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Abstract

To measure the dependence between a real-valued random variable X and a
σ-algebra M, we consider four distances between the conditional distribution func-
tion of X given M and the distribution function of X. The coefficients obtained are
weaker than the corresponding mixing coefficients and may be computed in many
situations. In particular, we show that they are well adapted to functions of mixing
sequences, iterated random functions and dynamical systems. Starting from a new
covariance inequality, we study the mean integrated square error for estimating the
unknown marginal density of a stationary sequence. We obtain optimal rates for
kernel estimators as well as projection estimators on a well localized basis, under a
minimal condition on the coefficients. Using recent results, we show that our coeffi-
cients may be also used to obtain various exponential inequalities, a concentration
inequality for Lipschitz functions, and a Berry-Esseen type inequality.
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1 Introduction and definitions

Let (Ω,A,P) be a probability space, X a real-valued random variable with law PX and
M a σ-algebra of A. Recall that there exists a function PX|M from B(R) × Ω to [0, 1]
such that
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1. For any ω in Ω, PX|M(., ω) is a probability measure on B(R).

2. For any A ∈ B(R), PX|M(A, .) is a version of E(1IX∈A|M).

The usual mixing coefficients betweenM and σ(X), introduced respectively by Rosenblatt
(1956), Volkonskii and Rozanov (1959) and Ibragimov (1962), may be defined as follows
(see for instance Bradley (2002), Proposition 3.22):

α(M, σ(X)) = sup
A∈B(R)

‖PX|M(A)− PX(A)‖1

β(M, σ(X)) = ‖ sup
A∈B(R)

|PX|M(A)− PX(A)| ‖1

φ(M, σ(X)) = sup
A∈B(R)

‖PX|M(A)− PX(A)‖∞ .

Note that α(M, σ(X)) = 2 sup{|P(A ∩ B) − P(A)P(B)|, A ∈ M, B ∈ σ(X)}, so that
our definition differs from that of Rosenblatt (1956) from a factor 2. These coefficients
measure the dependence between M and σ(X), and are widely used in the areas of limit
theorems and statistics. Due to their importance, the properties of these coefficients have
been extensively studied by many authors. For recent and complete works, we mention
the monographs by Doukhan (1994), Rio (2000a) and Bradley (2002). One of the most
important examples is the following: a stationary, irreducible, aperiodic and positively
recurrent Markov chain (Xi)i≥0 is β-mixing, which means that β(σ(X0), σ(Xn)) tends to
zero as n tends to infinity (for more details, see Rio (2000a), inequality (9.22) page 139).

Unfortunately, many simple Markov chains are neither β nor α-mixing. For instance,
Andrews (1984) proved that if (εi)i≥1 is iid with marginal B(1/2), then the stationary
solution (Xi)i≥0 of the equation

Xn =
1

2
(Xn−1 + εn) , X0 independent of (εi)i≥1 (1.1)

is not α-mixing (more precisely α(σ(X0), σ(Xn)) = 1/2 for any n). This example is not
an exception: the chain satisfying (1.1) is the Markov chain associated to the dynamical
system generated by the map T (x) = 2x mod 1 on the space [0, 1] equipped with the
Lebesgue measure (see Section (4.4) for more details), and it is well known that such
dynamical sytems are not α-mixing in the sense that α(σ(T ), σ(T n)) does not tend to zero
as n tends to infinity. More precisely, let T be a Borel function preserving a probability
µ on B(R). The sequence (T i)i≥0 of random variables from (Ω,A,P) = (R,B(R), µ) to
R is strictly stationary. Since σ(T n) ⊂ σ(T ) and since T n has distribution µ, it follows
that α(σ(T ), σ(T n)) ≥ α(σ(T n), σ(T n)) = α(B(R),B(R)), and the later is positive as
soon as the probability µ is non trivial. Note that the dynamical system (T n, µ) is said
to be mixing in the ergodic-theoric sense (MES) if for any sets A and B in B(R), the
sequence Dn(A,B, µ, T ) = |µ(A ∩ T−n(B)) − µ(A)µ(B)| converges to zero. For such
dynamical systems, it is easy to see that strong mixing is a uniform version of MES, since
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with our definition α(σ(T ), σ(T n)) = 2 sup{Dn−1(A,B, µ, T ), A, B ∈ B([0, 1])}. Mixing in
the ergodic-theoretic sense is an important property which is satisfied for many ergodic
dynamical systems. However, since it only gives a non uniform control of Dn(A,B, µ, T ),
it is not sufficient in general to obtain functional limit theorems or deviation inequalities
for large classes of functions.

Although many dependent processes are not mixing, some of them can be represented
as functions of mixing processes, that is Xn = f((ξn+i)i∈Z) where f is a function from
X Z to R and (ξi)i∈Z is a mixing sequence. If f is not too bad, this structure of depen-
dence is often sufficient to derive limit theorems for the sequence (Xi)i∈Z. Since the well
known results of Billingsley (1968, Section 21), who used this representation to establish
limit theorems for the continued-fraction transformation, this approach has proved to be
very fruitful. In 1982 Hofbauer and Keller proved that if T is a nice expanding map
preserving a probability µ on [0, 1], with finite partition {I1, . . . , IN} of [0, 1] into intervals
of continuity and monoticity of T , the label process defined by ξn(x) = i if T n(x) ∈ Ii

is β-mixing with exponential mixing rate, and T n = f((ξi)i≥n) for some measurable f .
Using this representation together with a strong invariance principle for functions of β-
mixing sequences given in Philipp and Stout (1975), Hofbauer and Keller proved a strong
invariance principle for the partial sums Sn(f) = f ◦ T + · · · + f ◦ T n, where f is any
bounded variation function. Functions of β-mixing processes have been further studied in
a recent paper by Borovkova et al. (2001), who provided many interesting examples and
applications, and showed how the coupling properties of the underlying sequence may be
used in such situations. We shall follow a similar approach for the examples of Section
4.1 (see also Rio (1996), Section 1.2 for related results).

Note that, even if one knows that a stationary sequence can be written as a function
f of a mixing sequence, one may know nothing about the function f and its properties.
This is the case, for instance, in the paper by Hofbauer and Keller (1982), where only
the existence of f is proved. This theoretical representation is not sufficient to obtain
uniform upper bounds for |E(g(Xk)|M)−E(g(Xk))| over an appropriate class of functions
G, which are useful to prove limit theorems for the empirical process indexed by a subset
of G (see Corollary 4, Section 6) as well as deviation inequalities for some functions of the
variables (see inequality (1.2) and Theorem 2, Section 7.4). In part (ii) of the proof of
Theorem 5 in Hofbauer and Keller, such upper bounds are derived from the properties of
the adjoint operator of T , and not from the representation T n = f((ξi)i≥n). Now, as one
can see from Theorem 4.4 in Bradley (2002), the control of the conditional expectations
|E(g(Xk)|M)− E(g(Xk))| over a class of functions G is often related to the control of an
appropriate dependence coefficient (see also Lemma 1, Section 1.1).

A reasonable question is then: how to weaken the definition of the usual mixing
coefficients in order to catch many more examples, without losing too much of their nice
properties? A first idea, given by Rosenblatt, is to consider coarser sets than M or B(R).
In fact changing M is possible, but the coefficients obtained behave differently from the
usual mixing coefficients (see for instance Doukhan and Louhichi (1999)). Another way
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is to change B(R) by considering only the coarser set {] −∞, t], t ∈ R}, as done in Rio
(2000a) and Peligrad (2002) for the strong mixing coefficient. The coefficients obtained
measure the difference between the conditional distribution function FX|M of PX|M and
the distribution function FX of PX . More precisely, define the four dependence coefficients

τ(M, X) =

∫
‖FX|M(t)− FX(t)‖1dt

α(M, X) = sup
t∈R

‖FX|M(t)− FX(t)‖1

β(M, X) = ‖ sup
t∈R

|FX|M(t)− FX(t)| ‖1

φ(M, X) = sup
t∈R

‖FX|M(t)− FX(t)‖∞ .

The coefficient α(M, X) was introduced by Rio (2000a, equation 1.10c) and used by
Peligrad (2002), while τ(M, X) was introduced by Dedecker and Prieur (2003).

Of course, the coefficients α(M, X), β(M, X) and φ(M, X) are smaller than the
corresponding mixing coefficients α(M, σ(X)), β(M, σ(X)) and φ(M, σ(X)). We shall
see in Section 4 that these weaker coefficients may be easily computed in many situations,
so that our first objective is reached. For instance, if T is a nice piecewise expanding map
preserving a probability µ on [0, 1], then φ(σ(T n), T ) decreases geometrically (this works
for T (x) = 2x mod 1, and hence for the model (1.1) the coefficient φ(σ(X0), Xn) decreases
geometrically). The largest classes of examples are obtained for the coefficient τ , which
is the easiest to compute.

Among the coefficients described above, some of them have a nice interpretation in
terms of coupling. Let us first recall the well known result of Berbee (1979): if Ω is
rich enough, there exists a random variable X∗ distributed as X and independent of M
such that P(X 6= X∗) = β(M, σ(X)). For the mixing coefficient α(M, σ(X)), Bradley
(1983) proved the following result: if Ω is rich enough, then for each 1 ≤ p ≤ ∞ and
each λ < ‖X‖p, there exists X∗ distributed as X and independent of M such that
P(|X −X∗| ≥ λ) ≤ 18(‖X‖p/λ)p/(2p+1)(α(M, σ(X)))2p/(2p+1). For the weaker coefficient
α(M, X), Rio (1995, 2000a) obtained the following upper bound, which is not directly
comparable to Bradley’s: if X belongs to [a, b] and if Ω is rich enough, there exists X∗

independent of M and distributed as X such that ‖X −X∗‖1 ≤ (b− a)α(M, X). Rio’s
coupling has been extended by Peligrad (2002) to the case of unbounded variables. Many
authors have used these coupling properties to obtain sharp limit theorems as well as
sharp exponential bounds (see Merlevède and Peligrad (2002) and the references therein).

Note that the random variable X∗ appearing in the results by Rio (1995, 2000a) and
Peligrad (2002) is based on Major’s quantile transformation (1978). It has the following
remarkable property: ‖X −X∗‖1 is the infimum of ‖X − Y ‖1 where Y is independent of
M and distributed as X. Starting from the exact expression of X∗, Dedecker and Prieur
(2003) have shown that τ(M, X) is the appropriate coefficient for the coupling in L1: the
equality ‖X − X∗‖1 = τ(M, X) holds. This property is a useful tool to obtain suitable
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inequalities and to prove various limit theorems (see Section 7.3). When FX is regular, it
can be used also to obtain upper bounds for β(M, X) (see Proposition 2, Section 3).

We see that both β(M, σ(X)) and τ(M, X) have a property of optimality: they are
equal to the infimum of E(d0(X, Y )) where Y is independent of M and distributed as
X, for the distances d0(x, y) = 1Ix 6=y and d0(x, y) = |x − y| respectively. In fact, these
two coefficients belong to the same family, built on the Kantorovitch-Rubinstein distance
Kd0(PX|M,PX) between the probabilities PX|M and PX . We shall be more precise on this
subject in Section 7.1.

