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GWAS

Example

id pheno SNP1 SNP2

1 0 Aa bb
2 0 aa bB
3 1 AA bB
4 0 aa bb
5 1 Aa BB
6 1 AA BB
7 0 aa bB

SNP1 A a

0 1 7
1 5 1

⇒ p = 0.03

SNP2 B b

0 2 6
1 5 1

⇒ p = 0.1

I pheno = status: 0 (control), 1 (case)

I H0 = no association, H1 = association
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Statistical power of GWAS methods

Power computed empirically

I phenotype: Yi

I genotype: Xi

Power computed by simulating under

I H1: assumption of a disease model πi = P(Yi = 1|Xi )

I H0: πi = π for all i
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Simulations under H0

Constraint: sample must have exactly n1 cases and n0 controls as in the
original data

H0

Phenotype shuffling

Example

id pheno Sim 1 SNP1 SNP2

1 0 1 Aa bb
2 0 0 aa bB
3 1 0 AA bB
4 0 1 aa bb
5 1 1 Aa BB
6 1 0 AA BB
7 0 0 aa bB
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Simulations under H1

Constraint C: sample must have exactly n1 cases and n0 controls

H1: πi = P(pheno Yi = 1| geno Xi)

One solution:

P(Xi |Yi ) =
P(Yi |Xi )P(Xi )

P(Yi )

Problems:

I P(X ): genotype model must take into account LD structure!

I need for extra data (e.g. reference panel of haplotypes from HapMap)

I X >> Y

This strategy is implemented in HAPGEN

I Limited disease model: no epistasis, no gene-environment
interactions...
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Simulations under H1: alternative solution

Constraint C: sample must have exactly n1 cases and n0 controls

H1: πi = P(pheno Yi = 1| geno Xi)

Yi ∼ B(πi ) but how to sample under the constraint?

Solutions:

1. Rejection algorithm: draw Y ∼ P(Y |X ) until C is true ⇒ waiting
time in O(1/P(C))

2. MCMC: start from Y such as C true, then perform moves that
preserves C ⇒ many iterations to allow good mixing (slow)

3. Constrained backward sampling algorithm: our contribution!
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Our backward sampling: formalism

I Zi := # cases among inds 1, . . . , i = Y1 + . . .+ Yi = Zi−1 + Yi

I C = {
∑n

i Yi = n1} = {Zn = n1}, where n = n0 + n1

Z1 Z2 Z3 Z4

Y1 Y2 Y3 Y4

I P(Y1:n,Z1:n) = P(Z1|Y1)
∏n

i=1 P(Yi )
∏n

j=2 P(Zj |Zj−1,Yj)

⇒ A (very simple) BN!
⇒ Idea: adapting BN message propagation algorithms for sampling
P(Y1, . . . ,Yn|C).
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Backward sampling

I Problem is solved by sampling the Heterogeneous Markov Chain:
P(Y1, . . . ,Yn|C) = P(Y1|C) · P(Y2|Z1, C) · . . . · P(Yn|Zn−1, C)

Definition (Backward quantities)

For i = 1, . . . , n:

Bi (m) = P(Zn = n1|Zi = m) = P(C|Zi = m).

Theorem

1.
Bi−1(m) = πiBi (m + 1) + (1− πi )Bi (m)

2.

P(Yi = 1|Zi−1 = m, C) =
πiBi (m + 1)

Bi−1(m)
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Comparing the three algorithms
Validation on a toy dataset

I The three algorithms are consistent: by simulating phenotypes under
H1 with each method we obtain the same value of power

I Backward outperforms the others:

n f0 P(C) Rej MCMC Backward

20 0.2 4.5 · 10−3 0.4 s 7.1 m 0.05 s

20 0.1 1.7 · 10−5 1.5 m 7.1 m 0.05 s

20 0.07 6.7 · 10−7 38.5 m 7.3 m 0.05 s

20 0.05 2.9 · 10−8 11.2 h 7.2 m 0.1 s

40 0.2 8.2 · 10−5 17.4 s 7.2 m 0.1 s

100 0.2 8.7 · 10−10 NA 8.0 m 0.2 s

100 0.1 5.8 · 10−22 NA 7.9 m 0.2 s

100 0.01 1.1 · 10−69 NA 8.0 m 0.2 s

I Backward and HAPGEN consistent
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Application

Dataset

Genotypes from 629 individuals from the 1000 Genomes Project. 314
cases. First 100,000 SNPs from Chr X. MAF>5%. Total: 8,048 SNPs.

