0 such

that P(ξi 6= ξ′i for some i ≥ k) = β(σ(ξi, i ≤ 0), σ(ξi, i ≥ k)). If the sequence (ξi)i∈Z
is iid, it suffices to take ξ′i = ξi for i > 0 and ξ′i = ξ′′i for i ≤ 0, where (ξ′′i )i∈Z is an

independent copy of (ξi)i∈Z.

Application: causal linear processes in Rd. Let (B, | · |B) be a Banach space.

For any linear application A from B to Rd, let ‖A‖ = sup{|Ab|∞, |b|B ≤ 1}. Let

(Ai)i≥0 be a sequence of linear operators from B to Rd such that
∑

i≥0 ‖Ai‖ < ∞,

and let (ξ)i∈Z be a stationary sequence of B-valued random variables. Define the

random variables with values in Rd

Xn =
∑
j≥0

Ajξn−j . (6.10)

For any p ≥ 1, we have that

δi,p ≤
∑
j≥0

‖Aj‖‖ |ξi−j−ξ′i−j|B‖p ≤ ‖ |ξ0−ξ′0|B‖p

∑
j≥i

‖Aj‖+
i−1∑
j=0

‖Aj‖‖ |ξi−j−ξ′i−j|B‖p .

From Proposition 2.3 in Merlevède and Peligrad (2002), we obtain that

δi,p ≤ ‖ |ξ0 − ξ′0|B‖p

∑
j≥i

‖Aj‖+
i−1∑
j=0

‖Aj‖
(
2p

∫ β(σ(ξk,k≤0),σ(ξk,k≥i−j))

0

Qp
|ξ0|B(u)du

)1/p

.

where Qξ0 is the generalized inverse of t → P(‖ξ0‖ > t) (note that in Merlevède

and Peligrad the constant in front of the integral is 2p+2. In fact it works with the

constant 2p).

If the sequence (ξi)i∈Z is iid, it follows that for any p ≥ 1,

δi,p ≤ ‖ |ξ0 − ξ′0|B‖p

∑
j≥i

‖Aj‖ . (6.11)

For instance, if B = R, Ai = 2−i−1 and ξ0 ∼ B(1/2), then δi,∞ ≤ 2−i. Since X0 is

uniformly distributed over [0, 1], we have φ(i) ≤ 2−i. Recall that this sequence is

not strongly mixing.

Applying Theorem 1, Corollary 1 below gives some sufficient conditions for the

empirical central limit theorem to hold, when the sequence (ξi)i∈Z is iid.

Corollary 1 Let (ξi)i∈Z be an iid sequence of B-valued random variables. Let (Ai)i≥0

be a sequence of linear operators from B to Rd such that
∑

i≥0 ‖Ai‖ < ∞, and let

Rn =
∑

i≥n ‖Ai‖. Let (Xn)n∈Z be the stationary sequence defined by (6.10), and as-

sume that each component of X0 has a density bounded by K. If one of the following

condition holds, then {√n(Fn(t) − F (t)) , t ∈ Rd} converges weakly in `∞(Rd) to a

tight Gaussian process with covariance function given by (3.1).
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1. For 1 ≤ m ≤ 7d/2, the random variable |ξ0|B belongs to Lm and Rn = O(n−a)

for a > 2(m + d)/m.

2. For m > 7d/2, the random variable |ξ0|B belongs to Lm and Rn = O(n−a) for

a > (
√

2m + d +
√

2d)2/2m.

The proof of this corollary is immediate by using the bounds (6.9) and (6.11) with

r = m/p, and by optimizing in p (1. follow from the condition (C2) and 2. follows

from the condition (C1)). For instance if E(|ξ0|B) < ∞, the rate is Rn = O(n−a), for

a > 2d + 2. If E(|ξ0|dB) < ∞, the rate is Rn = O(n−a), for a > 4. If E(|ξ0|2d
B ) < ∞,

the rate is Rn = O(n−a), for a > 3. If ‖ |ξ0|B‖∞ < ∞, the rate is Rn = O(n−a), for

a > 1.