As made clear by Viennet (1997) in a β-mixing framework, a precise covariance in-
equality is another useful tool for statistical applications. Using a covariance inequality
due to Delyon (1990) Viennet proved that, under a minimal assumption on the β-mixing
coefficients, the mean integrated square error (MISE) for the unknown invariant density
is of the same order than in the iid case. This result applies to kernel estimators as well
as projection estimators. In Proposition 1 of Section 2, we prove an inequality similar
to that of Delyon but for β(M, X) instead of β(M, σ(X)). The main difference is that
our inequality is no longer symetric, so that it cannot apply to any projection estimators
(see Proposition 4, Section 5.1). Nevertheless, for kernel estimators as well as projection
estimators on well localized basis (such as histograms and wavelet basis), we extend Vi-
ennet’s results to sequences such that

∑
β(σ(X0), Xn) is finite (see Sections 5.3 and 5.4).

Once again the results apply to dynamical systems.
In Proposition 5 of Section 6 we prove an Hoeffding-type inequality for partial sums

Sn(h) = h(X1) + · · · + h(Xn), where h is a bounded variation function (see Section 1.1
for a Definition). If φ(k) = supi≤n−k φ(σ(Xj, 1 ≤ j ≤ i), Xk+i), the bound is

P(|Sn(h)− E(Sn(h))| > x) ≤ C1 exp

( −x2

nC2‖dh‖2(φ(0) + · · ·+ φ(n− 1))

)
, (1.2)

for some universal constants C1 and C2 (see Proposition 5 for the exact expression). As a
byproduct, we obtain an empirical central limit theorem for a class of smooth functions.

To obtain more precise inequalities and limit theorems, it is often necessary to consider
the dependence between a past σ-algebra and several points in the future of the sequence.
Unfortunately the coefficients we use seem difficult to define in higher dimension, because
they are based on distribution functions. Starting from an equivalent definition given
in Lemma 1, we see that the difficulty vanishes for τ(M, X). The definition of that
coefficient can be naturally extended to random variables with values in any Polish space
X , without losing the coupling property (see Section 7.1). Following Rio (1996), we can
also define the uniform version ϕ(M, X) of τ(M, X).

We shall see in Section 7 that the coefficients τ(M, (Xi, . . . , Xi+m)) and their uniform
version ϕ(M, (Xi, . . . , Xi+m)) are still easy to compute for the examples given in Section
4, and that their asymptotic behavior is the same as when considering only a single point
in the future (this is mainly due to the underlying Markov structure of these examples).
Then, using recent results of Rio (1996, 2000b), Collet et al. (2002) and Dedecker and
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Prieur (2003), we obtain a Berry-Esseen bound, a concentration inequality for Lipschitz
functions, and a functional law of the iterated logarithm for partial sums.

1.1 Equivalent definitions

Definition 1. A σ-finite signed measure is the difference of two positive σ-finite measures,
one of them at least being finite. We say that a function h from R to R is σ-BV if there
exists a σ-finite signed measure dh such that h(x) = h(0) + dh([0, x[) if x ≥ 0 and
h(x) = h(0)− dh([x, 0[) if x ≤ 0 (h is left continuous). The function h is BV if the signed
measure dh is finite. Recall also the Hahn-Jordan decomposition: for any σ-finite signed
measure µ, there is a set D such that µ+(A) = µ(A∩D) ≥ 0 and −µ−(A) = µ(A\D) ≤ 0.
µ+ and µ− are singular, one of them at least is finite and µ = µ+ − µ−. The measure
|µ| = µ+ + µ− is called the total variation measure for µ. Denote by ‖µ‖ = |µ|(R).

As for other measures of dependence, we can define τ(M, X), α(M, X), β(M, X)
and φ(M, X) as a supremum over some family of functions (compare to Theorem 4.4 in
Bradley (2002) for usual mixing coefficients).

Lemma 1 Let (Ω,A,P) be a probability space, X a real-valued random variable and M
a σ-algebra of A. Let Λ1 be the space of 1-Lipschitz functions from R to R, and BV1 be
the space of BV functions h such that ‖dh‖ ≤ 1. We have

1. τ(M, X) =
∥∥∥sup

{∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣, f ∈ Λ1

}∥∥∥
1
.

2. α(M, X) = sup{‖E(f(X)|M)− E(f(X))‖1, f ∈ BV1}.

3. β(M, X) =
∥∥∥sup

{∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣, f ∈ BV1

}∥∥∥
1
.

4. φ(M, X) = sup{‖E(f(X)|M)− E(f(X))‖∞, f ∈ BV1}.
Proof. In Dedecker and Prieur (2003), the equality in 1 is given as a definition of τ(M, X).
The fact that the right hand side in 1 is equal to

∫ ‖FX|M(t)−FX(t)‖1dt follows from the
equalities (2.8), (2.9) and (2.10) of the proof of Lemma 5 in Dedecker and Prieur (2003).

It remains to prove 2, 3 and 4. Without loss of generality, assume that f in BV1 is
such that f(−∞) = 0. Hence,
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx) =

∫ (∫
1Ix>t df(t)

)
PX|M(dx)−

∫ (∫
1Ix>t df(t)

)
PX(dx).

Applying Fubini, we obtain that
∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)P(dx)
∣∣∣ =

∣∣∣
∫ (

FX|M(t)− FX(t)
)

df(t)
∣∣∣

≤
∫
|FX|M(t)− FX(t)||df |(t) . (1.3)
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From (1.3) we easily infer that

sup{‖E(f(X)|M)− E(f(X))‖1, f ∈ BV1} ≤ α(M, X)∥∥∥sup
∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)P(dx)
∣∣∣, f ∈ BV1

∥∥∥
1
≤ β(M, X)

sup{‖E(f(X)|M)− E(f(X))‖∞, f ∈ BV1} ≤ φ(M, X) ,

and the converse inequalities follow by noting that the function 1I]−∞,t] belongs to BV1.

2 Covariance inequalities

Proposition 1 Let (Ω,A,P) be a probability space. Let X and Y be two real-valued
random variables and h be a σ-BV function. If Y , h(X) and Y h(X) are integrable, then

Cov(Y, h(X)) = −
∫

Cov(Y, 1IX≤t)dh(t) . (2.1)

Let M be a σ-algebra of A, and b(M, X) = supt∈R |FX|M(t) − FX(t)|. If Y is M-
measurable, we have the inequalities

1. |Cov(Y, h(X))| ≤ ‖Y ‖∞
(∫

‖FX|M(t)− FX(t)‖1|dh|(t)
)
.

2. |Cov(Y, h(X))| ≤ ‖dh‖E(|Y |b(M, X)) ≤ ‖dh‖ ‖Y ‖1 φ(M, X).

Remark 1. The first inequality in item 2 is comparable to that of Delyon (1990) (see
also Viennet (1997), Lemma 4.1) in which appear two variables b1(M, X) and b2(M, X)
each having mean β(M, σ(X)). The main difference is that our inequality is not symetric,
because the coefficient β(M, X) is not.

Proof. We proceed as in Theorem 2.3 in Yu (1993). Let X∗ be a random variable
distributed as X and independent of Y . We have the equalities

Cov(Y, h(X)) = E(Y (h(X)− h(X∗))) = E
(
Y

∫
(1IX∗≤t − 1IX≤t) dh(t)

)
. (2.2)

To apply Fubini, it is sufficient to check that

E
(
|Y |

∫
|1IX∗≤t − 1IX≤t| |dh|(t)

)
< ∞ . (2.3)

Define the function h by h(x) = |dh|([0, x[) if x ≥ 0 and h(x) = |dh|([x, 0[) if x ≤ 0. With
this definition, we have that
∫
|1IX∗≤t − 1IX≤t| |dh|(t) ≤

∫
(|1IX∗≤t − 1I0≤t|+ |1IX≤t − 1I0≤t|) |dh|(t) = h(X∗) + h(X) ,

(2.4)
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Now dh = µ+ − µ− where µ− for instance is finite. Define the two functions G+ and G−
by G+(x) = µ+([0, x[) and G−(x) = µ−([0, x[) if x ≥ 0 and G+(x) = −µ+([x, 0[) and
G−(x) = −µ−([x, 0[) if x ≤ 0. Clearly h(x) − h(0) = G+(x) − G−(x). Since Y h(X) is
integrable and |G−(X)| is bounded we infer that Y G+(X) is integrable. It follows that
|Y |(|G+(X)|+ |G−(X)|) is integrable. In the same way, |G+|(X) + |G−|(X) is integrable.
Since |dh| = µ+ + µ−, we have that h = |G+|+ |G−|, and consequently both Y h(X) and
Y h(X∗) are integrable. From (2.4) we infer that (2.3) holds. Now applying Fubini in
(2.2), we obtain (2.1). To prove inequalities 1 and 2, note that

|Cov(Y, 1IX≤t)| ≤ E(|Y | |FX|M(t)− FX(t)|) .

Consequently

|Cov(Y, h(X))| ≤ E
(
|Y |

∫
|FX|M(t)− FX(t)| |dh|(t)

)
. (2.5)

Inequalities 1 and 2 follow from (2.5).

3 Comparison of coefficients

The following Lemma will be very useful to obtain upper bounds for τ(M, X), α(M, X),
β(M, X) and φ(M, X).

Lemma 2 Let (Ω,A,P) be a probability space, X a real-valued random variable and M a
σ-algebra of A. If X∗ is a random variable distributed as X and independent of M then

1. τ(M, X) ≤ ‖X − X∗‖1. Moreover, if Ω is rich enough, one can choose X∗ such
that τ(M, X) = ‖X −X∗‖1.

2. Assume that X has a continuous distribution function F . For any y ∈ [0, 1], we
have that

β(M, X) ≤ y + P(|F (X)− F (X∗)| > y) .

3. Assume that X has a continuous distribution function F . For any y ∈ [0, 1], we
have that

φ(M, X) ≤ y + ‖E(1I|F (X)−F (X∗)|>y|M)‖∞ .

In particular, taking y = ‖F (X) − F (X∗)‖∞ in the previous inequality, we obtain
that φ(M, X) ≤ ‖F (X)− F (X∗)‖∞.

Using this Lemma, we can now compare τ(M, X), α(M, X), β(M, X) and φ(M, X).

Proposition 2 Let (Ω,A,P) be a probability space, X a real-valued random variable and
M a σ-algebra of A.
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1. We have the inequalities α(M, X) ≤ β(M, X) ≤ φ(M, X).

2. Let QX be the generalized inverse of the tail function t → P(|X| > t): if u ∈]0, 1[,
QX(u)=inf{t∈R : P(|X| > t) ≤ u}. We have the inequality

τ(M, X) ≤ 2

∫ α(M,X)

0

QX(u)du .

3. Assume moreover that X has a continuous distribution function F with modulus of
continuity w. Define the function g by g(x) = xw(x). Then

β(M, X) ≤ 2τ(M, X)

g−1(τ(M, X))
. (3.1)

In particular, if F is Hölder, that is |F (x) − F (y)| ≤ C|x − y|α for α ∈]0, 1] and
C > 0, then

β(M, X) ≤ 2C1/(α+1) (τ(M, X))α/(α+1) .

