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Complications of Human Art in Statistics

"he parametric model is misspecified.

(R
2. The target parameter is interpreted as if
parametric model is correct.

3. The parametric model is often data-
adaptively (or worse!) selected, and this
part of the estimation of procedure is not
accounted for in the variance.




Estimation is a Science, Not an Art

1. Data: realizations of random variables
with a probability distribution.

2. Model: actual knowledge about the data-
generating probability distribution.

3. Target Parameter: a feature of the data-
generating probability distribution.

4. Estimator: an a priori-specified algorithm,
benchmarked by a dissimilarity-measure
(e.g., MSE) w.r.t. target parameter.




Targeted Learning

 Avoid reliance on human art and non-realistic
(parametric) models

* Define interesting parameters

» Target the fit of data-generating distribution
to the parameter of interest

o Statistical Inference!
TMLE/SL

Targeted Maximum Likelihood
coupled with Super Learner methodology




TMLE/SL Toolbox

Targeted effects
Effect of static or dynamic treatments (e.g. on survival time)
Direct and Indirect Effects
Parameters of Marginal Structural Models

Variable importance analysis in genomics

Types of data

Point treatment

Longitudinal/Repeated Measures
Censoring/Missingness/Time-dependent confounding.

Case-Control

Randomized clinical trials and observational data




Two-stage Methodology: SL/TMLE

1. Super Learning

« Uses a library of estimators

« Builds data-adaptive weighted
combination of estimators

* Weights are optimized based on loss-
function specific cross-validation to
guarantee best overall fit

2. Targeted Maximum

Likelihood Estimation
« Zooms in on one aspect of the
estimator—the target feature
« Removes bias for the target.




Targeted Maximum Likelihood

* MLE/SL aims to do well estimating whole density

* Targeted MLE aims to do well estimating the
parameter of interest

* General decrease in bias for parameter of
Interest

* Fewer false positives

* Honest p-values, inference, multiple testing




Targeted Maximum Likelihood
Estimation Flow Chart
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Targeted MLE

|ldentify optimal parametric model for fluctuating initial =
— Small *fluctuation” -> maximum change in target

Given strategy, identify optimum amount of fluctuation
by MLE

Apply optimal fluctuation to P -> 1st-step targeted

maximum likelihood estimator
Repeat until the incremental “fluctuation” is zero
— Some important cases: 1 step to convergence

Final probability distribution solves efficient influence
curve equation

- T-MLE is double robust & locally efficient




Targeted Minimum Loss Based
Estimation (TMLE)

U(Qq) target parameter
Qo = argming PL(Q) =+ L(Q)(0)dPy(o)

A

Q(Py) : Initial estimator, Loss-based SL
{Qg(€) : €} fluct. model for fitting 1)y

g = g(Pp) loss based SL of treatment/cens mech
d = A A

4L(Qyle)) = D*(@Q.9)

€p, = arg mine PnL(Qﬁ(e))

[terate till convergence: Q™

Solves efficient influence curve equation:

PnD*(Q*ag) — 0
TMLE: ¥(Q*)




TMLE for Average Causal Effect

Non-parametric structural equation model for a point
treatment data structure with missing outcome.

fw(Uw)

fa(W, Upa)

fa(W, A, Up)
fy(W,A A, Uy).

We can now define counterfactuals Y(1,1) and Y(0,1)
corresponding with interventions setting A and A.

We assume U, and U, independent of U, given W.

The additive causal effect EY(1)-EY(0) equals:
Y (P)=E[E(Y|A=1, A=1, W)-E(Y|A=0, A=1, W)]




TMLE for Average Causal Effect

« Our first step is to generate an initial estimator P ° of P; we
estimate E(Y|A, A=1, W) with super learning.

