Power analysis of Genome Wide Association Studies based on simulations of phenotypes

V. Perduca, C. Sinoquet, R. Mourad, G. Nuel

IBC 2012, Kobe

V. Perduca (MAP 5 - Paris Descartes)

Phenotype Simulation for GWAS

IBC 2012, Kobe 1 / 14

GWAS

Example							
id	pheno	SNP1	SNP2				
1	0	Aa	bb				
2	0	аа	bB				
3	1	AA	bB				
4	0	аа	bb				
5	1	Aa	BB				
6	1	AA	BB				
7	0	аа	bB				
▶ pheno = status: 0 (control), 1 (case)							

GWAS

Example

id	pheno	SNP1	SNP2
1	0	Aa	bb
2	0	аа	bB
3	1	AA	bB
4	0	аа	bb
5	1	Aa	BB
6	1	AA	BB
7	0	аа	bB

- pheno = status: 0 (control), 1 (case)
- H_0 = no association, H_1 = association

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Statistical power of GWAS methods

OPEN O ACCESS Freely available online

PLOS GENETICS

Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip

Chris C. A. Spencer[®], Zhan Su[®], Peter Donnelly[¶], Jonathan Marchini[¶]*

Department of Statistics, University of Oxford, Oxford, United Kingdom

Power computed empirically

- ▶ phenotype: *Y_i*
- genotype: X_i

Power computed by simulating under

- H_1 : assumption of a disease model $\pi_i = \mathbb{P}(Y_i = 1 | X_i)$
- $H_0: \pi_i = \pi$ for all *i*

Constraint: sample must have exactly n_1 cases and n_0 controls as in the original data

H ₀							
Phenotype shuffling							
_							
Example							
id	pheno	Sim 1	SNP1	SNP2			
1	0	1	Aa	bb			
2	0	0	аа	bB			
3	1	0	AA	bB			
4	0	1	аа	bb			
5	1	1	Aa	BB			
6	1	0	AA	BB			
7	0	0	аа	bB			

Constraint: sample must have exactly n_1 cases and n_0 controls as in the original data

 H_0

Phenotype shuffling

Example

id	pheno	Sim 1	Sim 2	SNP1	SNP2
1	0	1	1	Aa	bb
2	0	0	1	аа	bB
3	1	0	0	AA	bB
4	0	1	0	аа	bb
5	1	1	0	Aa	BB
6	1	0	1	AA	BB
7	0	0	0	аа	bB

EL SQA

(日) (同) (三) (三)

Constraint: sample must have exactly n_1 cases and n_0 controls as in the original data

 H_0

Phenotype shuffling

Example

id	pheno	Sim 1	Sim 2	Sim 3	SNP1	SNP2
1	0	1	1	0	Aa	bb
2	0	0	1	0	аа	bB
3	1	0	0	1	AA	bB
4	0	1	0	0	аа	bb
5	1	1	0	0	Aa	BB
6	1	0	1	1	AA	BB
7	0	0	0	1	аа	bB

Constraint C: sample must have exactly n_1 cases and n_0 controls

$$H_1$$
: $\pi_i = \mathbb{P}(\text{pheno } Y_i = 1 | \text{geno } X_i)$

One solution:

$$\mathbb{P}(X_i|Y_i) = rac{\mathbb{P}(Y_i|X_i)\mathbb{P}(X_i)}{\mathbb{P}(Y_i)}$$

Problems:

- P(X): genotype model must take into account LD structure!
- need for extra data (e.g. reference panel of haplotypes from HapMap)

This strategy is implemented in HAPGEN

Limited disease model: no epistasis, no gene-environment interactions...

Simulations under H_1 : alternative solution

Constraint C: sample must have exactly n_1 cases and n_0 controls

 H_1 : $\pi_i = \mathbb{P}(\text{pheno } Y_i = 1 | \text{geno } X_i)$

 $Y_i \sim \mathcal{B}(\pi_i)$ but how to sample under the constraint?

Solutions:

1. Rejection algorithm: draw $Y \sim P(Y|X)$ until C is true \Rightarrow waiting time in O(1/P(C))

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

Simulations under H_1 : alternative solution

Constraint C: sample must have exactly n_1 cases and n_0 controls

 H_1 : $\pi_i = \mathbb{P}(\text{pheno } Y_i = 1 | \text{geno } X_i)$

 $Y_i \sim \mathcal{B}(\pi_i)$ but how to sample under the constraint?