If X has a density bounded by K, we obtain the bound

β(M, X) ≤ 2
√

Kτ(M, X) . (3.2)

Proof of Lemma 2. Item 1. has been proved in Dedecker and Prieur (2003). It remains
to prove 2. and 3.

Proof of 2. We shall use the following lemma, which gives the hereditary properties of
α(M, X), β(M, X) and φ(M, X).

Lemma 3 Let (Ω,A,P) be a probability space, X a real-valued random variable and
M a σ-algebra of A. If g is any nondecreasing function, then we have the inequali-
ties α(M, g(X)) ≤ α(M, X), β(M, g(X)) ≤ β(M, X) and φ(M, g(X)) ≤ φ(M, X).
In particular, for the distribution function F of X, we have α(M, F (X)) = α(M, X),
β(M, F (X)) = β(M, X) and φ(M, F (X)) = φ(M, X).

Let Y = F (X) and Y ∗ = F (X∗). Clearly Y ∗ is independent of M and distributed as Y .
According to Lemma 3, we have that β(M, X) = β(M, Y ). Hence, it suffices to prove the
result for Y . Let PY,Y ∗|M be a conditional distribution of (Y, Y ∗) given M (see Dudley
(1989) Theorem 10.2.2 for the existence). Since F is continuous, PY,Y ∗|M has marginals
PY |M and PY ∗|M = λ, where λ is the Lebesgue measure over [0, 1]. For any t, y in [0, 1],

FY |M(t) =

∫
1Iv+u−v≤tPY,Y ∗|M(du, dv)

≤
∫

1Iv≤t+yPY ∗|M(dv) +

∫
1Iv−u>yPY,Y ∗|M(du, dv)

≤ t + y +

∫
1Iv−u>yPY,Y ∗|M(du, dv) .

9



In the same way,

1− FY |M(t) ≤ 1− (t− y) +

∫
1Iu−v>yPY,Y ∗|M(du, dv) .

Consequently,

|FY |M(t)− t| ≤ max
(
FY |M(t)− t, 1− FY |M(t)− (1− t)

)

≤ y +

∫
1I|u−v|>yPY,Y ∗|M(du, dv) , (3.3)

and the result follows from (3.3) by taking the supremum in t and the expectation.

Proof of 3. The result also follows from (3.3).

Proof of Lemma 3. Note first that, for any ω in Ω,

sup
t∈R

|PX|M(]−∞, t])− PX(]−∞, t])| = sup
t∈R

|PX|M(]−∞, t[)− PX(]−∞, t[)| ,

so that the definition of α(M, X), β(M, X) and φ(M, X) remains unchanged by taking
the sets ]−∞, t[ instead of ]−∞, t]. Now if g is nondecreasing the set {x : g(x) ≤ t} is
one of the sets ∅, R, ]−∞, a] or ]−∞, a[, a in R. From this and the preceding remark, the
first point follows. It remains to prove the second point. From the first point, we know
that α(M, F (X)) ≤ α(M, X). Applying again the first point to the generalized inverse
F−1 of F , we obtain that α(M, F−1(F (X))) ≤ α(M, F (X)). Since F−1(F (X)) = X
almost surely (if F is constant on [a, b] (resp. [a, b[), that equality may be false on the set
X−1(]a, b]) (resp. X−1(]a, b[)) of probability 0), the result follows. The same arguments
apply to β(M, X) and φ(M, X).

Proof of Proposition 2. Item 1. follows from the definition of α(M, X), β(M, X) and
φ(M, X). Item 2. has been proved in Lemma 6 of Dedecker and Prieur (2003) and is
based on a recent result by Peligrad (2002) (note that in Dedecker and Prieur α(M, X)
is one half of the coefficient α(M, X) we use here). It remains to prove 3. Enlarging Ω if
necessary, we know from Lemma 2 that there exists X∗ independent of M and distributed
as X such that ‖X −X∗‖1 = τ(M, X). Since |F (X)−F (X∗)| ≤ w(|X −X∗|), we obtain
from 2 of Lemma 2 (with y = w(x))

β(M, X) ≤ w(x) + P(w(|X −X∗|) > w(x)) ≤ w(x) + P(|X −X∗| > x) . (3.4)

Applying Markov in (3.4), we get that

β(M, X) ≤ w(x) +
τ(M, X)

x
.

Inequality (3.1) follows by noting that xw(x) = τ(M, X) for x = g−1(τ(M, X)).

10



4 Examples

We first define the coefficients τ(i), α(i), β(i) and φ(i) of a sequence of real-valued random
variables.

Definition 2. Let (Ω,A,P) be a probability space. Let (Xi)i≥0 be a sequence of integrable
real-valued random variables and (Mi)i≥0 be a sequence of σ-algebras of A. The sequence
of coefficients τ(i) is then defined by

τ(i) = sup
k≥0

τ(Mk, Xi+k) . (4.1)

The coefficients α(i), β(i) and φ(i) are defined in the same way.

Remark 2. One can also define the mixing coefficients α′(i), β′(i) and φ′(i) as in (4.1),
by taking σ(Xi+k) instead of Xi+k. It is clear from the definition that α(i) ≤ α′(i),
β(i) ≤ β′(i) and φ(i) ≤ φ′(i).

In this section, we present four classes of examples for which we can compute upper
bounds for the coefficients τ(i), α(i), β(i) and φ(i). Among these examples, many are
not mixing, in the sense that α′(i) does not even tends to zero. Some of the examples
of Sections 4.1 and 4.2 have been also studied in Rio (1996, Section 1.2), Doukhan and
Louhichi (1999) and Borovkova et al. (2001), but these authors do not provide any bounds
for the coefficients we are interested in. In Section 4.1 and 4.2 we construct a sequence
(X∗

k) coupled with (Xk), and we derive upper bounds for the coefficients by applying
Lemma 2. In the context of functions of stationary sequences (Section 4.1), our approach
is similar to that of Borovkova et al. (2001, Section 2), who used the coupling properties
of the underlying sequence to obtain informations on the sequence (Xk)k≥0. Some of the
bounds for τ(i) in examples 4.1, 4.2 and 4.3 were given in Dedecker and Prieur (2003).

4.1 Example 1: causal functions of stationary sequences

Let (ξi)i∈Z be a stationary sequence of random variables with values in a measurable space
X . Assume that there exists a function H defined on a subset of X N, with values in R and
such that H(ξ0, ξ−1, ξ−2, . . . , ) is defined almost surely. The stationary sequence (Xn)n∈Z
defined by Xn = H(ξn, ξn−1, ξn−2, . . .) is called a causal function of (ξi)i∈Z.

Assume that there exists a stationary sequence (ξ′i)i∈Z distributed as (ξi)i∈Z and in-
dependent of (ξi)i≤0. Define X∗

n = H(ξ′n, ξ
′
n−1, ξ

′
n−2, . . .). Clearly X∗

n is independent of
σ(Xi, i ≤ 0) and distributed as Xn. For any p ≥ 1 (p may be infinite) define the sequence
(δi,p)i>0 by

‖Xi −X∗
i ‖p = δi,p . (4.2)

Let Mi = σ(Xj, j ≤ i). Arguing as in Lemma 2 and Proposition 2, we can easily prove
that the coefficients τ , β and φ of the sequence (Xn)n≥0 satisfy

11



1. τ(i) ≤ δi,1.

2. Assume that X0 has a continuous distribution function with modulus of continuity
w. Define the function gp by gp(y) = y(w(y))1/p. Then for any 1 ≤ p < ∞ we have

α(i) ≤ β(i) ≤ 2

(
δi,p

g−1
p (δi,p)

)p

.

In particular, if X0 has a density bounded by K, we obtain that β(i) ≤ 2(Kδi,p)
p

p+1 .

3. Assume that X0 has a continuous distribution function with modulus of continuity
w. Then α(i) ≤ β(i) ≤ φ(i) ≤ w(δi,∞).

For φ(i), it is sometimes interesting to start from the first inequality in Lemma 2 item 3.
For 1 ≤ p < ∞ define

δ′i,p = ‖E(|Xi −X∗
i |p|M0)‖1/p

∞ . (4.3)

4. With the same notations as in item 2, we have φ(i) ≤ 2

(
δ′i,p

g−1
p (δ′i,p)

)p

.

In particular, these results apply to the case where the sequence (ξi)i∈Z is β-mixing.
According to Theorem 4.4.7 in Berbee (1979), if Ω is rich enough, there exists (ξ′i)i∈Z
distributed as (ξi)i∈Z and independent of (ξi)i≤0 such that P(ξi 6= ξ′i for some i ≥ k) =
β(σ(ξi, i ≤ 0), σ(ξi, i ≥ k)). If the sequence (ξi)i∈Z is iid, it suffices to take ξ′i = ξi for
i > 0 and ξ′i = ξ′′i for i ≤ 0, where (ξ′′i )i∈Z is an independent copy of (ξi)i∈Z.

Application: causal linear processes. In that case Xn =
∑

j≥0 ajξn−j. For any p ≥ 1,
we have that

δi,p ≤
∑
j≥0

|aj|‖ξi−j − ξ′i−j‖p ≤ ‖ξ0 − ξ′0‖p

∑
j≥i

|aj|+
i−1∑
j=0

|aj|‖ξi−j − ξ′i−j‖p .

From Proposition 2.3 in Merlevède and Peligrad (2002), we obtain that

δi,p ≤ ‖ξ0 − ξ′0‖p

∑
j≥i

|aj|+
i−1∑
j=0

|aj|
(
2p

∫ β(σ(ξk,k≤0),σ(ξk,k≥i−j))

0

Qp
ξ0

(u)
)1/p

du .

where Qξ0 is defined in Proposition 2 (note that in Merlevède and Peligrad the constant
in front of the integral is 2p+2. In fact it works with the constant 2p).

If the sequence (ξi)i∈Z is iid, it follows that δi,p ≤ ‖ξ0 − ξ′0‖p

∑
j≥i |aj|. Moreover,

for p = 2 we have exactly δi,2 = (2Var(ξ0)
∑

j≥i a
2
j)

1/2. For instance, if ai = 2−i−1 and

ξ0 ∼ B(1/2), then δi,∞ ≤ 2−i. Since X0 is uniformly distributed over [0, 1], we have
φ(i) ≤ 2−i. Recall that this sequence is not strongly mixing (see Andrews (1984)). More
precisely, the coefficient α′(i) defined in Remark 2 is equal to 1/2.
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4.2 Example 2: iterated random functions

Let (Xn)n≥0 be a real-valued stationary Markov chain, such that Xn = F (Xn−1, ξn) for
some measurable function F and some i.i.d. sequence (ξi)i>0 independent of X0. Let
X∗

0 be a random variable distributed as X0 and independent of (X0, (ξi)i>0). Define
X∗

n = F (X∗
n−1, ξn) . The sequence (X∗

n)n≥0 is distributed as (Xn)n≥0 and independent
of X0. Let Mi = σ(Xj, 0 ≤ j ≤ i). As in Example 1, define the sequence (δi,p)i>0

and (δ′i,p)i>0 by (4.2) and (4.3) respectively. The coefficients τ , β and φ of the sequence
(Xn)n≥0 satisfy 1, 2, 3 and 4 of Example 1.