« We fluctuate this initial estimator with a logistic regression:
logit Po2(e(Y =1 | A A=1W)=1logitP’ (Y =1|A A =1 W)+eh

w) — L ( A _1—A)

(A, W) \g(1 | W) g(0]W)

g(1| W)= P(A=1]| W) Treatment Mechanism
II(A, W)= P(A=1]| A, W) Missingness Mechanism

* Let £ be the maximum likelihood estimator and
P, =P (g,) The TMLE is given by W(P,).




TMLE of Mean when Outcome
Is Missing at Random

Kang and Shafer debate




Kang and Schafer, 2007

n i.i.d. unitsof O=(W, A, AY)~P,
W is a vector of 4 baseline covariates
A is an indicator of whether the continuous outcome, Y, is observed.

Parameter of interest
w(Pg) = Eo(Y) = Eo(Eo(Y | A =1,W))

Observed covariates:
=exp(Z,/ 2)
=Z,/(1+exp(Z,)) +10
=(Z,25/25+ 0.6)°
= (2, + Z, + 20)?
where Z,, ..., Z, ~ N(0O, 1) independent
Y=210+274Z,+13.7Z,+13.72Z;+ 13.7 Z,+ N(O, 1)

9o(1| W) = P(4=1| W) = expit(-Z, + 0.5 Z,- 0.25 Z;- 0.1Z,)
9,(1| W) between (0.01, 0.98)




TMLE for Binary Y

* A semi-parametric efficient substitution
estimator that respects bounds; .
> 0,W).

W = —
n -

logitQ (W) =110g itQ (W) + eh(LW).
where h(LW) = .
. . g (LIW) .
— ¢ is estimated by maximum likelihood,
— Loss function:

~L(Q)(0i) = A{Y log Q(W) + (1-Y)log(1- Q(W))}

We use machine learning (preferably super learner) for Q Oand for g if the missingness mechanism is
unknown. n n




TMLE for Continuous Y €[0.,1]

« If Y&][0,1] , we can implement this same TMLE as we
would for binary Y.

We use the same logistic fluctuation as defined on the
previous slide, using standard software for logistic
regression and simply qnorlng that Y is not binary. The
ggqnoe) loss function is still valid (Gruber and van der Laan,

If)Y is bounded between (a,b), then we transform it into Y*=(Y-a)/(b-
a
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Targeted Maximum Likelihood
Learning for Time to Event Data,
Accounting for Time Dependent
Variables: Analyzing the Tshepo

RCT

Ori M. Stitelman, Victor DeGruttolas,
Mark J. van der Laan
Division of Biostatistics, UC Berkeley




Data Structure

n i.i.d copies of O = (AW, (A(t):t),(L(t):t)) ~ p,

A — Treatment — HIV cART therapy (EFV/NVP)
W=L(0) — Baseline Covariates — Sex, VL, BMI
A(t) — Binary Censoring Variables

— Equals 1 When Individual is Censored.
— Equals 0 at all time when individual is not censored.
— A(t) is equal to the history of A(t)
L(t) — Failure time event process, and time-
dependent process (CD4+, Viral Load)

= | (t) is defined as (L(s):s <').

— We code L(t) with binaries.




Causal Graph For 3 Time Points
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Likelihood of the Observed Data
?9..@,0“3@

b n(t) n(tg) 1 LD

ITIT T P&, 0| Pa(L(t,j.1)))

t=1j=1 I=1

1 gA(t)

HP t) | Pa(A(t)))




G-computation Formula

A(1) A(2)
=0 \ =0
p — p —
A=a
p —

QrL,j l) a,0
L(t,5,1) | Pa(L (t]l))A—a,A(t—l):(ﬁ




Parameter of Interest

* Treatment specific survival curve:

= P(Tup > ti)
Ew P (Ta,o > tg ‘ W)
EHP(L(tkq ]-a 1)&,0 =0 ‘ ”Y)

) n(tg)—1

Qrie.ia(l(t,4,1) | Pa(l(t,5,1)), A =a, A(t

=1




Simulations of TMLE of causal

effect of treatment on survival

accounting for time-dependent
covariates

« Compare TMLE with Estimating Equation
(EE) and IPCW, both with and without the

iIncorporation of time-dependent covariates




Simulations with informative censoring. The pl‘CCiSC data-generating mechanism
o g
iS dCSCI’ide das fOllOWS.

