Different scaling regimes for geometric Poisson functionals

Raphaël Lachièze-Rey, Univ. Paris 5 René Descartes

Joint work with Giovanni Peccati, University of Luxembourg

Mini-symposium : Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry

Framework

- η_{λ} : Poisson measure with intensity μ_{λ} .
- Chaos decomposition: $F_{\lambda} = F(\eta_{\lambda}) = \sum_{q=1}^{k} F_{q,\lambda}$, L^2 variable for each λ .
- Asymptotic regime of renormalized variables

$$\begin{split} \tilde{F}_{\lambda} &= \frac{F_{\lambda} - \mathbb{E}F_{\lambda}}{\sqrt{\operatorname{var}(F_{\lambda})}}\\ \tilde{F}_{q,\lambda} &= \frac{F_{q,\lambda} - \mathbb{E}F_{q,\lambda}}{\sqrt{\operatorname{var}(F_{q,\lambda})}} \end{split}$$

- \mathcal{N} : Standard law
- $\mathcal{P}(c)$: Poisson law with parameter c
- *d_W*: Wasserstein distance.

Finite decompositions and U-statistics

Under proper integrability assumptions (η : Poisson point process):

• *k*-th order stochastic integral with kernel *f*:

$$I_k(f) = \int_{X^k} f(\mathbf{x}_k) d(\eta - \mu)^{\otimes k}.$$

• *k*-th order *U*-statistic with kernel *h*:

$$U_k(h) = \sum_{\mathbf{x}_k \subseteq \eta_\lambda} h(\mathbf{x}_k) = \int_{X^k} h(\mathbf{x}_k) d\eta^k(\mathbf{x}_k).$$

 Each k-tuple of points gives a contribution independent of the other points of η_λ.

Geometric framework

- η_{λ} : Marked Poisson process.
- *l*: Lebesgue measure
- $X_{\lambda} = [-\lambda^{1/d}, \lambda^{1/d}]$
- (M, ν) : Marks probability space
- x = (t, m): marked point.
- $\mu_{\lambda} = \mathbf{1}_{X_{\lambda}} \ell \otimes \nu$ (Lebesgue measure).
- Kernel scale change \Rightarrow Equivalent to $\mu_{\lambda} = 1_{X_1} \lambda \ell \otimes \nu$.

Graph model with unbounded connections

- $H_{\lambda} \subseteq \mathbb{R}^d$ measurable.
- $x, x' \in \eta$ connected if $x x' \in H_{\lambda}$.
- If $H_{\lambda} = \text{Unit ball} \Rightarrow \text{Unit disk graph}$ (Boolean model).
- F_{λ} : Number of connections.

Interaction volume:

$$v_{\lambda} := \ell(H_{\lambda} \cap X_{\lambda}).$$

Different regimes: $H_{\lambda} = \alpha_{\lambda} H_1$

Mini-symposium : Stochastic Analysis for Po / 24

- (R0) λv_{λ} is bounded.
- (R1) $v_{\lambda} \rightarrow 0$ and $\lambda v_{\lambda} \rightarrow \infty$.
- (R2) $v_{\lambda} \rightarrow c > 0$
- (R3) $v_{\lambda} \rightarrow \infty$.

Theorem

Assume O-regular variation: $0 < c_1 \le \frac{v_{\lambda}}{v_{c\lambda}} \le c_2 < \infty$ for c > 0. There are $C_i, C'_i > 0$ such that

• (R3) : $\operatorname{var}(F_{\lambda}) \sim \frac{C_3 \lambda v_{\lambda}^2}{c_3 \lambda v_{\lambda}^2}$

CLT:
$$d_W(ilde{F}_\lambda,\mathcal{N}) \leq C_3'\lambda^{-1/2}$$

• (R2)
$$\operatorname{var}(\widetilde{F}_{\lambda}, \mathcal{N}) \sim C_2 \lambda$$

CLT:
$$d_W(\widetilde{F}_{\lambda}, \mathcal{N}) \leq C'_2 \lambda^{-1/2}$$

(Sandard behaviour)

• (R1)
$$\operatorname{var}(F_{\lambda}(H)) \sim C_1 \lambda v_{\lambda}$$

CLT:
$$d_W(\widetilde{F}_{\lambda}, \mathcal{N}) \leq C'_1(\lambda v_{\lambda})^{-1/2}$$

• (R0) \tilde{F}_{λ} converges to a Poisson law (or to 0).

