Power analysis of Genome Wide Association Studies based on simulations of phenotypes

V. Perduca, C. Sinoquet, R. Mourad, G. Nuel

IBC 2012, Kobe

GWAS

Example

id	pheno	SNP1	SNP2
1	0	Aa	bb
2	0	aa	bB
3	1	AA	bB
4	0	aa	bb
5	1	Aa	BB
6	1	AA	BB
7	0	aa	bB

- pheno = status: 0 (control), 1 (case)

GWAS

Example

id	pheno	SNP1	SNP2
1	0	Aa	bb
2	0	aa	bB
3	1	AA	bB
4	0	aa	bb
5	1	Aa	BB
6	1	AA	BB
7	0	aa	bB

SNP1	A	a
0	1	7
1	5	1

SNP2	B	b
0	2	6
1	5	1

- pheno = status: 0 (control), 1 (case)
- $H_{0}=$ no association, $H_{1}=$ association

Statistical power of GWAS methods

Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip

Chris C. A. Spencer ${ }^{\boldsymbol{9}}$, Zhan Su ${ }^{\boldsymbol{9}}$, Peter Donnelly ${ }^{\boldsymbol{\top}}$, Jonathan Marchini ${ }^{\boldsymbol{\top} *}$

Department of Statistics, University of Oxford, Oxford, United Kingdom

Power computed empirically

- phenotype: Y_{i}
- genotype: X_{i}

Power computed by simulating under

- H_{1} : assumption of a disease model $\pi_{i}=\mathbb{P}\left(Y_{i}=1 \mid X_{i}\right)$
- $H_{0}: \pi_{i}=\pi$ for all i

Simulations under H_{0}

Constraint: sample must have exactly n_{1} cases and n_{0} controls as in the original data

H_{0}

Phenotype shuffling

Example

id	pheno	Sim 1	SNP1	SNP2
1	0	1	Aa	bb
2	0	0	aa	bB
3	1	0	AA	bB
4	0	1	aa	bb
5	1	1	Aa	BB
6	1	0	AA	BB
7	0	0	aa	bB

Simulations under H_{0}

Constraint: sample must have exactly n_{1} cases and n_{0} controls as in the original data

H_{0}

Phenotype shuffling

Example

id	pheno	$\operatorname{Sim} 1$	$\operatorname{Sim} 2$	SNP1	SNP2
1	0	1	1	Aa	bb
2	0	0	1	aa	bB
3	1	0	0	AA	bB
4	0	1	0	aa	bb
5	1	1	0	Aa	BB
6	1	0	1	AA	BB
7	0	0	0	aa	bB

Simulations under H_{0}

Constraint: sample must have exactly n_{1} cases and n_{0} controls as in the original data

H_{0}

Phenotype shuffling

Example

id	pheno	$\operatorname{Sim} 1$	$\operatorname{Sim} 2$	$\operatorname{Sim} 3$	SNP1	SNP2
1	0	1	1	0	Aa	bb
2	0	0	1	0	aa	bB
3	1	0	0	1	AA	bB
4	0	1	0	0	aa	bb
5	1	1	0	0	Aa	BB
6	1	0	1	1	AA	BB
7	0	0	0	1	aa	bB

Simulations under H_{1}

Constraint \mathcal{C} : sample must have exactly n_{1} cases and n_{0} controls

$$
H_{1}: \pi_{i}=\mathbb{P}\left(\text { pheno } Y_{i}=1 \mid \text { geno } X_{i}\right)
$$

One solution:

$$
\mathbb{P}\left(X_{i} \mid Y_{i}\right)=\frac{\mathbb{P}\left(Y_{i} \mid X_{i}\right) \mathbb{P}\left(X_{i}\right)}{\mathbb{P}\left(Y_{i}\right)}
$$

Problems:

- $\mathbb{P}(X)$: genotype model must take into account LD structure!
- need for extra data (e.g. reference panel of haplotypes from HapMap)
- $X \gg Y$

This strategy is implemented in HAPGEN

- Limited disease model: no epistasis, no gene-environment interactions...