1) Drawing baseline covariates W(0) involved first generating from a mean-zero
multivariate normal and truncating any component from above by 2 and from
below by -2. The covariance matrix was defined as 1 on the diagonal and 0.2 off
the diagonal. The truncation was enforced to ensure that the censoring mecha-
nisms were not suffering from practical violations of the positivity assumption,
as required for identifiability of S (7).

The two time-dependent covariates Wy(r) and Ws(7) were generated as follows:

Wy(t) = 0.2A(0) + 0.5W,(0) — 04W2(0) - 04“{;(0) -+ 2“/4(1 - 1)+ 2“/5(1‘ - 1)+ Uy
Ws(t) = 0.1A(0) + 0.1W(0) + 0.1W5(0) — 0.4W3(0) + 2Wy(1r) + 2W5s(t — 1) + Us,

where U4 and Us are 1.1.d. N(O,o0 = 0.4).
3) The event indicators, N(t), were generated as Bernoulli indicators with probabil-
ity defined by the following conditional hazard of time to failure 7'

Ar(t) = CXpil(—3+0.3A(0)+0.3 Wi(0)=0.3W5(0)=0.3W5(0)+2W4(t—1)+2W5(t—1)).




(4) The censoring indicators, A(f), were generated as Bernoulli indicators with prob-
ability defined by the following conditional hazard for censoring for the low and
highly informative censoring case, respectively:

Ac(t) = expit(—=4 + 0.8A(0) + 0.3W;(0)

—0.3W5(0) = 0.3W3(0) — 0.01Wy4(r) — 0.01Ws(r — 1)),
Ac(t) = expit(—=4 + 0.8A(0) + 0.3W,(0)

—0.3W5(0) = 0.3W3(0) = 0.1Wy(r) — 0.1Ws(r — 1)).




Time-dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

Low informative
Mean of Estimates 0471 0471 0451 0469 0469 0469
MSE 0.00070 0.00073 0.00127 0.00082 0.00081 0.00093

Highly informative
Mean of Estimates 0472 0472 0.172 0436 0.437 0.394
MSE 0.00066 0.00067 0.08864 0.00215 0.00210 0.00773

Simulation results for low and highly informative censoring




Simulations with independent censoring. The data-generating distribution was the
same as above, except the censoring mechanism was modified. The hazard of cen-
soring was only a function of time, such that censoring was independent of the
evolving processes, but three different hazards were considered, representing dif-
ferent levels of independent censoring: no censoring, medium censoring, and high

censoring. In the first scenario, each individual was left uncensored. In the second
and third scenario each subject was censored with either 20% probability (medium)
or 60% probability (high).




Time-dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW

No censoring
Mean of Estimates  0.469 0469 0469 0468 0468 0469
MSE 0.00047 0.00047 0.00054 0.00048 0.00048 0.00054

Medium censoring
Mean of Estimates  0.467 0467 0470 0469 0469 0468
MSE 0.00063 0.00086 0.00203 0.00093 0.00093 0.00169

High censoring
Mean of Estimates 0476 0477 0477 0464 0464 0466
MSE 0.00111 0.00315 0.00566 0.00180 0.00181 0.00417