Solutions:

- 1. Rejection algorithm: draw $Y \sim P(Y|X)$ until C is true \Rightarrow waiting time in O(1/P(C))
- 2. MCMC: start from Y such as C true, then perform moves that preserves $C \Rightarrow$ many iterations to allow good mixing (slow)

Simulations under H_1 : alternative solution

Constraint C: sample must have exactly n_1 cases and n_0 controls

 H_1 : $\pi_i = \mathbb{P}(\text{pheno } Y_i = 1 | \text{geno } X_i)$

 $Y_i \sim \mathcal{B}(\pi_i)$ but how to sample under the constraint?

Solutions:

- 1. Rejection algorithm: draw $Y \sim P(Y|X)$ until C is true \Rightarrow waiting time in O(1/P(C))
- 2. MCMC: start from Y such as C true, then perform moves that preserves $C \Rightarrow$ many iterations to allow good mixing (slow)
- 3. Constrained backward sampling algorithm: our contribution!

Our backward sampling: formalism

- $Z_i := \#$ cases among inds $1, ..., i = Y_1 + ... + Y_i = Z_{i-1} + Y_i$
- $C = \{\sum_{i=1}^{n} Y_i = n_1\} = \{Z_n = n_1\}, \text{ where } n = n_0 + n_1$

• $\mathbb{P}(Y_{1:n}, Z_{1:n}) = \mathbb{P}(Z_1|Y_1) \prod_{i=1}^n \mathbb{P}(Y_i) \prod_{j=2}^n \mathbb{P}(Z_j|Z_{j-1}, Y_j)$

 $\Rightarrow A \text{ (very simple) BN!}$ $\Rightarrow Idea: adapting BN message propagation algorithms for sampling$ $<math>\mathbb{P}(Y_1, \dots, Y_n | \mathcal{C}).$

Backward sampling

▶ Problem is solved by sampling the Heterogeneous Markov Chain: $\mathbb{P}(Y_1, ..., Y_n | \mathcal{C}) = \mathbb{P}(Y_1 | \mathcal{C}) \cdot \mathbb{P}(Y_2 | Z_1, \mathcal{C}) \cdot ... \cdot \mathbb{P}(Y_n | Z_{n-1}, \mathcal{C})$

Definition (Backward quantities) For i = 1, ..., n:

$$B_i(m) = \mathbb{P}(Z_n = n_1 | Z_i = m) = \mathbb{P}(\mathcal{C} | Z_i = m).$$

Theorem

1.

$$B_{i-1}(m) = \pi_i B_i(m+1) + (1-\pi_i) B_i(m)$$

2.

$$\mathbb{P}(Y_i=1|Z_{i-1}=m,\mathcal{C})=\frac{\pi_iB_i(m+1)}{B_{i-1}(m)}$$

Comparing the three algorithms

Validation on a toy dataset

- The three algorithms are consistent: by simulating phenotypes under H₁ with each method we obtain the same value of power
- Backward outperforms the others:

n	f_0	$\mathbb{P}(\mathcal{C})$	Rej	MCMC	Backward
20	0.2	$4.5 \cdot 10^{-3}$	0.4 s	7.1 m	0.05 s
20	0.1	$1.7 \cdot 10^{-5}$	1.5 m	7.1 m	0.05 s
20	0.07	$6.7 \cdot 10^{-7}$	38.5 m	7.3 m	0.05 s
20	0.05	$2.9 \cdot 10^{-8}$	11.2 h	7.2 m	0.1 s
40	0.2	$8.2 \cdot 10^{-5}$	17.4 s	7.2 m	0.1 s
100	0.2	$8.7\cdot10^{-10}$	NA	8.0 m	0.2 s
100	0.1	$5.8 \cdot 10^{-22}$	NA	7.9 m	0.2 s
100	0.01	$1.1\cdot 10^{-69}$	NA	8.0 m	0.2 s

Backward and HAPGEN consistent

V. Perduca (MAP 5 - Paris Descartes)

ELE SQC

Application

Dataset

Genotypes from 629 individuals from the 1000 Genomes Project. 314 cases. First 100,000 SNPs from Chr X. MAF>5%. Total: 8,048 SNPs.