Simulations under H_{1} : alternative solution

Constraint \mathcal{C} : sample must have exactly n_{1} cases and n_{0} controls
$H_{1}: \pi_{i}=\mathbb{P}\left(\right.$ pheno $Y_{i}=1 \mid$ geno $\left.X_{i}\right)$
$Y_{i} \sim \mathcal{B}\left(\pi_{i}\right)$ but how to sample under the constraint?
Solutions:

1. Rejection algorithm: draw $Y \sim P(Y \mid X)$ until \mathcal{C} is true \Rightarrow waiting time in $O(1 / P(\mathcal{C}))$

Simulations under H_{1} : alternative solution

Constraint \mathcal{C} : sample must have exactly n_{1} cases and n_{0} controls
$H_{1}: \pi_{i}=\mathbb{P}\left(\right.$ pheno $Y_{i}=1 \mid$ geno $\left.X_{i}\right)$
$Y_{i} \sim \mathcal{B}\left(\pi_{i}\right)$ but how to sample under the constraint?
Solutions:

1. Rejection algorithm: draw $Y \sim P(Y \mid X)$ until \mathcal{C} is true \Rightarrow waiting time in $O(1 / P(\mathcal{C}))$
2. MCMC: start from Y such as \mathcal{C} true, then perform moves that preserves $\mathcal{C} \Rightarrow$ many iterations to allow good mixing (slow)

Simulations under H_{1} : alternative solution

Constraint \mathcal{C} : sample must have exactly n_{1} cases and n_{0} controls
$H_{1}: \pi_{i}=\mathbb{P}\left(\right.$ pheno $Y_{i}=1 \mid$ geno $\left.X_{i}\right)$
$Y_{i} \sim \mathcal{B}\left(\pi_{i}\right)$ but how to sample under the constraint?
Solutions:

1. Rejection algorithm: draw $Y \sim P(Y \mid X)$ until \mathcal{C} is true \Rightarrow waiting time in $O(1 / P(\mathcal{C}))$
2. MCMC: start from Y such as \mathcal{C} true, then perform moves that preserves $\mathcal{C} \Rightarrow$ many iterations to allow good mixing (slow)
3. Constrained backward sampling algorithm: our contribution!

Our backward sampling: formalism

- $Z_{i}:=\#$ cases among inds $1, \ldots, i=Y_{1}+\ldots+Y_{i}=Z_{i-1}+Y_{i}$
- $\mathcal{C}=\left\{\sum_{i}^{n} Y_{i}=n_{1}\right\}=\left\{Z_{n}=n_{1}\right\}$, where $n=n_{0}+n_{1}$

- $\mathbb{P}\left(Y_{1: n}, Z_{1: n}\right)=\mathbb{P}\left(Z_{1} \mid Y_{1}\right) \prod_{i=1}^{n} \mathbb{P}\left(Y_{i}\right) \prod_{j=2}^{n} \mathbb{P}\left(Z_{j} \mid Z_{j-1}, Y_{j}\right)$
$\Rightarrow \mathrm{A}$ (very simple) BN !
\Rightarrow Idea: adapting BN message propagation algorithms for sampling $\mathbb{P}\left(Y_{1}, \ldots, Y_{n} \mid \mathcal{C}\right)$.

Backward sampling

- Problem is solved by sampling the Heterogeneous Markov Chain:

$$
\mathbb{P}\left(Y_{1}, \ldots, Y_{n} \mid \mathcal{C}\right)=\mathbb{P}\left(Y_{1} \mid \mathcal{C}\right) \cdot \mathbb{P}\left(Y_{2} \mid Z_{1}, \mathcal{C}\right) \cdot \ldots \cdot \mathbb{P}\left(Y_{n} \mid Z_{n-1}, \mathcal{C}\right)
$$

Definition (Backward quantities)

For $i=1, \ldots, n$:

$$
B_{i}(m)=\mathbb{P}\left(Z_{n}=n_{1} \mid Z_{i}=m\right)=\mathbb{P}\left(\mathcal{C} \mid Z_{i}=m\right) .
$$

Theorem
1.

$$
B_{i-1}(m)=\pi_{i} B_{i}(m+1)+\left(1-\pi_{i}\right) B_{i}(m)
$$

2.

$$
\mathbb{P}\left(Y_{i}=1 \mid Z_{i-1}=m, \mathcal{C}\right)=\frac{\pi_{i} B_{i}(m+1)}{B_{i-1}(m)}
$$