Simulation results for independent censoring




Removing W;(7) From Initial Model Specification

Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.457 0.455 0.172 0.420 0.421 0.411
Mean SE 0.034 0.063 0.026 0.035 0.036 0.067
Mean Square Error | 0.00133 0.01211 0.08893 | 0.00360 0.00359 0.00512
Coverage 0.900 0.900 0.000 0.740 0.740 0.910
Removing W5(7) From Initial Model Specification
Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.459 0.461 0.173 0.411 0.411 0.396
Mean SE 0.034 0.066 0.026 0.038 0.038 0.065
Mean Square Error | 0.00133 0.01649 0.08840 | 0.00467 0.00465 0.00725
Coverage 0.920 0.920 0.000 0.640 0.650 0.810
Removing W;(7) and W5(z) From Initial Model Specification
Time Dependent Baseline
TMLE EE IPCW TMLE A-IPCW IPCW
Mean of Estimates 0.462 1.243 0.357 0.405 0.405 0.403
Mean SE 0.616 0.619 0.056 0.038 0.038 0.063
Mean Square Error | 0.00472 1.02729 0.01415 | 0.00549 0.00549 0.00604
Coverage 1.000 1.000 0.440 0.590 0.600 0.870

Iable 5:

Mean Square Error for All Six Estimators

Simulation Results For Independent Censoring: Mean of Estimates and




Tshepo Results Incorporating
Time Dependent Covariates




Effect of Treatment on Death

* Mean Risk Difference

TD TMLE TD DR-EE TD IPW BASE TMLE BASE DR-EE BASE IPW
Est 0.006 0.005 -0.013 0.004 0.004 0.006
SE 0.012 0.012 0.083 0.012 0.012 0.083
p 0.604 0.661 0.871 0.758 0.756 0.939

* Risk Difference @ 36 Months
TD TMLE TD DR-EE TD IPW BASE TMLE BASE DR-EE BASE IPW
Est 0.005 0.004 0.003 0.002 0.002 0.003
SE 0.017 0.017 0.088 0.017 0.017 0.088
o) 0.750 0.821 0.973 0.925 0.924 0.973




Gender Effect Modification on

Death

* Mean Risk Difference

TD TMLE TD DR-EE TD IPW BASE TMLE BASE DR-EE BASE IPW
Est 0.039 0.039 0.043 0.033 0.032 0.037
SE 0.017 0.017 0.117 0.017 0.017 0.117
p 0.021 0.019 0.717 0.055 0.058 0.753

* Risk Difference @ 36 Months
TD TMLE TD DR-EE TD IPW BASE TMLE BASE DR-EE BASE IPW
Est 0.063 0.065 0.052 0.051 0.051 0.052
SE 0.023 0.023 0.125 0.024 0.024 0.125
p 0.005 0.004 0.680 0.029 0.030 0.680




Gender Effect Modification on
Death, Viral Failure, Drop-out

* Mean Risk Difference

TD TMLE TD DR-EE TD IPW BASE TMLE BASE DR-EE BASE IPW

Est 0.132 0.133 0.129 0.126 0.126 0.130
SE 0.039 0.038 0.101 0.038 0.038 0.100
p 0.001 0.001 0.199 0.001 0.001 0.196

* Risk Difference @ 36 Months

TD TMLE TD DR-EE TD IPW BASE TMLE BASE DR-EE BASE IPW

Est 0.200 0.201 0.183 0.189 0.189 0.183
SE 0.050 0.049 0.103 0.049 0.049 0.103
p 0.000 0.000 0.074 0.000 0.000 0.074




Causal Effect Modification By CD4
Level: Death
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Closing Remarks

True knowledge is embodied by semi or non-
parametric models

Define target parameter on realistic model

Semi-parametric models require fully automated
state of the art machine learning (super learning)

Targeted bias removal is essential and is
achieved by targeted MLE




Closing Remarks

« Targeted MLE is effective in dealing with
sparsity by being substitution estimator,
and having relevant criterion for fitting
treatment/censoring mechanism (C-TMLE)

« TMLE is double robust and efficient.
o Statistical Inference is now sensible.




Forthcoming book Targeted Learning coming June 2011

Mark J. van der Laan
Sherri Rose

Causal Inference for Observational
and Experimental Data

www.targetedlearningbook.com
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EXTRA SLIDES




Loss-Based Super Learning in
Semi-parametric Models

* Allows one to combine many data-adaptive
estimators into one improved estimator.

* Grounded by oracle results for loss-function
based cross-validation (vdL&D, 2003). Loss
function needs to be bounded.