Disease: additive model (β) with epistasis (η)

Two disease SNPs S_1 and S_2 (pos. 627,641 and 1,986,325) with no LD.

$$\pi_{i} = f_{0} \times \mathsf{RR} = f_{0} \times \begin{cases} 1.0 + \beta \cdot X_{i}^{S_{1}} & \text{if } X_{i}^{S_{2}} = 0\\ 1.0 + \beta \cdot X_{i}^{S_{2}} & \text{if } X_{i}^{S_{1}} = 0\\ 1.0 + \eta + \beta \cdot (X_{i}^{S_{1}} + X_{i}^{S_{2}}) & \text{if } X_{i}^{S_{1}} \cdot X_{i}^{S_{1}} > 0 \end{cases}$$

The statistics

- For each SNP: trend p-values under H_0, H_1
- ▶ Intervals I_1, I_2 centered in S_1, S_2 with radius ρ , $\mathcal{R}_{\rho} = I_1 \cup I_2$
- $S := \max(-\log_{10}(p\text{-values SNPs in } \mathcal{R}_{\rho}))$

V. Perduca (MAP 5 - Paris Descartes)

Phenotype Simulation for GWAS

Results: varying the candidate region R_{ρ}

f0 = 0.1, Additive effect = 0.3, Epistasis = 0.3

A (10) × (10) × (10)

= 990

Results: varying the design

Role of the population size

n	AUC [95% CI]
629	0.49 [0.41, 0.57]
1258	0.78 [0.71, 0.84]
1887	0.92 [0.88, 0.96]
2516	0.93 [0.90, 0.97]

Table: $\rho = +\infty$, epistasis $\eta = 0.3$, additive effect $\beta = 0.3$, $f_0 = 0.1$.

Final word

Weighted affectation for constrained sampling under H_1

- We modeled the problem as a (very simple) BN and worked out a message propagation-like algorithm
- We generalized the shuffle method by affecting the pheno of each individual *i* w.r.t. π_i under the constraint that the number of cases must be n₁

Backward vs concurrents

- ► Gold standard is HAPGEN but backward has several advantages:
 - no additional assumptions more than epidemiological ones
 - complete freedom in the choice of π_i (interactions, environment, prevalence, penetrance, etc)
 - fast (2 sec on a laptop for 2000 cases and 2000 controls)
- Rejection algorithm: cannot be used in practice
- MCMC: delicate to calibrate

References

- V. Perduca, C. Sinoquet, R. Mourad and G. Nuel; Alternative methods for H1 simulations in Genome Wide Association Studies. Hum Hered, 2012;73:95-104. Free Access
 - R package waffect 1.2 available on CRAN
 - > vignette('waffect-tutorial')

3 Assessing the power of GWAs

Given a GWA study method, it is crucial to assess its statistical power to detect susceptibility variants. Power can be estimated empirically by simulating disease (case and control) phenotypes. We illustrate how to asses the statistical power of GWA studies using waffect for phenotype simulations. In particular we will proceed as follows:

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▲ ● ● ● ●

Appendix

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ķ	Ŗ	K		ζ	{ }	L
Ķ	and the P	K	(r	10	2))(12
JL 13	1	15		} 6	N	18
	19 19	20		21	1 T 22	51

Ind	DNA
1	AGTTCCATCATGGTAAGC
	AGTTCCATTATGGTAAGC
2	AGTTCCATTATGGTAAGC
	AGTTCCATCATGGTAAGC
3	AGTTCCATTATGGTAAGC
	AGTTCCATTATGGTAAGC
4	AGTTCCATCATGGTAAGC
	AGTTCCATCATGGTAAGC

< 4 → <

리님

Ķ	Ŗ	K		Ş	{ }	ι
Ķ	and the second s	(C	'n	10	2))(12
JL 13	1	15) 16	N	18
	19 19	20		21	1 T 22	51

Ind	DNA
1	AGTTCCAT <mark>C</mark> ATGGTAAGC
	AGTTCCAT <mark>T</mark> ATGGTAAGC
2	AGTTCCATTATGGTAAGC
	AGTTCCAT <mark>C</mark> ATGGTAAGC
3	AGTTCCAT <mark>T</mark> ATGGTAAGC
	AGTTCCAT <mark>T</mark> ATGGTAAGC
4	AGTTCCAT <mark>C</mark> ATGGTAAGC
	AGTTCCAT <mark>C</mark> ATGGTAAGC