Let µ be the distribution of X0 and (Xx
n)n≥0 the chain starting from Xx

0 = x. With
these notations, we have that

δp
i,p =

∫∫
‖Xx

i −Xy
i ‖p

pµ(dx)µ(dy)

(δ′i,p)
p = inf

{
M : µ

(∫
‖Xx

i −Xy
i ‖p

pµ(dy) > M
)

= 0
}

.

For instance, if there exists a sequence (di,p)i≥0 of positive numbers such that

‖Xx
i −Xy

i ‖p ≤ di,p|x− y| ,
then δi,p ≤ di,p‖X0 − X∗

0‖p and δ′i,p ≤ di,p‖X0 − X∗
0‖∞. For instance, in the usual case

where ‖F (x, ξ0)− F (y, ξ0)‖p ≤ κ|x− y| for some κ < 1, we can take di,p = κi.
An important example is Xn = f(Xn−1) + ξn for some κ-lipschitz function f . If X0

has a moment of order p, then δi,p ≤ κi‖X0 −X∗
0‖p . In particular, if X0 is bounded and

has a density bounded by K then φ(i) ≤ 2K‖X0‖∞κi.
We refer to the nice review paper by Diaconis and Freedman (1999) for various exam-

ples of iterative random maps.

4.3 Example 3: Markov kernels.

Let P be a Markov kernel defined on a measurable subset X of R. For any continuous
bounded function f from X to R we have P (f)(x) =

∫
X f(z)P (x, dz). Let Λm(X ) be the

set of functions f from X to R such that |f(x)−f(y)| ≤ m|x−y|. We make the following
assumptions on P

H For some 0 < κ < 1, P maps Λ1(X ) to Λκ(X ).

Let (Xn)n≥0 be a stationary Markov chain with values in X , with marginal distribution
µ and transition kernel P satisfying H. Let Mi = σ(Xj, 0 ≤ j ≤ i). By stationarity
and the Markov property, we have that τ(i) = τ(σ(X0), Xi). Clearly the function fi =
E(f(Xi)|X0 = x) belongs to Λκi(X ). Since

τ(σ(X0), Xi) ≤
∫∫

sup
f∈Λ1(X )

|fi(x)− fi(y)|µ(dx)µ(dy),

13



we infer that τ(i) ≤ κi‖X0 − X∗
0‖1 where X∗

0 is independent and distributed as X0. If
furthermore X0 has a density bounded by K, we infer from (3.2) of Proposition 2 that
β(i) ≤ 2

√
K‖X0 −X∗

0‖1κi.
In the case of iterated random maps (Example 2 above) the map F is a measurable

function from X × Y to X , and the kernel P has the form P (f)(x) =
∫
Y f(F (x, z))ν(dz)

for some probability measure ν on Y . Assumption H is satisfied as soon as

∫
|F (x, z)− F (y, z)|ν(dz) ≤ κ|x− y| ,

which was the condition previously found.

4.4 Example 4: dynamical systems on [0, 1].

Let I = [0, 1], T be a map from I to I and define Xi = T i. If µ is invariant by T , the
sequence (Xi)i≥0 of random variables from (I, µ) to I is strictly stationary.

For any finite measure ν on I, we use the notations ν(h) =
∫

I
h(x)ν(dx). For any

finite signed measure ν on I, let ‖ν‖ = |ν|(I) be the total variation of ν. Denote by ‖g‖1,λ

the L1-norm with respect to the Lebesgue measure λ on I.

Covariance inequalities. In many interesting cases, one can prove that, for any BV
function h and any k in L1(I, µ),

|Cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1(‖h‖1,λ + ‖dh‖) , (4.4)

for some nonincreasing sequence an tending to zero as n tends to infinity. Note that if
(4.4) holds, then

|Cov(h(X0), k(Xn))| = |Cov(h(X0)− h(0), k(Xn))| ≤ an‖k(Xn)‖1(‖h− h(0)‖1,λ + ‖dh‖) .

Since ‖h− h(0)‖1,λ ≤ ‖dh‖, we obtain that

|Cov(h(X0), k(Xn))| ≤ 2an‖k(Xn)‖1‖dh‖ . (4.5)

Inequality (4.5) is similar to the second inequality in Proposition 1 item 2, with X = X0

and Y = k(Xn), and one can wonder if φ(σ(Xn), X0) ≤ 2an. The answer is positive, due
to the following Lemma.

Lemma 4 Let (Ω,A,P) be a probability space, X a real-valued random variable and M
a σ-algebra of A. We have the equality

φ(M, X) = sup{|Cov(Y, h(X))| : Y is M-measurable, ‖Y ‖1 ≤ 1 and h ∈ BV1} .
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Hence, we obtain an easy way to prove that a dynamical system (T i)i≥0 is φ-dependent:

If (4.4) holds, then φ(σ(Xn), X0) ≤ 2an. (4.6)

In many cases, Inequality (4.4) follows from the spectral properties of the Markov operator
associated to T . In these cases, due to the underlying Markovian structure, (4.6) holds
with Mn = σ(Xi, i ≥ n) instead of σ(Xn).

Proof of Lemma 4. Write first |Cov(Y, h(X))| = |E(Y (E(h(X)|M)−E(h(X))))|. For any
positive ε, there exists Aε in M such that P(Aε) > 0 and for any ω in Aε,

|E(h(X)|M)(ω)− E(h(X))| > ‖E(h(X)|M)− E(h(X))‖∞ − ε.

Define the random variable

Yε :=
1IAε

P(Aε)
sign (E(h(X)|M)− E(h(X))) .

Yε is M-measurable, E|Yε| = 1 and |Cov(Yε, h(X))| ≥ ‖E(h(X)|M) − E(h(X))‖∞ − ε.
This being true for any positive ε, we infer from Lemma 1 that

φ(M, X) ≤ sup{|Cov(Y, h(X))| : Y is M-measurable, ‖Y ‖1 ≤ 1 and h ∈ BV1} .

The converse inequality follows straightforwardly from Lemma 1.

Spectral gap. Define the operator L from L1(I, λ) to L1(I, λ) via the equality
∫ 1

0

L(h)(x)k(x)dλ(x) =

∫ 1

0

h(x)(k ◦ T )(x)dλ(x) where h ∈ L1(I, λ) and k ∈ L∞(I, λ).

The operator L is called the Perron-Frobenius operator of T . In many interesting cases,
the spectral analysis of L in the Banach space of BV -functions equiped with the norm
‖h‖v = ‖dh‖+‖h‖1,λ can be done by using the Theorem of Ionescu-Tulcea and Marinescu
(see Lasota and Yorke (1974) and Hofbauer and Keller (1982)). Assume that 1 is a simple
eigenvalue of L and that the rest of the spectrum is contained in a closed disk of radius
strictly smaller than one. Then there exists a unique T -invariant absolutely continuous
probability µ whose density fµ is BV , and

Ln(h) = λ(h)fµ + Ψn(h) with ‖Ψn(h)‖v ≤ Kρn‖h‖v. (4.7)

for some 0 ≤ ρ < 1 and K > 0. Assume moreover that:

I∗ = {fµ 6= 0} is an interval, and there exists γ > 0 such that fµ > γ−1 on I∗. (4.8)

Without loss of generality assume that I∗ = I (otherwise, take the restriction to I∗ in
what follows). Define now the Markov kernel associated to T by

P (h)(x) =
L(fµh)(x)

fµ(x)
. (4.9)
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It is easy to check (see for instance Barbour et al. (2000)) that (X0, X1, . . . , Xn) has the
same distribution as (Yn, Yn−1, . . . , Y0) where (Yi)i≥0 is a stationary Markov chain with
invariant distribution µ and transition kernel P . Since ‖fg‖∞ ≤ ‖fg‖v ≤ 2‖f‖v‖g‖v, we
infer that, taking C = 2Kγ(‖dfµ‖+ 1),

P n(h) = µ(h) + gn with ‖gn‖∞ ≤ Cρn‖h‖v. (4.10)

This estimate implies (4.4) with an = Cρn. Indeed,

|Cov(h(X0), k(Xn))| = |Cov(h(Yn), k(Y0))| ≤ ‖k(Y0)(E(h(Yn)|σ(Y0))− E(h(Yn)))‖1

≤ ‖k(Y0)‖1‖P n(h)− µ(h)‖∞
≤ Cρn‖k(Y0)‖1(‖dh‖+ ‖h‖1,λ) .

Collecting the above facts, we infer that φ(σ(Xn), X0) ≤ 2Cρn. Moreover, using the
Markov property we obtain that

φ(σ(Xn, . . . , Xm+n), X0) = φ(σ(Y0, . . . Ym), Yn+m) = φ(σ(Ym), Yn+m) = φ(σ(Xn), X0) .

This being true for any integer m, it holds for Mn = σ(Xi, i ≥ n). We conclude that if
(4.7) and (4.8) hold then there exists C > 0 and 0 ≤ ρ < 1 such that

φ(σ(Xi, i ≥ n), X0) ≤ 2Cρn . (4.11)

Application: Expanding maps. Let ([ai, ai+1[)1≤i≤N be a finite partition of [0, 1[. We
make the same assumptions on T as in Collet et al (2002).

1. For each 1 ≤ j ≤ N , the restriction Tj of T to ]aj, aj+1[ is strictly monotonic and
can be extented to a function T j belonging to C2([aj, aj+1]).

2. Let In be the set where (T n)′ is defined. There exists A > 0 and s > 1 such that
infx∈In |(T n)′(x)| > Asn.

3. The map T is topologically mixing: for any two nonempty open sets U, V , there
exists n0 ≥ 1 such that T−n(U) ∩ V 6= ∅ for all n ≥ n0.

If T satisfies 1. 2. and 3. then (4.7) holds. If furhtermore (4.8) holds (see Morita (1994)
for sufficient conditions), then (4.11) holds.

Remark 3. The spectral analysis may be done under weaker assumptions on T (see
Morita (1994) and Broise (1996)). In particular, the partition need not necessarily be
finite: the gauss map T (x) = x − [x] satisfies also (4.11). We have chosen this class of
examples because it is easy to describe, and because we can go further in the analysis of
the associated Markov chain (Yi)i≥0 by using a recent result of Collet et al. (2002) (see
Example 4, Section 7.2).
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5 MISE for β-dependent sequences.

We consider the problem of estimating the unknown marginal density f from the obser-
vations (X1, . . . , Xn) of a stationary sequence (Xi)i≥0. In this context, Viennet (1997)
obtained optimal results for the MISE under the condition

∑
k>0 β(σ(X0), σ(Xk)) < ∞.

We wish to extend Viennet’s results to sequences satisfying only

∑

k>0

β(σ(X0), Xk) < ∞ . (5.1)

For kernel density estimators, this can be done by assuming only that the kernel K is
BV and Lebesgue integrable. For projection estimators, it works only if the basis is well
localized, because our variance inequality is less precise than that of Viennet. Note that
Condition (5.1) is much less restrictive than Viennet’s, for it contains many non mixing
examples. In particular, since f is supposed to be square integrable with respect to the
Lebesgue measure, the distribution function F of X0 is 1/2-Hölder. Hence, we infer from
point 3 of Proposition 2 that (5.1) holds as soon as

∑
k>0(τ(σ(X0), Xk))

1/3 < ∞. If f is
bounded (5.1) holds as soon as

∑
k>0(τ(σ(X0), Xk))

1/2 < ∞.

