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Introduction

Mediation analysis

Mediation analysis is one approach towards inferring
mechanism: by attempting to disentangle

direct effects: that part of the exposure effect which is not
mediated by a given set of potential mediators.
indirect / mediated effects: that part of the exposure effect
which is mediated by a given set of potential mediators.

!"#$%&'()* +&,-$.()/

0(123,$')0

4

Stijn Vansteelandt () Mediation analysis 2 / 35



Introduction

The Baron-Kenny approach

The standard approach, due to Baron and Kenny (1986),
focuses on linear models (with independent errors):

Y = θ0 + θ1X + θ2M + εY

M = β0 + β1X + εM

They interpret θ1 as the direct effect and θ2β1 as the
indirect effect of a unit increase in the exposure w.r.t.
mediator M.
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Introduction

Overview

There are broadly two lines of research:
1 effect decomposition: how to decompose a total effect

into direct and indirect components?
What exactly do we mean by direct and indirect effect?
How to decompose effects in non-linear models?

2 confounding: how to deal with complex confounding
patterns?
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Effect decomposition

The MIRA trial

Padian et al., 
Lancet 2007
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Effect decomposition Controlled direct effects

Controlled direct effects

controlled direct effect (Robins and Greenland, 1992; Pearl,
2001)
The effect of exposure on outcome that would be observed if
the mediator were controlled uniformly at a fixed value.
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Effect decomposition Controlled direct effects

The MIRA trial

controlled direct effect in the absence of condom use
Let Y (x ,m) denote the counterfactual HIV status under
exposure X = x (1: HIV prevention; 0: control) and
frequency of condom use M = m.
The difference in HIV risk that we would observe in a
randomized microbicide trial if condoms were not available:

E{Y (1,0)− Y (0,0)}
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Effect decomposition Controlled direct effects

The MIRA trial

controlled direct effect under a 100% condom use frequency
The difference in HIV risk that we would observe in a
randomized microbicide trial if condoms were always used:

E{Y (1,1)− Y (0,1)}

This direct effect is likely 0.
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Effect decomposition Natural direct effects

Natural direct effects

In this setting, it is not realistic to think of forcing the
mediator to be the same for all subjects.
Natural direct effects (Robins and Greenland, 1992; Pearl,
2001) allow for natural variation in the level of the mediator
between subjects.

A subject’s natural level of the mediator is taken to be the
(counterfactual) value M(0) it would have taken if the
exposure were 0.
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Effect decomposition Natural direct effects

The MIRA trial

natural direct effect
The difference in HIV risk that we would observe in a
randomized microbicide trial if condom use remained as in the
absence of microbicides:

E{Y (1,M(0))− Y (0,M(0))}

It thus roughly expresses what the intention-to-treat effect
would have been, had condom use not been affected.
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Effect decomposition Natural direct effects

Natural indirect effects

This formalism also enables a meaningful definition of
indirect effect.

Robins and Greenland (1992) define the total indirect
effect as

total effect − natural direct effect
= E{Y (1,M(1))− Y (0,M(0))} − E{Y (1,M(0))− Y (0,M(0))}

= E{Y (1,M(1)) − Y (1,M(0))}

No similar result for controlled direct effects.
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Effect decomposition Summary

Summary: effect decomposition

Traditional Baron-Kenny approach decomposes total
effects into direct and indirect components, but

interpretation is vague;
there is no natural extension to non-linear models

Framework of natural direct effects enables effect
decomposition regardless of the data distribution!
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Effect decomposition Summary

References on definitions and identification
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Effect decomposition Summary

References on effect decomposition and estimation
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Confounding Problems of traditional regression adjustment

The standard approach
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From now on: controlled direct effects.
These are commonly inferred by adjusting the association
between exposure X and outcome Y for the mediator M
(Baron and Kenny, 1986):

E(Y |X ,M) = γ0 + γ1X + γ2M

Even when X is randomly assigned, this may introduce a
collider-stratification bias.
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Confounding Problems of traditional regression adjustment

No unmeasured confounders
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We assume that all confounders L for the association
between mediator and outcome have been measured.
Additional adjustment for L removes this bias:

E(Y |X ,M,L) = γ0 + γ1X + γ2M + γ3L
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Confounding Problems of traditional regression adjustment

The problem of intermediate confounding
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It is often realistic to believe that some of those
confounders L are themselves affected by the exposure.
Additional adjustment for L then continues to introduce
bias.

Stijn Vansteelandt () Mediation analysis 17 / 35



Confounding Inverse probability weighted estimation

Inverse probability weighted estimation (1)
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Robins (1999) proposes inverse weighting the data by

1
f (M|X ,L)
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Confounding Inverse probability weighted estimation

Inverse probability weighted estimation (2)
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This removes the association between the mediator and its
causes, so that only a direct effect remains.
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Confounding Inverse probability weighted estimation

Inverse probability weighted estimation (3)

An estimate of the direct exposure effect β may thus be
obtained by regressing outcome on exposure and mediator,
after weighting each subject by

1
f (M|X ,L)

interpretation
Fitting model

E(Y |X ,M) = α + βX + γM

after inverse weighting by 1/f (M|X ,L) yields estimates of the
parameters in the marginal structural model (Robins et al.,
2000)

E{Y (x ,m)} = α + βx + γm
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Confounding Inverse probability weighted estimation

Limitations of inverse probability weighting

IPW estimators may behave erratically in finite samples
when the mediator M is quantitative;
or has strong predictors X and L.