Comparing the three algorithms

Validation on a toy dataset

- The three algorithms are consistent: by simulating phenotypes under H_{1} with each method we obtain the same value of power
- Backward outperforms the others:

n	f_{0}	$\mathbb{P}(\mathcal{C})$	Rej	MCMC	Backward
20	0.2	$4.5 \cdot 10^{-3}$	0.4 s	7.1 m	0.05 s
20	0.1	$1.7 \cdot 10^{-5}$	1.5 m	7.1 m	0.05 s
20	0.07	$6.7 \cdot 10^{-7}$	38.5 m	7.3 m	0.05 s
20	0.05	$2.9 \cdot 10^{-8}$	11.2 h	7.2 m	0.1 s
40	0.2	$8.2 \cdot 10^{-5}$	17.4 s	7.2 m	0.1 s
100	0.2	$8.7 \cdot 10^{-10}$	NA	8.0 m	0.2 s
100	0.1	$5.8 \cdot 10^{-22}$	NA	7.9 m	0.2 s
100	0.01	$1.1 \cdot 10^{-69}$	NA	8.0 m	0.2 s

- Backward and HAPGEN consistent

Application

Dataset

Genotypes from 629 individuals from the 1000 Genomes Project. 314 cases. First 100,000 SNPs from Chr X. MAF $>5 \%$. Total: 8,048 SNPs.

Disease: additive model (β) with epistasis (η)
Two disease SNPs S_{1} and S_{2} (pos. 627,641 and $1,986,325$) with no LD.

$$
\pi_{i}=f_{0} \times \mathrm{RR}=f_{0} \times \begin{cases}1.0+\beta \cdot X_{i}^{S_{1}} & \text { if } X_{i}^{S_{2}}=0 \\ 1.0+\beta \cdot X_{i}^{S_{2}} & \text { if } X_{i}^{S_{1}}=0 \\ 1.0+\eta+\beta \cdot\left(X_{i}^{S_{1}}+X_{i}^{S_{2}}\right) & \text { if } X_{i}^{S_{1}} \cdot X_{i}^{S_{1}}>0\end{cases}
$$

The statistics

- For each SNP: trend p-values under H_{0}, H_{1}
- Intervals I_{1}, I_{2} centered in S_{1}, S_{2} with radius $\rho, \mathcal{R}_{\rho}=I_{1} \cup I_{2}$
- $S:=\max \left(-\log _{10}\left(\mathrm{p}\right.\right.$-values SNPs in $\left.\left.\mathcal{R}_{\rho}\right)\right)$

Results: varying the candidate region R_{ρ}

Results: varying the design

Role of the population size

n	AUC $[95 \% \mathrm{CI}]$
629	$0.49[0.41,0.57]$
1258	$0.78[0.71,0.84]$
1887	$0.92[0.88,0.96]$
2516	$0.93[0.90,0.97]$

Table: $\rho=+\infty$, epistasis $\eta=0.3$, additive effect $\beta=0.3, f_{0}=0.1$.

Final word

Weighted affectation for constrained sampling under H_{1}

- We modeled the problem as a (very simple) BN and worked out a message propagation-like algorithm
- We generalized the shuffle method by affecting the pheno of each individual i w.r.t. π_{i} under the constraint that the number of cases must be n_{1}

Backward vs concurrents

- Gold standard is HAPGEN but backward has several advantages:
- no additional assumptions more than epidemiological ones
- complete freedom in the choice of π_{i} (interactions, environment, prevalence, penetrance, etc)
- fast (2 sec on a laptop for 2000 cases and 2000 controls)
- Rejection algorithm: cannot be used in practice
- MCMC: delicate to calibrate

References

V. Perduca, C. Sinoquet, R. Mourad and G. Nuel; Alternative methods for H1 simulations in Genome Wide Association Studies. Hum Hered, 2012;73:95-104. Free Access

R R package waffect 1.2 available on CRAN
> vignette('waffect-tutorial')

3 Assessing the power of GWAs

Given a GWA study method, it is crucial to assess its statistical power to detect susceptibility variants. Power can be estimated empirically by simulating disease (case and control) phenotypes. We illustrate how to asses the statistical power of GWA studies using waffect for phenotype simulations. In particular we will proceed as follows:

Appendix

Genetic background: Single Nucleotide Polymorphisms

Ind	DNA
1	AGTTCCATCATGGTAAGC
	AGTTCCATTATGGTAAGC
2	AGTTCCATTATGGTAAGC
	AGTTCCATCATGGTAAGC
3	AGTTCCATTATGGTAAGC
	AGTTCCATTATGGTAAGC
4	AGTTCCATCATGGTAAGC
	AGTTCCATCATGGTAAGC

Genetic background: Single Nucleotide Polymorphisms

Ind	DNA
1	AGTTCCATCATGGTAAGC
	AGTTCCATTATGGTAAGC
2	AGTTCCATTATGGTAAGC
	AGTTCCATCATGGTAAGC
3	AGTTCCATTATGGTAAGC
	AGTTCCATTATGGTAAGC
4	AGTTCCATCATGGTAAGC
	AGTTCCATCATGGTAAGC

Genetic background: Single Nucleotide Polymorphisms

Ind	DNA	gen
1	AGTTCCATCATGGTAAGC	CT
	AGTTCCATTATGGTAAGC	
2	AGTTCCATTATGGTAAGC	TC
	AGTTCCATCATGGTAAGC	
3	AGTTCCATTATGGTAAGC	TT
	AGTTCCATTATGGTAAGC	
4	AGTTCCATCATGGTAAGC	CC
	AGTTCCATCATGGTAAGC	

- Depending on its two alleles, for any given SNP there are three possible genotypes

Genetic background: Single Nucleotide Polymorphisms

- Depending on its two alleles, for any given SNP there are three possible genotypes
- The genotype of a SNP is coded with the number $i \in\{0,1,2\}$ of copies of the less frequent allele in the population, e.g. C

Genetic background: Single Nucleotide Polymorphisms

Ind	DNA	gen
1	AGTTCCATCATGGTAAGC	CT $=1$
	AGTTCCATTATGGTAAGC	
2	AGTTCCATTATGGTAAGC	TC $=1$
	AGTTCCATCATGGTAAGC	
3	AGTTCCATTATGGTAAGC	TT $=0$
	AGTTCCATTATGGTAAGC	
4	AGTTCCATCATGGTAAGC	CC $=2$
	AGTTCCATCATGGTAAGC	

- Depending on its two alleles, for any given SNP there are three possible genotypes
- The genotype of a SNP is coded with the number $i \in\{0,1,2\}$ of copies of the less frequent allele in the population, e.g. C
- SNPs are used as markers to identify the genomic regions associated with a phenotype (e.g. a disease)

GWAS

SNPs are used as markers to identify the genomic regions associated with a phenotype

Which SNPs across the genome are associated with a given disease?

1. Recruitment of n individuals: n_{1} cases and n_{0} controls $\left(n_{1}, n_{0} \sim 10^{3}\right)$
2. High throughput genotyping of each individual with respect to all the SNPs ($\sim 10^{5}$)
3. For each SNP, test the association with the disease (e.g. χ^{2} test):

$$
H_{0}=\text { no association, } H_{1}=\text { association }
$$

4. Choice of a statistics S to analyze the signal
5. Correction for multiple testing

H_{1} and H_{0}

For each individual i :

- $Y_{i} \in\{0,1\}$: phenotype
- $X_{i} \in\{0,1,2\}^{p}, p=\#$ SNPs: genotype
H_{1} : assumption of a disease model $\pi_{i}=\mathbb{P}\left(Y_{i}=1 \mid X_{i}\right)$
Example $p=1$:
- $\pi_{i}=f_{0}$ if $X_{i}=0$
- $\pi_{i}=f_{1}=f_{0} \cdot R R_{1}$ if $X_{i}=1$
- $\pi_{i}=f_{2}=f_{0} \cdot R R_{2}$ if $X_{i}=2$
$R R_{1}, R R_{2}$: relative risks; f_{1}, f_{2} : penetrances
$H_{0}: \pi_{i}=\pi$ for all i
The observed genotype has no effect on the phenotype

Accuracy of a GWAS: ROC curves

\Rightarrow Good power

Accuracy of a GWAS: ROC curves

Accuracy of a GWAS: ROC curves

\Rightarrow Poor power

Estimating the AUC

Definition

AUC = area under the ROC curve
Qualitative interpretation of the AUC

AUC	$0.5-0.6$	$0.6-0.7$	$0.7-0.8$	$0.8-0.9$	$0.9-1.0$
quality	fail	poor	fair	good	excellent