< /⊒ > < ∃ >

- 11 -

							Ind	DNA	gen
	17				,		1	AGTTCCAT <mark>C</mark> ATGGTAAGC	СТ
/	1		st sc					AGTTCCAT <mark>T</mark> ATGGTAAGC	
1	40	-		1	M		2	AGTTCCAT <mark>T</mark> ATGGTAAGC	TC
•	10	83	10	11	12			AGTTCCAT <mark>C</mark> ATGGTAAGC	
	D		м	21	11		3	AGTTCCATTATGGTAAGC	ΤT
	15		16	17	18			AGTTCCAT <mark>T</mark> ATGGTAAGC	
ł	15		21	11	51		4	AGTTCCATCATGGTAAGC	CC
•	20		21	22	Х/Ү			AGTTCCAT <mark>C</mark> ATGGTAAGC	

 Depending on its two alleles, for any given SNP there are three possible genotypes

1 =

							Ind	DNA	gen
10	14					_	1	AGTTCCAT <mark>C</mark> ATGGTAAGC	CT = 1
1	r		st sc			_		AGTTCCAT <mark>T</mark> ATGGTAAGC	
11	10	-	11	1	~		2	AGTTCCATTATGGTAAGC	$\mathtt{TC} = 1$
7	"	83	10	11	12			AGTTCCAT <mark>C</mark> ATGGTAAGC	
K	12		н	31	11	-	3	AGTTCCATTATGGTAAGC	TT = 0
14	15		16	17	18			AGTTCCAT <mark>T</mark> ATGGTAAGC	
	8		28	11	Si	_	4	AGTTCCATCATGGTAAGC	CC = 2
19	20		21	22	X/Y	_		AGTTCCAT <mark>C</mark> ATGGTAAGC	
			ア ド ド ド に に		N X	N X K N K N K N K N N N N K N N N N K N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N	> X	Ind 1	Ind DNA Image: State

- Depending on its two alleles, for any given SNP there are three possible genotypes
- ► The genotype of a SNP is coded with the number i ∈ {0,1,2} of copies of the less frequent allele in the population, e.g. C

л

								Ind	DNA	gen
٢	1	17				,	_	1	AGTTCCAT <mark>C</mark> ATGGTAAGC	CT = 1
	P	1		51 10					AGTTCCAT <mark>T</mark> ATGGTAAGC	
	11	40	-		1	M		2	AGTTCCAT <mark>T</mark> ATGGTAAGC	$\mathtt{TC} = 1$
	13 7	8	83	10	11	12			AGTTCCAT <mark>C</mark> ATGGTAAGC	
	N.	b		м	21	- 11	-	3	AGTTCCATTATGGTAAGC	TT = 0
•	14	15		16	17	18			AGTTCCAT <mark>T</mark> ATGGTAAGC	
		15		21	11	51	_	4	AGTTCCATCATGGTAAGC	CC = 2
	19	20		21	22	X/Y	_		AGTTCCAT <mark>C</mark> ATGGTAAGC	

- Depending on its two alleles, for any given SNP there are three possible genotypes
- ▶ The genotype of a SNP is coded with the number $i \in \{0, 1, 2\}$ of copies of the less frequent allele in the population, e.g. C
- SNPs are used as markers to identify the genomic regions associated with a phenotype (e.g. a disease)

V. Perduca (MAP 5 - Paris Descartes)

л

SNPs are used as markers to identify the genomic regions associated with a phenotype

Which SNPs across the genome are associated with a given disease?

- 1. Recruitment of *n* individuals: n_1 cases and n_0 controls $(n_1, n_0 \sim 10^3)$
- 2. High throughput genotyping of each individual with respect to all the SNPs ($\sim 10^5)$
- 3. For each SNP, test the association with the disease (e.g. χ^2 test):

 H_0 = no association, H_1 = association

- 4. Choice of a statistics S to analyze the signal
- 5. Correction for multiple testing

H_1 and H_0

For each individual *i*:

▶ $Y_i \in \{0,1\}$: phenotype

•
$$X_i \in \{0, 1, 2\}^p$$
, $p = \#$ SNPs: genotype

*H*₁: assumption of a disease model $\pi_i = \mathbb{P}(Y_i = 1 | X_i)$ Example p = 1:

• $\pi_i = f_0$ if $X_i = 0$

•
$$\pi_i = f_1 = f_0 \cdot RR_1$$
 if $X_i = 1$

•
$$\pi_i = f_2 = f_0 \cdot RR_2$$
 if $X_i = 2$

 RR_1, RR_2 : relative risks; f_1, f_2 : penetrances

$H_0: \pi_i = \pi$ for all i

The observed genotype has no effect on the phenotype

V. Perduca (MAP 5 - Paris Descartes)

▲ロト ▲圖ト ▲画ト ▲画ト 通言 のへの

Accuracy of a GWAS: ROC curves

Accuracy of a GWAS: ROC curves

V. Perduca (MAP 5 - Paris Descartes)

Phenotype Simulation for GWAS

IBC 2012, Kobe 5 / 12

Accuracy of a GWAS: ROC curves

V. Perduca (MAP 5 - Paris Descartes)

Phenotype Simulation for GWAS

IBC 2012, Kobe 5 / 12

Estimating the AUC

Definition

AUC = area under the ROC curve

Qualitative interpretation of the AUC

AUC	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8 - 0.9	0.9 - 1.0
quality	fail	poor	fair	good	excellent

In order to find empirically the ROC curve and its AUC we need to sample the statistic distributions under H_0 and H_1 :

Proposition

If S_1, \ldots, S_r is a sample under H_0 and T_1, \ldots, T_r a sample under H_1 then

$$\widehat{\mathsf{AUC}} = \frac{1}{r^2} \sum_{i,j} \mathbf{1}_{\{T_j \ge S_i\}} \quad \widehat{\sigma}_{\mathsf{max}} = \sqrt{\frac{\widehat{\mathsf{AUC}} \cdot (1 - \widehat{\mathsf{AUC}})}{r}}$$

Sampling H_1 : Reject algorithm

Constraint: $C = \{\sum_{i=1}^{n} Y_i = n_1\}$ must be fulfilled

Reject algorithm

- 1. draw $(Y_i)_{i=1...n}$
- 2. if C holds then retain (Y_i) , else discard it and go back to 1

Problem: in practice, C is a very rare event!

Theorem

Let
$$Z_j = \sum_{i=1}^{j} Y_i$$
. Then $\mathbb{P}(Z_i = m) = F_i(m)$, where

$$F_i(m) = F_{i-1}(m-1)\pi_i + F_{i-1}(m)(1-\pi_i),$$

with $F_0(m) = 0$ except for $F_0(0) = 1$.

In particular: $\mathbb{P}(\mathcal{C}) = \mathbb{P}(Z_n = n_1) = F_n(n_1).$

Sampling H₁: MCMC algorithm

MCMC

Start from a configuration $(Y_i)_{i=1...n}$ fulfilling the constraint and alternate two steps:

- 1. exchange Y_i and Y_j for two i, j s.t. $Y_i = 1$ and $Y_j = 0$
- 2. accept the move in 1 with rate

$$\alpha = \frac{(1-\pi_i)\pi_j}{\pi_i(1-\pi_j)}$$

The sequence of configurations that are generated is a Markov chain whose stationary distribution is the targeted distribution

Problem: delicate to choose the number of iterations needed for convergence (*burn-in*) and for ensuring independence of the samples

Froward and Backward quantities

Comparing the three algorithms $_{\mbox{AUC}}$

n	f ₀	Rej	MCMC	Backward
20	0.2	0.60	0.58	0.61
		[0.53, 0.67]	[0.51, 0.65]	[0.54, 0.68]
20	0.1	0.59	0.58	0.58
		[0.52, 0.66]	[0.51, 0.65]	[0.51, 0.65]
20	0.07	0.62	0.54	0.56
		[0.55, 0.69]	[0.47, 0.61]	[0.49, 0.63]
20	0.05	0.44	0.55	0.53
		[0.37, 0.51]	[0.48, 0.62]	[0.47, 0.60]
40	0.2	0.58	0.54	0.59
		[0.50, 0.65]	[0.46, 0.61]	[0.52, 0.67]

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results: varying the design Role of f₀

V. Perduca (MAP 5 - Paris Descartes)

IBC 2012, Kobe 11 / 12

= 990

Results: varying the design

Role of the additive effect

f0 = 0.1, Epistasis = 0.3, Ray = 5kb

< 17 ▶

= 990