For B = R and d = 1, Doukhan and Surgailis (1998) obtained an empirical

central limit theorem under the condition E(|ξ0|4γ) < ∞,
∑

k>0 |Ak|γ < ∞ for

some 0 < γ ≤ 1, and an additional condition on the law of ξ0 (which implies that

the distribution function of ξ0 is ∆-Hölder for some ∆ > 1/2). Next, Wu (2006)

Corollary 2, obtained an empirical central limit theorem by assuming only that

E(|ξ0|2) < ∞,
∑

k>0 |Ak| < ∞, and that ξ0 has a density belonging to the Sobolev

space of order 2 (in particular, it is bounded and two times differentiable). We note

that the conditions on (Ai)i≥0 obtained in the above papers are weaker than ours.

However, the main difference between our result and that of Doukhan and Surgailis

or Wu is that we do not make any assumption on the distribution of ξ0 (except

moment assumptions). For instance, we obtain the empirical central limit theorem

for Ai = 2−i−1 and ξ0 ∼ B(1/2), which does not follow from the results cited above.

6.2 Example 2 : iterated random functions

Let (Xn)n≥0 be a Rd-valued stationary Markov chain, such that

Xn = F (Xn−1, ξn) (6.12)

for some measurable function F and some i.i.d. sequence (ξi)i>0 independent of X0.

Let X∗
0 be a random variable distributed as X0 and independent of (X0, (ξi)i>0).

As in Shao and Wu (2004), define X∗
n = F (X∗

n−1, ξn) . The sequence (X∗
n)n≥0 is

distributed as (Xn)n≥0 and independent of X0. Let Mi = σ(Xj, 0 ≤ j ≤ i). As

in Example 1, define the sequence (δi,p)i>0 by (6.1). The coefficient β2,p(n) of the

sequence (Xn)n≥0 satisfy (6.7)-(6.8) of Example 1.

Let µ be the distribution of X0 and (Xx
n)n≥0 the chain starting from Xx

0 = x.

With these notations, we have that, for any α > 0,

δi,α =
( ∫∫

E(|Xx
i −Xy

i |α∞)µ(dx)µ(dy)
)1/α

(6.13)
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For instance, if there exists a sequence (di,α)i≥0 of positive numbers such that

(E(|Xx
i −Xy

i |α∞))1/α ≤ di,α|x− y|∞ ,

then δi,α ≤ di,α(E(|X0 −X∗
0 |α∞))1/α. For instance, in the usual case where

(E(|F (x, ξ0)− F (y, ξ0)|α∞))1/α ≤ κ|x− y|∞ (6.14)

for some κ < 1, we can take di,α = κi.

An important example is Xn = f(Xn−1) + ξn for some function f which is κ-

lipschitz with respect to the norm | · |∞. If |X0|∞ has a moment of order α, then

δi,α ≤ κi(E(|X0−X∗
0 |α∞)1/α . We refer to the papers by Diaconis and Freedman (1999)

and Shao and Wu (2004) for various examples of iterative random maps.

As in Shao and Wu (2004), we can apply our results to the case where the

function w defined in (6.4) is such that w(x) ≤ K| ln(x)|−γ. This leads to the

following Corollary:

Corollary 2 Let (Xn)n≥0 be a Rd-valued stationary Markov chain satisfying (6.12),

and let δi,α be the coefficients defined in (6.13). Assume that the function w defined

in (6.4) is such that w(x) ≤ C| ln(x)|−γ for some γ > 1. If δi,α ≤ Cκi for some

κ < 1 and α > 0, then {√n(Fn(t) − F (t)) , t ∈ Rd} converges weakly in `∞(Rd)

to a tight Gaussian process with covariance function given by (3.1). In particular,

δi,α ≤ Cκi holds as soon as (6.14) holds.

The condition δi,α ≤ Cκi is exactly Condition (2) of Theorem 4 in Shao and Wu

(2004), in the case where d = 1. Our result improves on the corresponding one in

Theorem 4 of Shao and Wu, which gives γ > 5/2 instead of γ > 1. Note that the

constant 5/2 in their result is obtained by applying the criterion (1.2). Here, we

obtain the condition γ > 1 by applying the criterion (C1) instead of (1.2).