5.1 Variance inequalities

According to Definition 2 and to the stationarity of (Xi)i≥0, we set β(i) = β(σ(X0), Xi).
The main results of this section are the following upper bounds (compare to Theorems
1.2 and 1.3(a) in Rio (2000a) for the mixing coefficients α(σ(X0), σ(Xi))).

Proposition 3 Let K be any BV function such that
∫ |K(x)|dx is finite. Let (Xi)i≥0 be

a stationary sequence, and define

Yk,n = h−1K(h−1(x−Xk)) and fn(x) =
1

n

n∑

k=1

Yk,n . (5.2)

The following inequality holds

nh

∫
Var(fn(x))dx ≤

∫
(K(x))2dx + 2

(n−1∑

k=1

β(k)
)
‖dK‖

∫
|K(x)|dx .

Proposition 4 Let (ϕi)1≤i≤n be an orthonormal system of L2(R, λ) (λ is the Lebesgue
measure) and assume that each ϕi is BV. Let (Xi)i≥0 be a stationary sequence, and define

Yj,n =
1

n

n∑

k=1

ϕj(Xk) and fn =
m∑

j=1

Yj,nϕj . (5.3)
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The following inequality holds

n

∫
Var(fn(x))dx ≤ sup

x∈R

( m∑
j=1

ϕ2
j(x)

)
+ 2

( n−1∑

k=1

β(k)
)

sup
x∈R

( m∑
j=1

‖dϕj‖ |ϕj(x)|
)

.

Remark 4. Since β(M, X) ≤ φ(M, X), Propositions 3 and 4 apply to dynamical systems
satisfying (4.4) with 2

∑n−1
i=1 ak instead of

∑n−1
i=1 β(k). For kernel estimators this can be

also deduced from a variance estimate given in Prieur (2001).

Proof of Proposition 3. We start from the elementary inequality

Var(fn(x)) ≤ 1

n
‖Y0,n‖2

2 +
2

n

n−1∑
i=1

|Cov(Y0,n, Yi,n)| .

Now h
∫ ‖Y0,n‖2

2(x)dx =
∫

(K(x))2dx. To complete the proof, we apply Proposition 1:

h

∫
|Cov(Y0,n, Yi,n)|(x)dx ≤ ‖dK‖E

(
b(σ(X0), Xi)

∫
|Y0,n(x)|dx

)
≤ β(i)‖dK‖

∫
|K(x)|dx .

Proof of Proposition 4. Since (ϕi)1≤i≤n is an orthonormal system of L2(R, λ) we have that

∫
Var(fn(x))dx =

m∑
j=1

Var(Yj,n) .

Applying Proposition 1, we obtain that

Var(Yj,n) ≤ 1

n
‖ϕj(X0)‖2

2 +
2

n

n−1∑

k=1

|Cov(ϕj(X0), ϕj(Xk))|

≤ 1

n
‖ϕj(X0)‖2

2 +
2

n

n−1∑

k=1

‖dϕj‖E(|ϕj(X0)|b(σ(X0), Xk)) .

To complete the proof we sum in j:

n

∫
Var(fn(x))dx ≤ E

( m∑
j=1

ϕ2
j(X0)

)
+ 2

n−1∑

k=1

E
(
b(σ(X0), Xk)

m∑
j=1

‖dϕj‖ |ϕj(X0)|
)

.

5.2 Some function spaces

In this section we recall the definition of the spaces Lip∗(s, 2, I), where I is either R or
some compact interval [a, b] (see DeVore and Lorentz (1993), Chapter 2). Let Irh = R if
I = R and Irh = [a, b − rh] otherwise. For any h ≥ 0, let Th be the translation operator
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Th(f, x) = f(x + h) and ∆h = Th − T0 be the difference operator. By induction, define
the operators ∆r

h = ∆h ◦∆r−1
h . Let λ be the Lebesgue measure on I and ‖.‖2,λ the usual

norm on L2(I, λ). The modulus of smoothness of order r of a function f in L2(I, λ) is
defined by

ωr(f, t)2 = sup
0≤h≤t

‖∆r
h(f, .)1IIrh

‖2,λ ,

For s > 0, Lip∗(s, 2, I) is the space of functions f in L2(I, λ) such that

‖f‖s,2,I = ‖f‖2,λ + sup
t>0

ω[s]+1(f, t)2

ts
< ∞ .

These spaces are Banach spaces with respect to the norm ‖.‖s,2,I . Recall that Lip∗(s, 2, I)
is a particular case of Besov spaces (precisely Lip∗(s, 2, I) = Bs,2,∞(I)) and that it contains
Sobolev spaces Ws(I) = Bs,2,2(I). Recall that, if s is an integer, the space Ws(I) is
the space of functions for which f (s−1) is absolutely continuous with almost everywhere
derivative f (s) belonging to L2(I, λ).

5.3 Application to Kernel estimators

If fn is defined by (5.2), set fh = E(fn). Let r be some positive integer, and assume that
the kernel K is such that: for any f belonging to the Sobolev space Wr(R) we have

∫
(f(x)− fh(x))2dx ≤ M1h

2r‖f (r)‖2
2 , (5.4)

for some constant M1 depending only on r. From (5.4) and Theorem 5.2 page 217 in
DeVore and Lorentz (1993), we infer that, for any f in L2(R, λ),

∫
(f(x)− fh(x))2dx ≤ M2(wr(f, h)2)

2 ,

for some constant M2 depending only on r. This last inequality imply that, if f belongs
to Lip∗(s, 2,R) for r − 1 ≤ s < r, then

∫
(f(x)− fh(x))2dx ≤ M2h

2s‖f‖2
s,2,R .

This evaluation of the bias together with Proposition 3 leads to the following Corollary.

Corollary 1 Let r be some positive integer. Let (Xi)i≥1 be a stationary sequence with
common marginal density f belonging to Lip∗(s, 2,R) with r − 1 ≤ s < r, or to Ws(R)
with s = r. Let K be a BV function satsisfying (5.4) and such that

∫ |K(x)|dx is finite.
Let fn be defined by (5.2) with h = n−1/(2s+1). If (5.1) holds, then there exists a constant
C such that

E
(∫

(fn(x)− f(x))2dx
)
≤ Cn−2s/(2s+1) .
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Here are two well known classes of kernel satisfying (5.4).

Example 1. One says that K is a kernel of order k, if

1.

∫
K(x)dx = 1,

∫
(K(x))2dx < ∞ and

∫
|x|k+1|K(x)|dx < ∞ .

2.

∫
xjK(x)dx = 0 for 1 ≤ j ≤ k .

If K is a Kernel of order k, then it satisfies (5.4) for any r ≤ k + 1. For instance, the
naive kernel K = (1/2)1I]−1,1] is BV and of order 1. Consequently Corollary 1 applies to
functions belonging to Lip∗(s, 2,R) for s < 2, or to W2(R).

Example 2. Assume that the fourier transform K∗ of K satisfies |1 −K∗(x)| ≤ M |x|r
for some positive constant M . Then K satisfies (5.4) for this r. For instance, K(x) =
sin(x)/(πx) satisfies (5.4) for any positive integer r. Unfortunately, it is neither BV nor
integrable. Another function satisfying (5.4) for any positive integer r is the analogue of
the de la vallée-Poussin kernel V (x) = (cos(x)− cos(2x))/πx2 . This function is BV and
integrable, so that Corollary 1 apply to any function belonging to Lip∗(s, 2, I) for s > 0.

5.4 Application to unconditional systems.

Proposition 4 is of special interest for orthonormal systems (ϕi)i≥1 satisfying the two
conditions:

P1 There exists C1 independent of m such that max
1≤i≤m

‖dϕi‖ ≤ C1

√
m.

P2 There exists C2 independent of m such that sup
x∈R

( m∑
j=1

|ϕj(x)|
)
≤ C2

√
m.

An orthonormal system satisfying P2 is called unconditional. For such systems, we obtain
from Proposition 4 that

n

∫
Var(fn(x))dx ≤ m

(
C2

2 + 2C1C2

( n−1∑

k=1

β(k)
))

. (5.5)

Example 1: piecewise polynomials. Let (Qi)1≤i≤r+1 be an orthonormal basis of the
space of polynomials of order r on [0, 1] and define the function Ri on R by: Ri(x) = Qi(x)
if x belongs to ]0, 1] and 0 otherwise. We consider the regular partition of ]0, 1] into k
intervals (](j−1)/k, j/k])1≤j≤k. Define the functions Ri,j(x) =

√
kRi(kx−(j−1)). Clearly

the family (Ri,k)1≤i≤r+1 is an orthonormal basis of the space of polynomials of order r on
the interval [(j − 1)/k, j/k]. Let m = k(r + 1) and (ϕi)i≥1 be any family such that

{ϕi, 1 ≤ i ≤ m} = {Ri,j, 1 ≤ j ≤ k, 1 ≤ i ≤ r + 1} . (5.6)
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The orthonormal system (ϕi)i≥1 satisfies P1 and P2 with

C1 = (r + 1)−1/2 max
1≤i≤r+1

‖dRi‖ and C2 = (r + 1)−1/2 sup
x∈[0,1]

( r+1∑
i=1

|Ri(x)|) .

The case of histograms corresponds to r = 0. In that case ϕj =
√

k1I](j−1)/k,j/k]. Clearly

C2 = 1 and ‖dϕj‖ = 2
√

k, so that C1 = 2.
Assume now that X0 has a density f such that f1I[0,1] belongs to Lip∗(s, 2, [0, 1]).

Suppose that r > s− 1, and denote by f̄ the orthogonal projection of f on the subspace
generated by (ϕi)1≤1≤m. From Lemma 12 in Barron et al. (1999) we know that there
exists a constant K depending only on s such that

∫ 1

0

(f(x)− f̄(x))2dx ≤ Km−2s . (5.7)

Since f̄ = E(fn), we obtain from (5.5) and (5.7) the following corollary.

Corollary 2 Let (Xi)i≥1 be a stationary sequence with common marginal density f such
that f1I[0,1] belongs to Lip∗(s, 2, [0, 1]). Let r be any nonnegative integer such that r > s−1
and k = [n1/(2s+1)]. Let (ϕi)1≤i≤m be defined by (5.6) and fn be defined by (5.3). If (5.1)
holds, then there exists a constant C such that

E
(∫ 1

0

(fn(x)− f(x))2dx
)
≤ Cn−2s/(2s+1) .