» Performs asymptotically as well as best (oracle)
weighted combination, or achieves parametric
rate of convergence.




The Dangers of Favoritism

« Relative Mean Squared Error (compared
to main terms least squares regression)
based on the validation sample

m Study 1 Study 2 Study 3 Study 4

Least Squares 1.00 1.00 1.00 1.00
LARS 0.91 0.95 1.00 0.91

D/S/A 0.22 0.95 1.04

Ridge 0.96 0.9 1.02 0.98

Random 0.39 1.18 0.71

Forest

MARS .




Super Learning in Prediction

Method | Study 1__|Study2 | Study3 | Study4 | Overall _

Least 1.00 1.00 1.00 1.00 1.00
Squares

LARS 0.91 0.95 1.00 0.91 0.95
D/S/A 0.22 0.95 1.04 0.43 0.71
Ridge 0.96 0.9 1.02 0.98 1.00

Random 0.39 0.72 1.18 0.71 0.91
Forest

MARS 0.02 0.82 0.17 0.61 0.38

Super<— 002 067 0.16 022 019 ——>

Learner




The Library in Super Learning:
The Richer the Better

The key is a vast library of machine
learning algorithms to build your estimator

Currently 40+ R packages for machine

learning/prediction

If we combine dimension-reduction
algorithms with these prediction
algorithms, we quickly generate a large
library




Super Learner: Real Data

Super Learner-
BeSt Welghted discreteSL - ¢ o sOwe’

Comblnatlon Of bart - e o o wmm
algorithms for a gam(3) - o o ame

gam(4) - ®e e e

given prediction sam - .|
prOblem gam(5) - e ®mcmee

polymars - oo am o

Examp|e step.interaction -

SuperLearner- o e o o same

algorithm : Linear —
Main Term gimnet(.75) -

I glmnet(1) -
Regression i
glmnet(.25) -

DSA -
step -

ridge -
Example .

algorithm: <—TandomForest -
Random Forest gbm(1) - vves

svm = o OGI@e

1 2 8 101214
Relative MSE




Simulation study: Relative risk of heart attack, high vs. low dose
adjusted for correlated confounders*
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Simulated Safety Analysis of Epogen (Amgen)




Example: Targeted MLE in
RCT

Impact of Treatment on Disease




The Gain in Relative Efficiency in RCT is function
of Gain in R*2 relative to unadjusted estimator

We observe (W,A,Y) on each unit

A is randomized, P(A=1)=0.5

Suppose the target parameter is additive causal
effect EY(1)-Y(0)

The relative efficiency of the unadjusted
estimator and a targeted MLE equals 1 minus
the R-square of the regression

0.5 Q(1,W)+0.5 Q(0,W), where Q(A,W) is the

regression of Y on A,W obtained with targeted
MLE.




TMLE in Actual Phase IV RCT

« Study: RCT aims to evaluate safety based on
mortality due to drug-to-drug interaction among
patients with severe disease

« Data obtained with random sampling from
original real RCT FDA dataset

» Goal: Estimate risk difference (RD) in survival at
28 days (0/1 outcome) between treated and
placebo groups




TMLE in Phase IV RCT

Unadjusted TMLE

Estimate 0.034 0.043
p-value (RE) 0.085 (1.000) 0.009 (1.202)

« TMLE adjusts for small amount of empirical confounding
(imbalance in AGE covariate)

« TMLE exploits the covariate information to gain in
efficiency and thus power over unadjusted




TMLE in RCT: Summary

 TMLE approach handles censoring and improves
efficiency over standard approaches

— Measure strong predictors of outcome

* |Implications

— Unbiased estimates with informative censoring
— Improved power for clinical trials

— Smaller sample sizes needed

— Possible to employ earlier stopping rules

— Less need for homogeneity in sample
* More representative sampling
« Expanded opportunities for subgroup analyses
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The Likelihood for Right
Censored Survival Data

It starts with the marginal probability distribution of the
baseline covariates.

