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Introduction

Title of talk: “Construction and statistical analysis of adaptive group sequential designs for RCTs”

What do we mean? by

• group sequential design: reference to the fact that group sequential methods can be equally

well applied on top of adaptive designs (not shown here);

• adaptive design: a RCT design that allows the investigator to dynamically modify its course

through data-driven adjustment of the randomization probability based on data accrued so

far.

Prior to collection of the data, our RCT protocol specifies:

- the parameter Ψ of scientific interest;

- estimation framework: the confidence level α of confidence intervals for Ψ, inferential method

(based on maximum likelihood principle).

We wish to modify/adapt the randomization probability.
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Bibliography (non exhaustive!)

Goes back to

• Thompson (Biometrika, 1933), On the likelihood that one unknown probability exceeds another in the

view of the evidence of the two samples

• Robbins (Bull. Amer. Math. Assoc, 1952), Some aspects of the sequential design of experiments

and specifically in context of medical trials

• Anscombe (JASA, 1963), Sequential medical trials

• Colton (JASA, 1963), A model for selecting one of two medical treatments

• Cornfield, Halperin, Greenhouse (JASA, 1969), An adaptive procedure for sequential clinical trials

• Zelen (JASA, 1969), Play-the-winner and the controlled clinical trial

Since then, many articles devoted to response-adapted designs.

Our method is a Covariate-Adjusted Response Adaptive (CARA) procedure.

• Rosenberger et al. (J. Biopharm. Statist, 2001), Covariate-adjusted response-adaptive designs for binary

response

• Bandyopadhyay and Biswas (Biometrika, 2001), Adaptive designs for normal responses with prognostic

factors

• Zhang et al. (Ann. Statist, 2007), Asymptotic properties of covariate-adjusted response-adaptive designs

typically concerned convergence results in a correctly specified parametric model.
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RCTs: Food for thoughts

What’s so good about RCTs?!

• Canonical answer: “RCTs control for unknow confounders”. . .

• Two special features of ideally conducted RCTs provide more fundamental grounding:

(A) ideal RCTs can yield causal conclusions,

(B) ideal RCTs are self-validating.

• About (A). Three main assumptions are involved:

1. metaphysical assumption: probabilistic dependence may have a causal explanation;

2. all features causally relevant to the outcome other than the treatment (and its downstream effects)

are identically distributed between treatment and control groups;

3. if there is a significant difference between treatment and control groups, we can pin it down.

If a significant difference is found, then the only possible explanation is that it is due to the

treatment assignment.

• About (B). Support for assumptions 2 and 3 are built right into RCT design:

2. blinding, random assignment, etc.

3. reliable statistics (sample size, best possible methodology, etc.).

Yet, need to shift from “it works somewhere” to “it will work for us”!

Only medical knowledge can help fill the gap. . .

cf The Art of Medicine, N. Cartwright, The Lancet, 2011
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From yesterday’s talk (though you all remember)

• Question of interest:

Is a specific treatment of interest beneficial?

• Statistical protocol (universal):

1. describe as accurately as possible the observed data structure O ∼ P and its law P ∈ M;

2. express the parameter of interest under the form Ψ(P);

3. study the functional Ψ :M→ R;

4. derive from this study how to estimate Ψ(P);

5. carry out the estimation.

• This 5-step protocol is typical of semi-parametric statistics.

• New ingredient:

we can data-adaptively fine-tune the sampling scheme, hence data are not iid!

• In step 4, we actually follow the TMLE methodology.

Original article by van der Laan et Rubin (2006), many other since then, and forthcoming

large-audience book by Rose and van der Laan (June 2011) — a chapter is devoted to

TMLE for adaptive RCTs.
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Balanced versus optimal iid sampling schemes

• The observed data structure is

O = (W ,A,Y ) ∈ W × {0, 1} × R, O ∼ P ∈M

with W baseline covariate, A nature of treatment (say drug A = 1 versus placebo) and Y

outcome of disease (say time to full recovery) and M fully non-parametric model.

• How to measure the effect of A on Y accounting for W ?

For instance with risk difference

Ψ(P) = EP{EP (Y |A = 1,W )− EP (Y |A = 0,W )}

such that Ψ(P) = 0 means no effect and Ψ(P) < 0 means beneficial effect.

• Causal interpretation: define full data structure X = (W ,Y0,Y1) (Ya is outcome under

intervention A = a) such that

(i) randomization: A ⊥ X |W (ii) consistency: Y = YA.

Then

Ψ(P) = EP{Y1} − EP{Y0}.
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Balanced versus optimal iid sampling schemes

• Likelihood under P:

L(P)(O) = P(W )| {z }
(1)

×P(A|W )| {z }
(2)

×P(Y |A,W )| {z }
(1)

= Q(P)(O)| {z }
(1)

× g(P)(A|W )| {z }
(2)

where g(P) is the treatment mechanism (and Q(P) is the identifiable component of

distribution of X ). Q is imposed by Nature, we control g .

• Better notation: P ≡ (Q, g), Ψ(Q, g) = Ψ(Q).

• In a balanced RCT, g(A|W ) = gb(A|W ) = 1
2

, the balanced treatment mechanism, hence

balanced sampling scheme (Q, gb).

• What can we gain by choosing a g that really depends on W ? The Neyman allocation:

gNeyman(Q)(A = 1|W ) =

p
Var(Q)(Y |A = 1,W )p

Var(Q)(Y |A = 1,W ) +
p

Var(Q)(Y |A = 0,W )

minimizes the variance of all regular estimators of Ψ(Q).