Example 2: wavelet basis. Let {ej,k, j ≥ 0, k ∈ Z} be an orthonormal wavelet basis
with the following convention: e0,k are translate of the father wavelet and for j ≥ 1,
ej,k = 2j/2ψ(2jx − k), where ψ is the mother wavelet. Assume that these wavelets are
compactly supported and have continuous derivatives up to order r (if r = 0, the wavelets
are supposed to be BV). Let g be some function with support in [−A,A]. Changing the

indexation of the basis if necessary, we can write g =
∑

j≥0

∑2jM
k=1 aj,kej,k, where M ≥ 1

is some finite integer depending on A and on the size of the wavelets supports. Let
m =

∑J
j=0 2jM and (ϕi)i≥1 be any family such that

{ϕi, 1 ≤ i ≤ m} = {ej,k, 0 ≤ j ≤ J, 1 ≤ k ≤ 2jM} . (5.8)

The orthonormal system (ϕi)i≥1 satisfies P1 and P2.
Assume now that X0 has a density f belonging to Lip∗(s, 2,R) with compact support

in [−A,A]. Denote by f̄ the orthogonal projection of f on the subspace generated by
(ϕi)1≤i≤m. From Lemma 12 in Barron et al. (1999) we know that there exist a constant
K depending only on s such that

∫ 1

0

(f − f̄(x))2dx ≤ K2−2Js . (5.9)

Since f̄ = E(fn), we obtain from (5.5) and (5.9) the following corollary.
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Corollary 3 Let (Xi)i≥1 be a stationary sequence with common marginal density f be-
longing to Lip∗(s, 2,R) and with compact support in [−A,A]. Let r be any nonnegative
integer such that r > s − 1 and J be such that J = [log2(n

1/(2s+1))]. Let (ϕi)1≤i≤m be
defined by (5.8) and fn be defined by (5.3). If (5.1) holds, then there exists a constant C
such that

E
(∫

(fn(x)− f)2dx
)
≤ Cn−2s/(2s+1) .

Remark 5. More generally, if
∑n

i=1 β(σ(X0), Xi) = O(na) for some a in [0, 1[, we obtain
the rate n−2s(1−a)/(2s+1) for the MISE in Corollaries 1, 2 and 3. Note that if (5.1) holds
the rate n−2s/(2s+1) is known to be optimal for i.i.d. observations.

6 Exponential inequality for φ-dependent sequences

Starting from a moment inequality of Dedecker and Doukhan (2003) (see also Theorem
2.5 in Rio (2000a) for the stationary case) we obtain an Hoeffding-type inequality for
partial sums. Given a filtration Mi, the coefficients φ(k) are defined as in (4.1).

Proposition 5 Let (Xi)i≥0 be a sequence random variables and Mi = σ(Xj, 1 ≤ j ≤ i).
For any BV function h, define

Sn(h) =
n∑

i=1

h(Xi) and bi,n =
(n−i∑

k=0

φ(k)
)
‖dh‖ ‖h(Xi)− E(h(Xi))‖p/2 .

For any p ≥ 2 we have the inequality

‖Sn(h)− E(Sn(h))‖p ≤
(
2p

n∑
i=1

bi,n

)1/2

≤ ‖dh‖
(
2p

n−1∑

k=0

(n− k)φ(k)
)1/2

. (6.1)

We also have that

P(|Sn(h)− E(Sn(h))| > x) ≤ e1/e exp

(
−x2

4e‖dh‖2
∑n−1

k=0(n− k)φ(k)

)
. (6.2)

Remark 6. Applying the method of martingale differences, as in Deddens, Peligrad and
Yang (1987), we can also prove that

P(|Sn(h)− E(Sn(h))| > x) ≤ 2 exp

(
−x2

2‖dh‖2
∑n

i=1

(
1 + 2

∑n−i+1
k=1 φ(k)

)2

)
. (6.3)

Both (6.2) and (6.3) yield the same kind of inequality provided that
∑

k>0 φ(k) is finite.
Note that this condition is realized for expanding maps considered in Example 4. We
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shall see that for such maps we can also obtain a concentration inequality for lipschitz
functions (cf. Collet et al (2002) and Theorem 2, Section 7.4).

Proof of Proposition 5. Let Yi = h(Xi)− E(h(Xi)). Applying Proposition 4 in Dedecker
and Doukhan (2003), we obtain that

‖Sn(h)− E(Sn(h))‖p ≤
(
2p

n∑
i=1

max
i≤l≤n

∥∥∥Yi

l∑

k=i

E(Yk|Mi)
∥∥∥

p/2

)1/2

. (6.4)

From Item 4. of Lemma 1, we infer that

max
i≤l≤n

∥∥∥Yi

l∑

k=i

E(Yk|Mi)
∥∥∥

p/2
≤ ‖Yi‖p/2

n∑

k=i

‖E(Yk|Mi)‖∞ ≤ bi,n . (6.5)

The first inequality in (6.1) follows from (6.4) and (6.5). To prove the second inequality
in (6.1), it remains to bound bi,n. From Lemma 1, ‖Yi‖p/2 ≤ ‖Yi‖∞ ≤ ‖dh‖φ(0) ≤ ‖dh‖,
so that bi,n ≤ ‖dh‖2

2(φ(0) + · · ·+ φ(n− i)) and (6.1) is proved.
To prove (6.2), let B = ‖dh‖2

∑n−1
k=0(n− k)φ(k). For any p ≥ 2 we have

P(|Sn(h)− E(Sn(h))| > x) ≤ min
(
1,
E(|Sn(h)− E(Sn(h))|p)

xp

)
≤ min

(
1,

(2pB

x2

) p
2
)

.

Obvious computations show that the function p → (2pBx−2)p/2 has a unique minimum
in p0 = (2eB)−1x2 and is increasing on the interval [p0, +∞]. By comparing p0 and 2, we
infer that

P(|Sn(h)− E(Sn(h))| > x) ≤ g
( x2

4eB

)
,

where g is the function from R+ to R+ defined by

g(y) = 1Iy≤e−1 + (ey)−11Ie−1<y≤1 + e−y1Iy>1 .

Finally, (6.2) follows by noting that g(y) ≤ exp(−y + e−1) for any positive y.

From Proposition 5 we obtain an empirical central limit theorem for classes of BV
functions. We need some notations. Let (Xi)i≥0 be a stationary sequence of real-valued
random variables with common marginal distribution P . Denote by Pn the empirical
probability measure and by Zn the centered and normalized empirical measure

Pn =
1

n

n∑
i=1

δXi
, Zn =

√
n(Pn − P ) .

Let F be a class of measurable functions from R to R. The space `∞(F) is the space of
all functions z from F to R such that ‖z‖F = supf∈F |z(f)| is finite. A random variable
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X with values in `∞(F) is tight if for any positive ε there exists a compact set Kε of
(`∞(F), ‖.‖F) such that P(X ∈ Kε) ≥ 1− ε.

For any P -integrable function f , let Pn(f) =
∫

f(x)Pn(dx), P (f) =
∫

f(x)P (dx)
and Zn(f) =

√
n(Pn(f) − P (f)). Assume that P (|f |) is finite for any f in F and that

supf∈F |f(x)−P (f)| is finite for every x in R. Under this minimal condition, the empirical
process {Zn(f), f ∈ F} can be viewed as a variable with values in `∞(F), altough it may
not be measurable with respect to the Borel σ-algebra generated by ‖.‖F . Nevertheless, we
say that Zn converges weakly to a `∞(F)-valued random variable Z (i.e. Borel measurable)
if, for every continuous bounded function h from (`∞(F), ‖.‖F) to R, the outer expectation
E∗(h(Zn)) converges to E(h(Z)) (see for instance van der Vaart and Wellner (1996) p.
4 for the definition of outer expectations and measures, and more details about weak
convergence for non-measurable maps).

If ρ is a seminorm on F , the metric entropy H(ε,F , ρ) is the logarithm of the smallest
number of balls with radius ε (with respect to ρ) needed to cover F .

Corollary 4 Let (Xi)i∈Z be a stationary and ergodic sequence of real-valued random vari-
ables and Mi = σ(Xj, j ≤ i). Let F be a class of BV functions. On F we put the
seminorm |f |v = ‖df‖. Let Mi = σ(Xj, j ≤ i) and assume that

∞∑

k=1

φ(k) < ∞ and

∫ 1

0

√
H(x,F , |.|v)dx < ∞ .

Then Zn converges weakly in `∞(F) to a tight gaussian process with covariance function

Γ(f, g) =
∑

k∈Z
Cov(f(X0), g(Xk)) .

Application. Assume that X0 belongs to [0, 1] and that F is a class of absolutely

continuous functions from [0, 1] to R. In that case, |f |v =
∫ 1

0
|f ′(t)|dt = ‖f ′‖1,λ. If

F ′ = {f ′, f ∈ F} then the condition on the entropy can be written as

∫ 1

0

√
H(x,F ′, ‖.‖1,λ)dx < ∞ .

For instance, it is satisfied if F ′ is the class of increasing functions from [0, 1] to [−K, K],
which means that F is the class of convex and K-lipschitz functions.

Proof of Corollary 4. Let C(φ) =
∑∞

k=0 φ(k). Applying (6.2) of Proposition 5, we obtain

P(|Zn(f)− Zn(g)| > x) ≤ e1/e exp

( −x2

4e|f − g|2vC(φ)

)
. (6.6)

This means that for each n, the process {Zn(f), f ∈ F} is subgaussian (cf. Ledoux and
Talagrand (1991), p. 322). We can therefore apply the chaining procedure of Theorem
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11.6 in Ledoux and Talagrand (1991) (with the outer expectation E∗ instead of E) to
obtain that: for each positive ε there exists a positive real δ, depending only on ε and
of the value of the entropy integral, such that E∗(sup|f−g|v<δ |Zn(f) − Zn(g)|) < ε . This
prove that Zn is asymptotically |.|v-equicontinuous.

To complete the proof, it remains to check the finite dimensional convergence of the
process Zn. Let f = (f1, . . . , fk) be an element of Fk and for any x in Rk define the
function < x, f − P (f) >= x1(f1 − P (f1)) + · · · + xk(fk − P (fk)). Define the matrix C
by Ci,j = Γ(fi, fj). Since (Xi)i∈Z is ergodic, we infer from Dedecker and Rio (2000) that
the random variable Zn(< x, f −P (f) >) converges in distribution to a mean-zero normal
distribution with variance xtCx as soon as

∑

k≥0

‖ < x, f − P (f) > (X0)E(< x, f − P (f) > (Xk)|M0)‖1 < ∞ . (6.7)

Consequently, if (6.7) holds, the random vector (Zn(f1), . . . , Zn(fk)) converges in distri-
bution to a Gaussian vector with covariance matrix C. Applying Lemma 1, we obtain
that

‖ < x, f − P (f) > (X0)E(< x, f − P (f) > (Xk)|M0)‖1

≤ ‖ < x, f − P (f) > (X0)‖∞| < x, f − P (f) > |v α(M0, Xk) ,

so that (6.7) holds as soon as
∑

k≥0 α(k) is finite. This completes the proof.

7 Extension to higher dimension

It seems difficult to extend coefficients based on the conditional distribution function in
higher dimension. A way to proceed is to start from the functional definition of the coef-
ficients given in Lemma 1. For α(M, X), β(M, X) and φ(M, X) the extension remains
difficult because the notion of bounded variation is rather delicate even in R2. For τ , the
extension is immediate and satisfactory.