Then follows the treatment mechanism.
Then it follows with a product over time points t

At each time point t, one writes down likelihood of
censoring at time t, death at time t, and it stops at first
event

Counterfactual survival distributions are obtained by
iIntervening on treatment, and censoring.

This then defines the causal effects of interest as
parameter of likelihood.




TMLE with Survival Outcome

Suppose one observes

(W, A,A=1(T <C),T =min(T,C))
One wishes to estimate causal effect of treatment A on

survival T

Targeted MLE uses covariate information to adjust for
confounding, informative drop out and to gain efficiency




TMLE with Survival Outcome

« Target y,(¢,)=Pr(T>ty) and y,(¢,)=P1r(T,>t,) — thereby
1\lg ! 0) o\lo 0

| log 108 ¥1(t0)
1) Difference: Pr(T,>t,) - Pr(T,>t,), 2) Log RH: 5 log 1o (to)

target treatment effect, e.g.,

« Obtain initial conditional hazard fit (e.g. super learner for
discrete survival) and add two time-dependent covariates

I(A = §) S(to | A, W)

holt, A, W) = g(A| WGt | A, W) St | A, W)

— lterate until convergence, then use updated conditional hazard
from final step, and average corresponding conditional survival
over W for fixed treatments 0 and 1




TMLE analogue to log rank test

* The parameter,

5 (log S1 (to))

corresponds with Cox ph parameter, and
thus log rank parameter

» Targeted MLE targeting this parameter is
double robust




TMLE in RCT with Survival Outcome

Difference at Fixed End Point

Independent Censoring

% Bias

95%
Coverage

Relative
Efficiency

<1%

0.95

1.00

<1%

0.95

1.44

Informative Censoring

% Bias

95%
Coverage

Relative
Efficiency

13%

0.92

1.00

<1%

0.95

1.50




TMLE in RCT with survival outcome:
Log rank analogue

Independent Censoring

%

Power

95%
Coverage

Relative
Efficiency

Log rank

0.13

0.95

1.00

TMLE (correct A)

0.22

0.95

1.48

TMLE (mis-spec A)

0.19

0.95

1.24

Informative Censoring

% Bias

95%
Coverage

Relative
Efficiency

Log rank

32%

0.93

1.00

TMLE (correct A, correct G)

<1%

0.95

1.44

TMLE (mis-spec A, correct G)

<1%

0.95

1.24




Kang and Schafer Simulation

Continuous and 4 baseline covarieias,

The true population mean is 210, while the mean
among respondents is 200.

Covariates predict missingness and outcome
Positivity violations: and

The estimators of regressions on Y and Delta
are

either miss-specified or correctly specified, as in
KS.




Modifications to Kang and Schafer
Simulation

Modification 1

* The true population mean is again 210, but
now the mean among respondents is 184.

« More misspecification.

« Stronger Positivity violations:

Modification 2

« Same as above, except one of the covariates
no longer causally affects the outcome




Traditional Approach in Epidemiology

1.

2.

Fit several parametric logistic regression
models, and select a favorite one.

Report point estimate of coefficient in
front of treatment, confidence intervals,
and p-value, as If this parametric model

was a priori-specified.




Complications of Human Art in Statistics

The New Hork Times

September 16, 2007

Do We Really Know What Makes Us Healthy?

By GARY TAUBES

AMSTATNEWS

Statistics Ready for a Revolution

Next Generation of Statisticians Must Build
Tools for Massive Data Sets




Complications of Human Art in Statistics

Debate over HRT
Professional groups gave HRT their stamp of approval 15 years ago.

Studies indicated HRT protective against osteoporosis and heart disease.

In 1998, a study demonstrated increased risk of heart attack among
women with heart disease taking HRT.

In 2002 a study showed increased risk for breast cancer, heart disease, and
stroke, among other ailments, for women on HRT.

Why were there inconsistencies in the study results?