In order to find empirically the ROC curve and its AUC we need to sample the statistic distributions under H_{0} and H_{1} :

Proposition

If S_{1}, \ldots, S_{r} is a sample under H_{0} and T_{1}, \ldots, T_{r} a sample under H_{1} then

$$
\widehat{\mathrm{AUC}}=\frac{1}{r^{2}} \sum_{i, j} \mathbf{1}_{\left\{T_{j} \geqslant S_{i}\right\}} \quad \widehat{\sigma}_{\max }=\sqrt{\frac{\widehat{\mathrm{AUC}} \cdot(1-\widehat{\mathrm{AUC}})}{r}}
$$

Sampling H_{1} : Reject algorithm

Constraint: $\mathcal{C}=\left\{\sum_{i=1}^{n} Y_{i}=n_{1}\right\}$ must be fulfilled
Reject algorithm

1. $\operatorname{draw}\left(Y_{i}\right)_{i=1 \ldots . . n}$
2. if \mathcal{C} holds then retain $\left(Y_{i}\right)$, else discard it and go back to 1 Problem: in practice, \mathcal{C} is a very rare event!

Theorem

Let $Z_{j}=\sum_{i=1}^{j} Y_{i}$. Then $\mathbb{P}\left(Z_{i}=m\right)=F_{i}(m)$, where

$$
F_{i}(m)=F_{i-1}(m-1) \pi_{i}+F_{i-1}(m)\left(1-\pi_{i}\right)
$$

with $F_{0}(m)=0$ except for $F_{0}(0)=1$.
In particular: $\mathbb{P}(\mathcal{C})=\mathbb{P}\left(Z_{n}=n_{1}\right)=F_{n}\left(n_{1}\right)$.

Sampling H_{1} : MCMC algorithm

MCMC

Start from a configuration $\left(Y_{i}\right)_{i=1 \ldots n}$ fulfilling the constraint and alternate two steps:

1. exchange Y_{i} and Y_{j} for two i, j s.t. $Y_{i}=1$ and $Y_{j}=0$
2. accept the move in 1 with rate

$$
\alpha=\frac{\left(1-\pi_{i}\right) \pi_{j}}{\pi_{i}\left(1-\pi_{j}\right)}
$$

The sequence of configurations that are generated is a Markov chain whose stationary distribution is the targeted distribution

Problem: delicate to choose the number of iterations needed for convergence (burn-in) and for ensuring independence of the samples

Froward and Backward quantities

Definition

$$
\begin{aligned}
& F_{i}(m)=\mathbb{P}\left(Z_{i}=m\right) \\
& B_{i}(m)=\mathbb{P}\left(Z_{n}=n_{1} \mid Z_{i}=m\right)=\mathbb{P}\left(\mathcal{C} \mid Z_{i}=m\right)
\end{aligned}
$$

Theorem

$$
\begin{aligned}
\mathbb{P}(\mathcal{C}) & =F_{n}\left(n_{1}\right)=B_{0}(0) \\
\mathbb{P}\left(Y_{i}=1 \mid \mathcal{C}\right) & \propto \sum_{m} F_{i}(m) \pi_{i} B_{i}(m+1) \\
\mathbb{P}\left(Y_{1}=0 \mid \mathcal{C}\right) & \propto \sum_{m} F_{i-1}(m)\left(1-\pi_{i}\right) B_{i}(m)
\end{aligned}
$$

Comparing the three algorithms

AUC

n	f_{0}	Rej	MCMC	Backward
20	0.2	0.60	0.58	0.61
		$[0.53,0.67]$	$[0.51,0.65]$	$[0.54,0.68]$
20	0.1	0.59	0.58	0.58
		$[0.52,0.66]$	$[0.51,0.65]$	$[0.51,0.65]$
20	0.07	0.62	0.54	0.56
		$[0.55,0.69]$	$[0.47,0.61]$	$[0.49,0.63]$
20	0.05	0.44	0.55	0.53
		$[0.37,0.51]$	$[0.48,0.62]$	$[0.47,0.60]$
40	0.2	0.58	0.54	0.59
		$[0.50,0.65]$	$[0.46,0.61]$	$[0.52,0.67]$

Results: varying the design

Role of f_{0}

Results: varying the design

Role of the additive effect