Proof of Corollary 2. Starting from (6.3) and applying (6.6) with r = α/p, we have

β2,p(n) ≤ 2d
(
K| ln(x)|−γ +

(Cκn

x

)α/p)
.

Taking x = Cκnn2p/α, it follows that, for any p > 1,

β2,p(n) ≤ 2d
(
K| ln(cκnn2p/α)|−γ +

1

n2

)
,

and the condition (C1) is satisfied by taking p > d(γ + 1)/2(γ − 1).

6.3 Example 3 : dynamical systems on [0, 1].

Let I = [0, 1], T be a map from I to I and define Xi = T i. If µ is invariant by

T , the sequence (Xi)i≥0 of random variables from (I, µ) to I is strictly stationary.
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Denote by ‖g‖1,λ the L1-norm with respect to the Lebesgue measure λ on I and by

‖ν‖ = |ν|(I) the total variation of ν.

Covariance inequalities. In many interesting cases, one can prove that, for any

BV function h and any k in L1(I, µ),

|Cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1(‖h‖1,λ + ‖dh‖) , (6.15)

for some non increasing sequence an tending to zero as n tends to infinity. Note that

if (6.15) holds, then

|Cov(h(X0), k(Xn))| = |Cov(h(X0)− h(0), k(Xn))|
≤ an‖k(Xn)‖1(‖h− h(0)‖1,λ + ‖dh‖) .

Since ‖h− h(0)‖1,λ ≤ ‖dh‖, we obtain that

|Cov(h(X0), k(Xn))| ≤ 2an‖k(Xn)‖1‖dh‖ . (6.16)

If (6.16) holds, the upper bound φ(σ(Xn), X0) ≤ 2an follows from Lemma 4 in

Dedecker and Prieur.

The associated Markov chain. Define the operator L from L1(I, λ) to L1(I, λ)

via the equality

∫ 1

0

L(h)(x)k(x)λ(dx) =

∫ 1

0

h(x)(k ◦ T )(x)λ(dx)

where h ∈ L1(I, λ) and k ∈ L∞(I, λ). The operator L is called the Perron-Frobenius

operator of T . Assume that µ is absolutely continuous with respect to the Lebesgue

measure, with density fµ. Let I∗ be the support of µ (that is (I∗)c is the largest

open set in I such that µ((I∗)c) = 0) and choose a version of fµ such that fµ > 0 on

I∗ and fµ = 0 on (I∗)c. Note that one can always choose L such that L(fµh)(x) =

L(fµh)(x)1Ifµ(x)>0. Define a Markov kernel associated to T by

K(h)(x) =
L(fµh)(x)

fµ(x)
1Ifµ(x)>0 + µ(h)1Ifµ(x)=0. (6.17)

It is easy to check (see for instance Barbour et al. (2000)) that (X0, X1, . . . , Xn)

has the same distribution as (Yn, Yn−1, . . . , Y0) where (Yi)i≥0 is a stationary Markov

chain with invariant distribution µ and transition kernel K. Here, we need the

following result:

Lemma 1 Let (Yi)i≥0 be a real-valued Markov chain with transition kernel K. As-

sume that there exists a constant C such that

for any BV function f and any n > 0, ‖dKn(f)‖ ≤ C‖df‖ . (6.18)

Then, for any j > i ≥ 0, φ(σ(Yk), Yk+i, Yk+j) ≤ (1 + C)φ(σ(Yk), Yk+i).
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Consequently, if both (6.15) and (6.18) hold it follows that, for any n ≥ j > i ≥ 0,

φ(σ(Xk, k ≥ n), Xn−i, Xn−j) ≤ (1 + C)φ(σ(Xk, k ≥ n), Xn−i) ≤ 2(1 + C)ai .

Proof of Lemma 1. Let fk(x) = f(x)− E(f(Yk)). We have, almost surely,

E(fk+i(Yk+i)gk+j(Yk+j)|Yk)− E(fk+i(Yk+i)gk+j(Yk+j)) =

E(fk+i(Yk+i)(K
j−i(g))k+i(Yk+i)|Yk)− E(fk+i(Yk+i)(K

j−i(g))k+i(Yk+i)) .