This is because small densities f (M|X ,L) can make
subjects with weight

1
f (M|X ,L)

highly influential.
In view of this, G-estimators have been proposed (Robins,
1994; Goetgeluk, Vansteelandt and Goetghebeur, 2008;
Vansteelandt, 2009).
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Confounding G-estimation

G-estimator (1)
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First, remove the indirect effect from the outcome,
Y ∗ ≡ Y − γ̂M, where γ̂ is estimate from a regression model

E(Y |X ,M,L) = δ1 + δ2X + δ3L + γM
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Confounding G-estimation

G-estimator (2)

Exposure X Outcome Y*

Mediator M

Confounder L

U

Now only a direct effect remains.
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Confounding G-estimation

G-estimator (3)

We thus estimate the direct effect parameter β by fitting

E(Y − γ̂M|X ) = α + βX

The resulting parameter β can be interpreted as a
controlled direct effect:

E {Y (1,m)− Y (0,m)} = β
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Confounding G-estimation

Exposure-mediator interactions

When the model

E {Y (x ,m)− Y (0,m)|C} = β1x + β2xm

is of interest, then we first fit the standard regression model

E(Y |X ,M,L,C) = δ1 + δ2X + δ3L + γM + β2XM + λC

and next
E(Y − γM − β2XM|X ,C) = α + β1X
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Confounding Survival analysis

Direct effects on the additive hazard scale

Martinussen et al. (2011) extend G-estimation to additive
hazard models.
Their initial focus is on the difference in hazard functions

γX ,m(t)dt =E
{

dN(1,m)(t)|F(1,m),t
}

− E
{

dN(0,m)(t)|F(0,m),t
}
.

This cannot be interpreted as a direct (causal) effect
because the two subgroups may not be exchangeable.

We will therefore define the controlled (cumulative) direct
effect (Robins and Greenland, 1992; Pearl, 2001) of X on
survival time T other than through M as

ΓX ,m(t) =

∫ t

0
γX ,m(s) ds
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Confounding Survival analysis

Cumulative direct effect

This encodes a controlled direct effect because

exp
{
−ΓX ,m(t)

}
=

P{T (1,m) > t}
P{T (0,m) > t}

example: MIRA trial
This is the relative risk of avoiding HIV by time t on intervention
versus control in the hypothetical situation where male condom
use was uniformly kept at level m.
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Confounding Survival analysis

First stage: assess mediator effect

The mediator’s effect on the survival time can be obtained from
a standard Aalen additive hazards analysis (Aalen, 1989)

E {dN(t)|Ft ,X ,M,L} = {ψ0(t) + ψX (t)X + ψM(t)M + ψL(t)L}R(t)dt
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Confounding Survival analysis

Second stage: remove mediator effect

We will now correct the event time by removing the
mediator effect.
This requires correcting the increment dN(t) as well as the
risk set R(t) at each time t .

The correction in the increment is achieved by substituting
dN(t) with

dN(t)− ψM(t)Mdt

The correction in the risk set is achieved by substituting
R(t) with

R(t) exp
{

M
∫ t

0
ψM(s)ds

}
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Confounding Survival analysis

Third stage: estimate total effect on corrected counting
process

From this, it can be shown that(
1
X

)
R(t) exp

{
M
∫ t

0
ψM(s)ds

}
︸ ︷︷ ︸

modification of risk set
×{dN(t)−MψM(t)dt − γ0(t)dt − XγX (t)dt}︸ ︷︷ ︸

residual

is an unbiased estimating function.
From this, a closed form estimator is obtained.
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Confounding Survival analysis

Application to Danish 1905 cohort

Goal: direct effect of carrying apoe4 mutation on survival
other than through activity of daily living.
Intermediate confounding by cognitive functioning.
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Confounding Survival analysis

Direct cumulative effect of carrying apoe4 mutation on
survival other than through activity of daily living
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Summary

Confounding

Traditional Baron-Kenny approach ignores confounding of
the association between mediator and outcome.
When, as often, such confounders are themselves affected
by the exposure, standard regression methods are no
longer applicable.
Other ‘manipulations’ of causal diagrams needed.
We have discussed 2 ‘generic’ approaches for controlled
direct effects.

Inverse probability weighting works by removing the
association between mediator and exposure, and thus
removing the indirect effect from the data.
This approach works for any outcome type, but is
essentially limited to discrete mediators.
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Summary

G-estimation

G-estimation works by removing the effect of mediator on
outcome, and thus also removing the indirect effect from
the data.
This approach works for any mediator type and is much
more powerful than inverse probability weighting, but
cannot handle any type of outcome:

linear models for continuous outcomes (Vansteelandt,
2009);
log-linear models for positive-constrained outcomes
(Vansteelandt, 2009);
logistic models for dichotomous outcomes (Vansteelandt,
2010);
additive hazard models for survival times (Martinussen et
al., 2011).
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Summary

References on intermediate confounding
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