Let (Ω,A,P) be a probability space, M a σ-agebra of A and X a random variable
with values in a Polish space (X , d). As in R there exists a conditional distribution PX|M
of X given M (see Dudley (1989), Theorem 10.2.2). Let Λ1(X ) be the space of 1-lipschitz
functions from X to R. Assume that

∫
d(0, x)PX(dx) is finite and define

τ(M, X) =
∥∥∥sup

{∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣, f ∈ Λ1(X )

}∥∥∥
1
. (7.1)

We shall see in section 7.1 that this coefficient has the same coupling property as in the
real case. If d(0, X) is bounded, we can define the uniform version of τ , which was first
introduced by Rio (1996):

ϕ(M, X) = sup{‖E(f(X)|M)− E(f(X))‖∞, f ∈ Λ1(X )} .
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Note that this definition slightly differs from Rio’s, who takes Λ1(X ) as the set of 1-
Lipschitz functions from X to [0, 1]. With our definitions, τ(M, X) and ϕ(M, X) have
an interpretation in terms of the Kantorovitch-Rubinstein distance (see Section 7.1 below).

The main advantage of such definitions in spaces of higher dimension is that it allows
to define the dependence between two sequences (Xi)i≥0 and (Mi)i≥0 by considering k-
tuples in the future and not only a single variable. More precisely, put the distance
d1(x, y) = d(x1, y1) + · · ·+ d(xk, yk) on X k, and define

τk(i) = max
1≤l≤k

1

l
sup{τ(Mp, (Xj1 , . . . , Xjl

)), p + i ≤ j1 < · · · < jl} and τ∞(i) = sup
k>0

τk(i).

The coefficient ϕk and ϕ∞ are defined in the same way.

7.1 Coupling

Let P and Q be two probability measures on a Polish space (X , d,B(X )). In 1970 Do-
brushin proved that there exists a probality measure µ on X×X such that µ(·×X ) = P (·),
µ(X × ·) = Q(·) and

1

2
‖P −Q‖ = µ({x 6= y, (x, y) ∈ X × X}) , (7.2)

where ‖.‖ is the variation norm. Starting from (7.2) (cf. Proposition 4.2.1 in Berbee
(1979)), Berbee obtained the following coupling result: let (Ω,A,P) be a probability
space, M a σ-algebra of A and X a X -valued random variable. If Ω is rich enough, there
exists X∗ distributed as X and independent of M such that

1

2
‖PX|M − PX‖ = E(1IX 6=X∗|M) almost surely (7.3)

From (7.3), it follows that β(M, σ(X)) = P(X 6= X∗).
It is by now well known that Dobrushin’s result (7.2) is a particular case of the Monge-

Kantorovitch problem (see for instance Rachev and Rüschendorf (1998), page 93). More
precisely, let d0 be the discrete metric d0(x, y) = 1Ix6=y and Λ1(X , d0) be the set of Borel
functions from X to R such that |f(x)− f(y)| ≤ d0(x, y). Property (7.2) is equivalent to:
there exists a probability µ on X × X such that µ(· × X ) = P (·), µ(X × ·) = Q(·) and

Kd0(P,Q) := sup
{∣∣∣

∫
f(x)P (dx)−

∫
f(x)Q(dx)

∣∣∣, f ∈ Λ1(X , d0)
}

=

∫
d0(x, y)µ(dx, dy).

(7.4)
In fact, (7.4) holds for a wide class of distances (for instance the distances satisfying
the equality (4.5.1) in Rachev and Rüschendorf (1998)). In particular it holds for any
continuous (with respect to d) distance d0. In that case, one can prove an analogue of
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Berbee’s result: if Ω is rich enough, there exists X∗ distributed as X and independent of
M such that

Kd0(PX|M,PX) = E(d0(X,X∗)|M) almost surely. (7.5)

If d0 = d and M = σ(Z) for some random variable Z with values in a Polish space Z,
property (7.5) has been proved in Dedecker and Prieur (2004). Our proof is based on
a conditional version of the Kantorovitch and Rubinstein theorem (see Proposition 1.2).
After this note was published, we read the book by Castaing et al. (2004) on Young
measures. Using the equality (3.4.4) in Castaing et al. (2004) instead of Proposition 1.2
in Dedecker and Prieur (2004), we see that (7.5) is true for any σ-agebra M of A and
any continuous distance d0 with respect to d. From (7.5) with d0 = d we obtain that
τ(M, X) = E(d(X,X∗)).

Starting from their coupling properties, one can compare the coefficients β(M, σ(X))
and τ(M, X). Following the proof of Proposition 2.3 in Merlevède and Peligrad (2002),
we obtain that, for any x in X ,

τ(M, X) ≤ 2

∫ β(M,σ(X))

0

Qd(X,x)(u)du , (7.6)

where the function Qd(X,x) is defined as in Proposition 2 (note that (7.6) can be deduced
from Proposition 2.3 of Merlevède and Peligrad (2002) with a constant 8 instead of 2). If
X = R, we know from item 2 of Proposition 2 that (7.6) holds for x = 0 and the weak
coefficient α(M, X). A reasonable question is then: can we obtain a bound similar to (7.6)
for any polish space X with the mixing coefficient α(M, σ(X)) instead of β(M, σ(X))? In
fact, this is not true in general, according to a counter-example given by Dehling (1983).
In this paper, he constructed an example of a sequence (Xk)k>0 with values in the unit
ball of `2, such that α(σ(Xi, 1 ≤ i < k), σ(Xi, i ≥ k)) converges to 0, and which cannot
be approximated by independent random variables Yk distributed as Xk in such a way
that ‖Xk − Yk‖`2 converges to 0 in probability. This proves that in infinite dimensional
Hilbert spaces the coefficients τ(M, X) and α(M, σ(X)) cannot be compared.

We shall give in equation (7.16) of Remark 7 an alternative definition for τ(M, X)
than that given in (7.1). With this other definition, (7.6) is true for α(M, σ(X)) instead
of β(M, σ(X)). For this weaker coefficient, according to Dehling’s example, the equality
τ(M, X) = E(d(X,X∗)) does not hold for any Polish space X , although it holds for R.

7.2 Examples

We proceed as in Examples 1, 2, 3 and 4 of Section 4. For ϕ, the case of causal functions
of uniformly mixing sequences has been studied in Rio (1996).

Example 1: causal functions of stationary sequences. Let (Xn)n∈Z, (X∗
n)n≥0 and
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Mi be defined as in Example 1 of Section 4. Then for jk > · · · > j1 ≥ i, we have both

τ(M0, (Xj1 , . . . , Xjk
)) ≤

k∑

l=1

‖Xjl
−X∗

jl
‖1 (7.7)

ϕ(M0, (Xj1 , . . . , Xjk
)) ≤

k∑

l=1

‖E(|Xjl
−X∗

jl
| |M0)‖∞ . (7.8)

Let (δi)i≥0 and (δ′i)i≥0 be two nonincreasing sequence such that ‖Xi − X∗
i ‖1 ≤ δi and

‖E(|Xi − X∗
i | |M0)‖∞ ≤ δ′i respectively. Then τ∞(i) ≤ δi and ϕ∞(i) ≤ δ′i. For in-

stance, if (ξi)i∈Z is iid and Xn =
∑

j≥0 ajξn−j, we can take δi = 2‖ξ0‖1

∑
j≥i |aj| and

δ′i = 2‖ξ0‖∞
∑

j≥i |aj|.
Example 2: iterative random functions. Let (Xn)n≥0, (X∗

n)n≥0 and Mi be defined
as in Example 2 of Section 4. Then (7.7) and (7.8) hold. Let(δi)i≥0 and (δ′i)i≥0 be two
nonincreasing sequences such that ‖Xi − X∗

i ‖1 ≤ δi and ‖E(|Xi − X∗
i | |M0)‖∞ ≤ δ′i

respectively. Then τ∞(i) ≤ δi and ϕ∞(i) ≤ δ′i. Denote by (Xx
n)n≥0 the chain starting from

Xx
0 = x. If (di)i≥0 is some non increasing sequence such that ‖Xx

i −Xy
i ‖1 ≤ di|x−y| then

δi ≤ 2‖X0‖1di and δ′i ≤ 2‖X0‖∞di. If ‖F (x, ξ0) − F (y, ξ0)‖∞ ≤ κ|x − y| for some κ < 1,
we can take di = κi. For instance, if Xn = f(Xn−1) + ξn for some κ-lipshitz function f ,
then τ∞(i) ≤ 2‖X0‖1κ

i and ϕ∞(i) ≤ 2‖X0‖∞κi.

Example 3: Markov kernels. Let (Xn)n∈N be a stationary Markov chain with val-
ues in X , with marginal distribution µ and transition kernel P satisfying Condition H
of Example 3, Section 4.3. Then for jk > · · · > j1 ≥ i and f in Λ1(X k), the func-
tion E(f(Xj1 , . . . , Xjk

)|Xj1=x) belongs to Λ1+κ+···+κk−1(X ) and consequently the function
fj1,...,jk

(x) = E(f(Xj1 , . . . , Xjk
)|X0 = x) belongs to Λκi(1+κ+···+κk−1)(X ). One has that

τ(σ(X0), (Xj1 , . . . , Xjk
)) ≤

∫∫
sup

f∈Λ1(Xk)

|fj1,...,jk
(x)− fj1,...,jk

(y)|µ(dx)µ(dy)

ϕ(σ(X0), (Xj1 , . . . , Xjk
)) ≤ sup

f∈Λ1(Xk)

sup
(x,y)∈X 2

|fj1,...,jk
(x)− fj1,...,jk

(y)| .

Consequently, if X∗
0 is an independent copy of X0, we obtain the bounds

τ(σ(X0), (Xj1 , . . . , Xjk
)) ≤ κi(1 + κ + · · ·+ κk−1)‖X0 −X∗

0‖1 (7.9)

ϕ(σ(X0), (Xj1 , . . . , Xjk
)) ≤ κi(1 + κ + · · ·+ κk−1)‖X0 −X∗

0‖∞ . (7.10)

We infer that τ∞(i) ≤ 2‖X0‖1κ
i and ϕ∞(i) ≤ 2‖X0‖∞κi.

Example 4: Expanding maps. Let T be a map from [0, 1] to [0, 1] satisfying Conditions
1. 2. and 3. of Section 4.4 (see the application). Assume moreover that the density fµ

ot the invariant probability µ satisfies (4.8). Let Xi = T i and define P as in (4.9).
We know from Section (4.4) that on ([0, 1], µ), the sequence (Xn, . . . , X0) has the same
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distribution as (Y0, . . . , Yn) where (Yi)i≥0 is the stationary Markov chain with Markov
Kernel P . Consequently

ϕ(σ(Xj, j ≥ i + k), (X0, . . . , Xk)) = ϕ(σ(Y0), (Yi, . . . , Yi+k)) . (7.11)

To bound ϕ(σ(Y0), (Yi, . . . , Yi+k)), the first step is to compute E(f(Y0, . . . , Yk)|Y0 = x).
As for P , define the operator Qk by

∫ 1

0

Qk(f)(x)g(x)fµ(x)dx =

∫ 1

0

f(T k(x), . . . , x)g(T k(x))fµ(x)dx .