Complications of Human Art in Statistics

Debate over mammography

Mammography gained widespread acceptance as effective tool for breast
cancer screening in the 1980s.

The Health Insurance Plan trial and Swedish Two-County trial
demonstrated mammography saved lives.

In 2009, surprise over new recommendations from the U.S. Preventive
Services Task Force.

Among women without a family history, mammography now recommended
for women aged 50 to 74. Previous guidelines started at age 40.

Why was there a seemingly sudden paradigm shift?




Kaiser Permanente Data Summary

Nested case-control sample (n=27,012) from a Kaiser Permanente
database of persons over the age of 65 in 2003.

@ Outcome Y was death the subsequent year (2004).

e Covariates W = {W},... Wige} were 184 medical flags covering a
variety of diseases, treatments, and conditions as well as gender and

age.

Rose (UC Berkeley) Risk score prediction




Weighting

Since we use a two-stage design, we need to account for this in our
analysis with weighting.

The weighting method involves simple observation weights

wi = A;j/P,(A; =11]Y;), where A; = 1 indicates inclusion in the
nested case-control sample, to eliminate the bias of the sampling
design, where these observation weights are determined by inverse
probability of missingness.

Thus cases were given observation weights equal to 1 and controls
were each given an observation weight of 1/0.041=24

We incorporate inverse probability of missingness observation
weighting into the super learner algorithm to generate a risk score for
mortality in nested case-control data from a large Kaiser Permanente
database.

Rose (UC Berkeley) Risk score prediction




Rose (UC Berkeley)

Algorithm

SuperLearner
glm.

glm.

glm.

glm.

glm.

glm.

glm.

glm.

glm.

bayesglm
glmnet,a = 0.50
glmnet,a = 1.00
gam, degree = 2
gam, degree = 3
nnet, size = 2
nnet, size = 4

Risk score prediction




Targeted Learning

1. Traditional approaches for prediction and
effect estimation are biased

2. Super Learning allows researchers to
combine multiple algorithms to build a
prediction function

3. Targeted MLE provides bias reduction for
efficient effect estimation of the target
parameter




Summary of Simulation Results

« TMLE’s are more robust to violations of the

positivity assumption, and outperform the other
estimators.

 C-TMLE's perform better than TMLE when not all
covariates are causally related to outcome.

* Even the case in which all covariates are causally
related to the outcome, C-TMLE's still perform as
well as TMLE.




Q1)

« Convenient way of factorizing the Q part of
the likelihood for the contributions of the
binary variables L(t,},1).

B MCH (1) = (L(t,j) : j =1,....,n(1))
L(t,j) = (L(t,j,1) : 1 =1,..,n(t,j))

o Ort) = P(L(t) | Pa(L(t))) maybe

factorized in the following way:




IV g CEIeIEY Q) = P(L(¢, j) | Pa(L(t,7)))
may be factorized as:

= L(t—1),L(t,1),...,L(t,j — 1), A
QL(t,j,l) — P(L(tajal) ‘ Pa(L(taja l)))
Pa(L(t,j,1)) = Pa(L(t,)),L(t,5,1),...,L(t, 5,1 — 1)

 Finally, the entire contribution of Q to the
likelihood is: p——

Q= QL(O)HH Il Qresw

t=1 j= =1




Causal Effect of NNRTI: Death, VF,

™
2
c
=]
w
©
>
E
8
@
o
o
a

Parametric
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FDA
Estimate
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p-value
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Causal Effect Modification By CD4
Level: Death
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Parametric

Targeted Maximum Likelihood

Cox-PH

MeanRH MeanRD RDatt=34

DEATH
Estimate 1.4112
SE 0.880
p-value 0.110

—0.084
0.032
0.009

2.182
0.826
0.008

—0.050
0.021
0.017

T
10

20

Months On Study




The Need for Targeted Learning in
Semi-Parametric Models

1. MLE/machine learning are not targeted
for effect parameters.

2. For that, we need a subsequent targeted
bias-reduction step.

Targeted MLE