Let f and g be two functions in BV1. It is easy to see that

‖d((Kj−i(g))k+ifk+i)‖ ≤ ‖dfk+i‖ ‖(Kj−i(g))k+i‖∞ + ‖d(Kj−i(g))k+i‖ ‖fk+i‖∞
≤ (1 + ‖d(Kj−i(g))k+i‖) .

Hence, applying (6.18), the function (Kj−i(g))k+ifk+i/(1 + C) belongs to BV1. The

result follows from Proposition 1.

Spectral gap. In many interesting cases, the spectral analysis of L in the Banach

space of BV -functions equipped with the norm ‖h‖v = ‖dh‖+‖h‖1,λ can be done by

using the Theorem of Ionescu-Tulcea and Marinescu (see Lasota and Yorke (1974)).

Assume that 1 is a simple eigenvalue of L and that the rest of the spectrum is

contained in a closed disk of radius strictly smaller than one. Then there exists an

unique T -invariant absolutely continuous probability µ whose density fµ is BV , and

Ln(h) = λ(h)fµ + Ψn(h) with Ψ(fµ) = 0 and ‖Ψn(h)‖v ≤ Dρn‖h‖v. (6.19)

for some 0 ≤ ρ < 1 and D > 0. Assume moreover that

∥∥∥∥
1

fµ

1Ifµ>0

∥∥∥∥
v

= γ < ∞ . (6.20)

Starting from (6.17), we have that

Kn(h) = µ(h) +
Ψn(hfµ)

fµ

1Ifµ>0 .

Let ‖ · ‖∞,λ be the essential sup with respect to λ. Taking C1 = 2Dγ(‖dfµ‖+ 1), we

obtain ‖Kn(h)−µ(h)‖∞,λ ≤ C1ρ
n‖h‖v. This estimate implies (6.15) with an = C1ρ

n.

Indeed,

|Cov(h(X0), k(Xn))| = |Cov(h(Yn), k(Y0))|
≤ ‖k(Y0)(E(h(Yn)|σ(Y0))− E(h(Yn)))‖1

≤ ‖k(Y0)‖1‖Kn(h)− µ(h)‖∞,λ

≤ C1ρ
n‖k(Y0)‖1(‖dh‖+ ‖h‖1,λ) .
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Moreover, we also have that

‖dKn(h)‖ = ‖dKn(h− h(0))‖ ≤ 2γ‖Ψn(fµ(h− h(0)))‖v

≤ 8Dρnγ(1 + ‖dfµ‖)‖dh‖

so that (6.18) holds with C2 = 8Dγ(1 + ‖dfµ‖). Finally, if (6.19) holds, the coeffi-

cients φ2(i) of the chain (Yi)i≥0 with respect to (Mi = σ(Yj, j ≤ i))i≥0 satisfy

φ2(i) ≤ 2C1(1 + C2)ρ
i .

Application: expanding maps. A large class of expanding maps T is given in

Broise (1996), Section 2.1, page 11. If Broise’s condition are satisfied and if T is

mixing in the ergodic-theoretic sense, then the Perron-Frobenius operator L satisfies

the assumption (6.19). Let us recall some well know examples (see Section 2.2 in

Broise):

1. T (x) = βx− [βx] for β > 1. These maps are called β-transformations.

2. I is the finite union of disjoints intervals (Ik)1≤k≤n, and T (x) = akx + bk on

Ik, with |ak| > 1.

3. T (x) = a(x−1−1)− [a(x−1−1)] for some a > 0. For a = 1, this transformation

is known as the Gauss map.
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Birkhäuser.

[23] C. Prieur, (2002). An Empirical Functional Central Limit Theorem For Weakly De-
pendent Sequences. Probab. and Math. Statistics Vol. 22 Fasc. 2 259-287.

[24] E. Rio, (1998). Processus empiriques absoluments réguliers et entropie universelle.
Probab. Theory and Relat. Fields 111 585-608.
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