Clearly E(f(Y0, . . . , Yk)|Y0 = x) = Qk(f)(x) and by definition

ϕ(σ(Y0), (Yi, . . . , Yi+k)) = supf∈Λ1(Rk+1) ‖P i ◦Qk(f)− µ(Qk(f))‖∞

= supf∈Λ1(Rk+1) ‖(P i − µ) ◦ (Qk(f)−Qk(f)(0)) ‖∞
(7.12)

Here, we use a recent result of Collet et al. (2002). Denote by ΛL1,...,Ln the set of functions
f from Rn to R such that

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ L1|x1 − y1|+ · · ·+ Ln|xn − yn| . (7.13)

Adapting Lasota-Yorke’s approach to higher dimension Collet et al. prove (page 312 line
6) that there exist K > 0 and 0 ≤ σ < 1 such that, for any f in ΛL1,...,Lk+1

,

‖dQk(f)‖ ≤ K

k∑
i=0

σiLi+1 . (7.14)

Applying (4.10), we infer from (7.12) and (7.14) that

ϕ(σ(Y0), (Yi, . . . , Yi+k)) ≤ Cρi‖Qk(f)−Qk(f)(0)‖v ≤ Cρi2‖dQk(f)‖ ≤ Cρi2K
k∑

j=0

σj.

Moreover, according to (7.11), the same bound holds for ϕ(σ(Xj, j ≥ i+k), (X0, . . . , Xk)).
For the Markov chain (Yi)i≥0 and the σ-algebras Mi = σ(Yj, j ≤ i) we obtain from (7.14)
that

ϕ∞(i) ≤
(
2 CK

∑
j≥0

σj
)
ρi .

7.3 Bennett-type inequalities and Functional LIL

In this section, we recall some recent results for τ -dependent sequences obtained in
Dedecker and Prieur (2003). The first Proposition extends Bennett’s inequality for in-
dependent sequences to the case of τ -dependent sequences. For any positive integer q,
we obtain an upper bound involving two terms: the first one is the classical Bennett’s
bound at level λ for a sum

∑
n of independent variables ξi such that Var(

∑
n) = vq and

‖ξi‖∞ ≤ qM , and the second one is equal to nλ−1 τq(q + 1).
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Proposition 6 Let (Xi)i>0 be a sequence of real-valued random variables bounded by M ,
and Mi = σ(Xk, 1 ≤ k ≤ i). Let Sk =

∑k
i=1(Xi − E(Xi)) and Sn = max1≤k≤n |Sk|. Let q

be some positive integer, vq some nonnegative number such that

vq ≥ ‖Xq[n/q]+1 + · · ·+ Xn‖2
2 +

[n/q]∑
i=1

‖X(i−1)q+1 + · · ·+ Xiq‖2
2 .

and h the function defined by h(x) = (1 + x) ln(1 + x)− x.

1. For any positive λ, P(|Sn| ≥ 3λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM

vq

))
+

n

λ
τq(q + 1) .

2. For any λ ≥ Mq, P(Sn ≥ (1Iq>1 + 3)λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM

vq

))
+

n

λ
τq(q + 1) .

Starting from the second inequality and using the coupling property of τ(M, X) for
real-valued random variables, we can prove a functional law of the iterated logarithm.
We need some preliminary notations. Let (Xi)i∈Z be a stationary sequence of real-valued
random variables. let Q = QX0 be defined as in Proposition 2 and let G be the inverse of
x → ∫ x

0
Q(u)du. Let S be the subset of C([0, 1]) consisting of all absolutely continuous

functions with respect to the Lebesgue measure such that h(0) = 0 and
∫ 1

0
(h′(t))2dt ≤ 1.

Theorem 1 Let (Xi)i∈Z be a stationary sequence of zero-mean square integrable random
variables, and Mi = σ(Xj, j ≤ i). Let Sn = X1 + · · · + Xn and define the partial sum
process Sn(t) = S[nt] + (nt− [nt])X[nt]+1. If

∞∑

k=1

∫ τ∞(k)

0

Q ◦G(u) du < ∞ (7.15)

then Var(Sn) converges to σ2 =
∑

k∈ZCov(X0, Xk). If furthermore σ > 0 then the process
{σ−1 (2n ln ln n)−1/2 Sn(t) : t ∈ [0, 1]} is almost surely relatively compact in C([0, 1]) with
limit set S.

Remark 7. Proposition 6 and Theorem 1 remain valid when replacing the definition of
τ(M, X) given in (7.1) by the weaker one

τ(M, X) = sup
f∈Λ1(X )

∥∥∥sup
{∣∣∣

∫
g◦f(x)PX|M(dx)−

∫
g◦f(x)PX(dx)

∣∣∣, g ∈ Λ1(R)
}∥∥∥

1
. (7.16)

The coefficient τ∞(i) obtained from (7.16) instead of (7.1) is comparable to the usual
strong mixing coefficient α′∞(i) = α(M0, σ(Xk, k ≥ i)). In particular, keeping the same
notations as in Theorem 1, we have that

∫ τ∞(k)

0

Q ◦G(u) du ≤ 2

∫ α′∞(i)

0

Q2(u) du ,

so that condition (7.15) is weaker than Rio’s condition (1995) for the functional LIL.
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7.4 A concentration inequality for Lipschitz functions.

Recall that if (X , d) is a Polish space, we put the distance d1 on the product space X n:
d1(x, y) = d(x1, y1)+· · ·+d(xn, yn). The space Λ1(X n) is the space of 1-Lipschitz functions
from X n to R with respect to d1.

The following inequality is a straightforward consequence of Theorem 1 in Rio (2000b).

Theorem 2 Let (X1, . . . Xn) be a sequence of random variables with values in a Polish
space (X , d) and Mi = σ(X1, . . . , Xi). Let ∆i = inf{2‖d(Xi, x)‖∞, x ∈ X} and define

Bn = ∆n and for 1 ≤ i < n, Bi = ∆i + 2ϕ(Mi, (Xi+1, . . . , Xn)) .

For any f in Λ1(X n), we have that

P(f(X1, . . . , Xn)− E(f(X1, . . . , Xn)) ≥ x) ≤ exp
( −2x2

B2
1 + · · ·+ B2

n

)
.

This theorem applies to the examples given in Section 7.2. Recall that the set ΛL1,...,Ln

has been defined in (7.13).

Examples 1 and 2: causal functions of stationary sequences and iterated ran-
dom functions. Keeping the same notations as in Examples 1 and 2 of Section 7.2, let
δ′i = ‖E(|Xi −X∗

i | |M0)‖∞ and define

Mn = Ln∆0 and for 1 ≤ i < n, Mi = Li∆0 + 2(Li+1δ
′
1 + · · ·+ Lnδ′n−i) .

For f any function f belonging to ΛL1,...,Ln , we have

P(f(X1, . . . , Xn)− E(f(X1, . . . , Xn)) ≥ x) ≤ exp
( −2x2

M2
1 + · · ·+ M2

n

)
. (7.17)

Example 3: Markov kernels. Let (Xn)n∈N be a stationary Markov chain with values
in X , with marginal distribution µ and transition kernel P satisfying Condition H of
Example 3, Section 4.3. For any function f belonging to ΛL1,...,Ln , the bound (7.17) holds
with

Mn = Ln∆0 and for 1 ≤ i < n, Mi = ∆0(Li + 2Li+1κ + · · ·+ 2Lnκn−i) .

Example 4: Expanding maps. Let T be an expending map from [0, 1] to [0, 1] satis-
fying the assumptions of Section 7.2. Let Xi = T i and Yi be the associated Markov chain
(cf. Section 7.2). Starting from (7.14) and (4.10), we infer that the bound (7.17) holds
for f(Y1, . . . , Yn) with

Mn = Ln∆0 and for 1 ≤ i < n, Mi = ∆0Li + 4CKρ(Li+1 + · · ·+ Lnσ
n−i−1) .
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Since (X1, . . . , Xn) has the same distribution as (Yn, . . . , Y1), we obtain the bound (7.17)
for f(X1, . . . , Xn) with

Mn = L1∆0 and for 1 ≤ i < n, Mi = ∆0Ln−i+1 + 4CKρ(Ln−i + · · ·+ L1σ
n−i+1) .

Remark 8. Assume that (7.17) holds for Mi = δ0Li + δiLi+1 + · · · + δn−iLn (which is
the case in the four examples studied above) and let Cn = δ0 + · · · + δn−1. Applying
Cauchy-Schwarz’s inequality, we obtain the bound M2

i ≤ Cn

∑n
j=i δj−iL

2
i , and conse-

quently
∑n

i=1 M2
i ≤ C2

n

∑n
i=1 L2

i . Hence, (7.17) yield the upper bound

P(f(X1, . . . , Xn)− E(f(X1, . . . , Xn)) ≥ x) ≤ exp
( −2x2

C2
n(L2

1 + · · ·+ L2
n)

)
. (7.18)

For expanding maps (Example 4 above) (7.18) has been proved by Collet et al (2002).

7.5 A Berry-Esseen inequality

The following Berry-Esseen bound is due to Rio (1996), Theorem 1.

Theorem 3 Let (Xi)i∈Z be a stationary sequence of real-valued bounded and centered
random variables and Mi = σ(Xj, j ≤ i). Let Sn = X1 + · · · + Xn and σn = ‖Sn‖2. If
lim supn→∞ σn = ∞ and ∑

n>0

nϕ3(n) < ∞ , (7.19)

then n−1σ2
n converges to σ2 =

∑
k∈ZCov(X0, Xk). Moreover σ > 0 and

sup
x∈R

∣∣∣P(Sn ≤ xσn)− 1√
2π

∫ x

−∞
exp(−x2/2)dx

∣∣∣ ≤ C√
n

,

where C depends only on ‖X0‖∞, (ϕ3(k))k≥0 and σ.

Remark 9. In fact, in Rio’s theorem, the condition is
∑

n>0 nϕ′3(n) < ∞, where

ϕ′3(i) = sup
p+i≤j1<j2<j3

sup{‖E(f(Xj1 , Xj2 , Xj3)|Mp)− E(f(Xj1 , Xj2 , Xj3))‖∞, f ∈ Λ′1(R3)}

and Λ′1(R3) is the set of f from R3 to [0, 1] such that |f(x) − f(y)| ≤ max1≤i≤3 |xi − yi|.
Under the assumptions of Theorem 3, we have ϕ′3(i)/3 ≤ ϕ3(i) ≤ (1 ∨ 2‖X0‖∞)ϕ′3(i), so
that (7.19) is equivalent to Rio’s condition.
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[10] C. Castaing, P. Raynaud de Fitte and M. Valadier, (2004). Young Measures on Topologi-
cal Spaces. With Applications in Control Theory and Probability Theory. Kluwer Academic
Publishers, Dordrecht.

[11] P. Collet, S. Martinez and B. Schmitt, (2002). Exponential inequalities for dynamical mea-
sures of expanding maps of the interval. Probab. Theory. Relat. Fields 123 301-322.

[12] J. Deddens, M. Peligrad and T. Yang, (1987). On strong consistency of kernel estimators
under dependence assumptions. Mathematical statistics and probability theory Vol. B 33–41,
(Bad Tatzmannsdorf, 1986) Reidel, Dordrecht.

33



[13] J. Dedecker and P. Doukhan, (2003). A new covariance inequality and applications. Sto-
chastic Process. Appl. 106 63-80.

[14] J. Dedecker and C. Prieur, (2003). Coupling for τ -dependent sequences and applications.
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