Disease: additive model (β) with epistasis (η)

Two disease SNPs S1 and S2 (pos. 627,641 and 1,986,325) with no LD.

πi = f0 × RR = f0 ×


1.0 + β · X S1

i if X S2
i = 0

1.0 + β · X S2
i if X S1

i = 0

1.0 + η + β · (X S1
i + X S2

i ) if X S1
i · X

S1
i > 0

The statistics
I For each SNP: trend p-values under H0,H1

I Intervals I1, I2 centered in S1,S2 with radius ρ, Rρ = I1 ∪ I2
I S := max(− log10(p-values SNPs in Rρ))
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Results: varying the candidate region Rρ
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Ray and AUC

0kb, AUC = 0.95 (0.92−0.98) 
1kb, AUC = 0.86 (0.8−0.91) 
5kb, AUC = 0.8 (0.74−0.86) 
20kb, AUC = 0.69 (0.61−0.76) 
100kb, AUC = 0.57 (0.49−0.65) 
infkb, AUC = 0.49 (0.41−0.57) 
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Results: varying the design
Role of the population size

n AUC [95% CI]

629 0.49 [0.41, 0.57]

1258 0.78 [0.71, 0.84]

1887 0.92 [0.88, 0.96]

2516 0.93 [0.90, 0.97]

Table: ρ = +∞, epistasis η = 0.3, additive effect β = 0.3, f0 = 0.1.
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Final word

Weighted affectation for constrained sampling under H1

I We modeled the problem as a (very simple) BN and worked out a
message propagation-like algorithm

I We generalized the shuffle method by affecting the pheno of each
individual i w.r.t. πi under the constraint that the number of cases
must be n1

Backward vs concurrents
I Gold standard is HAPGEN but backward has several advantages:

I no additional assumptions more than epidemiological ones
I complete freedom in the choice of πi (interactions, environment,

prevalence, penetrance, etc)
I fast (2 sec on a laptop for 2000 cases and 2000 controls)

I Rejection algorithm: cannot be used in practice

I MCMC: delicate to calibrate
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Genetic background: Single Nucleotide Polymorphisms

Ind DNA

1 AGTTCCATCATGGTAAGC

AGTTCCATTATGGTAAGC

2 AGTTCCATTATGGTAAGC

AGTTCCATCATGGTAAGC

3 AGTTCCATTATGGTAAGC

AGTTCCATTATGGTAAGC

4 AGTTCCATCATGGTAAGC

AGTTCCATCATGGTAAGC

I Depending on its two alleles, for any given SNP there are three
possible genotypes

I The genotype of a SNP is coded with the number i ∈ {0, 1, 2} of
copies of the less frequent allele in the population, e.g. C

I SNPs are used as markers to identify the genomic regions associated
with a phenotype (e.g. a disease)
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Genetic background: Single Nucleotide Polymorphisms

Ind DNA gen

1 AGTTCCATCATGGTAAGC CT
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Genetic background: Single Nucleotide Polymorphisms

Ind DNA gen

1 AGTTCCATCATGGTAAGC CT = 1
AGTTCCATTATGGTAAGC

2 AGTTCCATTATGGTAAGC TC = 1
AGTTCCATCATGGTAAGC

3 AGTTCCATTATGGTAAGC TT = 0
AGTTCCATTATGGTAAGC

4 AGTTCCATCATGGTAAGC CC = 2
AGTTCCATCATGGTAAGC

I Depending on its two alleles, for any given SNP there are three
possible genotypes

I The genotype of a SNP is coded with the number i ∈ {0, 1, 2} of
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GWAS

SNPs are used as markers to identify the genomic regions associated with
a phenotype

Which SNPs across the genome are associated with a given disease?