Sampling iid data under (Q, gNeyman(Q)) is optimal. . . but infeasible in general!
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Adaptive sampling scheme

• Choose finitely-valued V ⊂W and restrict the search to {g : g(A|W ) = g(A|V )}.
• Rationale: at step n,

Wn

%%LLL
LL

����

Wn+1

%%LLL

����
Yn

%%LLL
L Yn+1

%%LLL

· · · // An

99rrrrr // Zn+1 // An+1

99rrr
// Zn+2 // · · ·

(O1, . . . ,On−1)

99rrr
(O1, . . . ,On)

99rrr

with Zn+1 a finite-dimensional summary measure of the past (O1, . . . ,On) (depends on V ).

• Only relevant for RCTs for which a substantial number of observations are available before

all patients are randomized!

• Real-time clinical trials become feasible.
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Adaptive sampling scheme: recursion-based definition

• Choose working model {Q(θ) : θ ∈ Θ} for conditional distribution of Y given (A,W ).

Example: Lθ(Y |A,W ) = N
`
mθ(A,W ), σ2

V (A)
´
, mθ identifiable.

• Yields optimal treatment mechanism gNeyman(Q(θ)) ≡ GNeyman(θ).

• Draw O1, . . . ,O10 ∼iid (Q0, gb); define g1 = . . . = g10 = gb, ~g10 = (g1, . . . , g10),

and rewrite as:

(O1, . . . ,O10) ∼ (Q0, ~g10).

• Say (O1, . . . ,On) ∼ (Q0, ~gn): by the chain rule, remarkable factorization

L(Q(θ), ~gn)(O1, . . . ,On) =
nY

i=1

gi (Ai |Vi )×
nY

i=1

Q(θ)(Oi ), hence

- weighted maximum likelihood estimator θn,

- adapted rd’zation probability gn+1 = max{δ,min(1− δ,GNeyman(θn))} (0 < δ << 1),

- ~gn+1 = (~gn, gn+1),

- On+1 drawn conditionally on (O1, . . . ,On) as

On+1|(O1, . . . ,On) ∼ (Q0, gn+1).
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Estimation

Consistency (1/2).

Consider (O1, . . . ,On) ∼ (Q0, ~gn). Then the exists θ0 ∈ Θ such that, as n ↑ ∞,

θn → θ0, gn = GNeyman(θn)→ GNeyman(θ0), Ψ(Q(θn))→ Ψ(Q(θ0))

(all convergences in probability).

• Main tool: uniform Kolmogorov strong law of large numbers for martingales

(based on Bernstein’s inequality for martingales).

• Remark: in general GNeyman(θ0) 6= gNeyman(Q0)

(but can be pretty close even in the face of heavy mis-specification).

• Problem: if working model mis-specified (i.e., always!) then Ψ(Q(θ0)) 6= Ψ(Q0) (ouch!).

• Need a targeting step, in order to correct the bias due to mis-specification.
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Targeting step to remove bias (and increase efficiency)

• We see Q(θn) as an initial estimator of Q0, that we fluctuate in the direction of the

parameter of interest Ψ.

• Specifically, we introduce a one-dimensional parametric model {Q(θ, ε) : (θ, ε) ∈ Θ× R}
such that

- Q(θ, 0) = Q(θ)

- the score ∂
∂ε log Q(θ, ε)(O)|ε=0 equals the efficient influence curve of Ψ at Q(θ) (i.e., the

“derivative” wrt to Q of Ψ evaluated at Q(θ)).

Example:

- Lθ(Y |A,W ) = N
`

mθ(A,W ), σ2
V (A)

´
,

- define “clever covariate” H(θ)(A,V ) = 2A−1

GNeyman(θ)(A|V )
σ2

V (A),

and introduce the fluctuation

L(θ,ε)(Y |A,W ) = N
“

mθ(A,W ) + εH(θ)(A,V ), σ2
V (A)

”
.

• Targeting step: consider the weighted maximum likelihood estimator

εn = arg max
ε∈R

nX
i=1

log Q(θn, ε)(Oi )× gi (Ai |Vi )
−1

hence our final estimator, the TMLE of Ψ(Q0): Ψ(Q(θn, εn)).
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Estimation

Consistency (2/2).

Consider (O1, . . . ,On) ∼ (Q0, ~gn). The TMLE Ψ(Q(θn, εn)) is a consistent estimator of Ψ(Q0).

• TMLE is a substitution estimator: all constraints on Ψ(Q0) are necessarily satisfied.

• Keys:

- εn converges in probability to some ε0;

- Q(θn, εn) solves the empirical “efficient influence curve equation”;

- the efficient influence curve is double-robust: a solution (Q, g) of the “efficient influence curve

equation” at (Q0, g) (same g ’s!) satisfies Ψ(Q) = Ψ(Q0) even if Q 6= Q0;

- we know the sequence ~gn!

Central limit theorem.
Consider (O1, . . . ,On) ∼ (Q0, ~gn). Then, as n ↑ ∞,

√
n(Ψ(Q(θn, εn))− Ψ(Q0))⇒ N(0, v(θ0, ε0)).

Furthermore, v(θ0, ε0) can be estimated from the data.

• Main tool: multidimensional central limit theorem for martingales.

• Simulations: show real gains wrt balanced design, even in the face of heavy mis-specification, for

moderate and large sample sizes (n ≥ 250).
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Extensions and references

• Possible to apply group sequential testing methods on top of group sequential adaptive

designs.

• What about applying hypotheses selection on top of it?

(research in progress with Michael Rosenblum, our next speaker)

• Cartwright (2011), The Art of Medicine, The Lancet

• Working paper: van der Laan (2008), The construction and analysis of adaptive group

sequential designs

• Article submitted: Chambaz, van der Laan (April 2011), Estimation and testing in targeted

goup sequential covariate-adjusted randomized clinical trials

Merci pour votre attention !
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