1. Recruitment of n individuals: n1 cases and n0 controls (n1, n0 ∼ 103)

2. High throughput genotyping of each individual with respect to all the
SNPs (∼ 105)

3. For each SNP, test the association with the disease (e.g. χ2 test):

H0 = no association, H1 = association

4. Choice of a statistics S to analyze the signal

5. Correction for multiple testing
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H1 and H0

For each individual i :

I Yi ∈ {0, 1}: phenotype

I Xi ∈ {0, 1, 2}p, p = # SNPs: genotype

H1: assumption of a disease model πi = P(Yi = 1|Xi)

Example p = 1:

I πi = f0 if Xi = 0

I πi = f1 = f0 · RR1 if Xi = 1

I πi = f2 = f0 · RR2 if Xi = 2

RR1,RR2: relative risks; f1, f2: penetrances

H0: πi = π for all i

The observed genotype has no effect on the phenotype
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Accuracy of a GWAS: ROC curves

⇒ Good power
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Accuracy of a GWAS: ROC curves

⇒ Lower power
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Accuracy of a GWAS: ROC curves

⇒ Poor power
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Estimating the AUC

Definition

AUC = area under the ROC curve

Qualitative interpretation of the AUC

AUC 0.5− 0.6 0.6− 0.7 0.7− 0.8 0.8− 0.9 0.9− 1.0
quality fail poor fair good excellent

In order to find empirically the ROC curve and its AUC we need to sample
the statistic distributions under H0 and H1:

Proposition

If S1, . . . ,Sr is a sample under H0 and T1, . . . ,Tr a sample under H1 then

ÂUC =
1

r2

∑
i ,j

1{Tj>Si} σ̂max =

√
ÂUC · (1− ÂUC)

r
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Sampling H1: Reject algorithm

Constraint: C = {
∑n

i=1 Yi = n1} must be fulfilled

Reject algorithm

1. draw (Yi )i=1...n

2. if C holds then retain (Yi ), else discard it and go back to 1

Problem: in practice, C is a very rare event!

Theorem

Let Zj =
∑j

i=1 Yi . Then P(Zi = m) = Fi (m), where

Fi (m) = Fi−1(m − 1)πi + Fi−1(m)(1− πi ),

with F0(m) = 0 except for F0(0) = 1.

In particular: P(C) = P(Zn = n1) = Fn(n1).
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Sampling H1: MCMC algorithm

MCMC

Start from a configuration (Yi )i=1...n fulfilling the constraint and alternate
two steps:

1. exchange Yi and Yj for two i , j s.t. Yi = 1 and Yj = 0

2. accept the move in 1 with rate

α =
(1− πi )πj
πi (1− πj)

The sequence of configurations that are generated is a Markov chain
whose stationary distribution is the targeted distribution

Problem: delicate to choose the number of iterations needed for
convergence (burn-in) and for ensuring independence of the samples
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Froward and Backward quantities

Definition

Fi (m) =P(Zi = m)

Bi (m) =P(Zn = n1|Zi = m) = P(C|Zi = m)

Theorem

P(C) = Fn(n1) = B0(0)

P(Yi = 1|C) ∝
∑
m

Fi (m)πiBi (m + 1)

P(Y1 = 0|C) ∝
∑
m

Fi−1(m)(1− πi )Bi (m)
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Comparing the three algorithms
AUC

n f0 Rej MCMC Backward

20 0.2 0.60 0.58 0.61
[0.53, 0.67] [0.51, 0.65] [0.54, 0.68]

20 0.1 0.59 0.58 0.58
[0.52, 0.66] [0.51, 0.65] [0.51, 0.65]

20 0.07 0.62 0.54 0.56
[0.55, 0.69] [0.47, 0.61] [0.49, 0.63]

20 0.05 0.44 0.55 0.53
[0.37, 0.51] [0.48, 0.62] [0.47, 0.60]

40 0.2 0.58 0.54 0.59
[0.50, 0.65] [0.46, 0.61] [0.52, 0.67]
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Results: varying the design
Role of f0
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f0 = 0.1, AUC = 0.8 (0.74−0.86) 
f0 = 0.25, AUC = 0.94 (0.9−0.97) 
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Results: varying the design
Role of the additive effect
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