Hierarchy of chaoses

As v_{λ} grows, $F_{1,\lambda}$ becomes more predominant.

• Under (R3)

$$rac{\operatorname{var}(F_{1,\lambda})}{\operatorname{var}(F_{2,\lambda})} o \infty,$$

the first chaos dominates.

• Under (R2)

$$0 < c' \leq rac{\operatorname{var}(F_{1,\lambda})}{\operatorname{var}(F_{2,\lambda})} \leq C' < \infty$$

• Under (R1),(R0)

$$\frac{\operatorname{var}(F_{2,\lambda})}{\operatorname{var}(F_{1,\lambda})} \to \infty$$

the second chaos dominates.

Remark: $CLT \Leftrightarrow var(F_{\lambda}) \to \infty$.

Summary:

- (R3) Large interactions: CLT, first chaos dominates.
- (R2) Constant size interactions: CLT, chaoses co-dominate.
- (R1) Small interactions: Slow CLT, 2d chaos dominates.
- (R0) Rare interactions: Poisson limit, 2d chaos dominates.

Subgraph counting

- G: connected formal graph with cardinality $k \ge 1$.
- η_{λ} : Homogeneous Poisson process on X_{λ} .
- \mathcal{G}_{λ} : Graph obtained by connecting points $(x, y) \in \eta_{\lambda}$ with distance $||x y|| \le \alpha_{\lambda}$. $v_{\lambda} := \alpha_{\lambda}^{d}$.
- $F_{\lambda}(G)$: Number of occurences of G as a subgraph of \mathcal{G}_{λ} .

- (R1) $v_{\lambda} \rightarrow 0$ and $\lambda v_{\lambda}^{k-1} \rightarrow \infty$.
- (R2) $v_{\lambda} \rightarrow c > 0$
- (R3) $v_{\lambda} \rightarrow \infty$.

Results: Penrose, Peccati, LR.

- (R1) $\operatorname{var}(F_{\lambda}) \sim c_1 \lambda v_{\lambda}^{k-1}$ CLT: $d_W(\tilde{F}_{\lambda}, \mathcal{N}) \leq C_1 (\lambda v_{\lambda}^{k-1})^{-1/2}$
- (R2) $\operatorname{var}(F_{\lambda}) \sim c_2 \lambda$ CLT: $d_W(\tilde{F}_{\lambda}, \mathcal{N}) \leq C_2 \lambda^{-1/2}$
- (R3) $\operatorname{var}(F_{\lambda}) \sim c_{3}\lambda v_{\lambda}^{2k-2}$ CLT: $d_{W}(\tilde{F}_{\lambda}, \mathcal{N}) \leq C_{3}\lambda^{-1/2}$

Stationary rescaled marked kernels

•
$$k \geq 2$$
.

$$F_{\lambda} = U_k(h_{\lambda}) = \sum_{y_1, \dots, y_k \in \eta_{\lambda}} h_{\lambda}(y_1, \dots, y_k), \quad y_i = (t_i, m_i) \in \mathbb{R}^d \times \mathcal{M}.$$

Assumptions on h_{λ} :

- $h_{\lambda}(\cdot) \sim h(\alpha_{\lambda} \cdot)$ in some sense.
- α_{λ} : Scaling regime. ($v_{\lambda} := \alpha_{\lambda}^{d}$: Interaction measure.)
- $h(y_1, \ldots, y_k)$ invariant under spatial translations.
- *h* is **rapidly decreasing** away from the diagonal: there exists *κ*(*y*) > 0 bounded probability density such that for *p* = 2, 4,

$$\int_{\mathcal{M}\times(\mathbb{R}^d\times\mathcal{M})^{k-1}}\frac{|h(0,m_0,y_1,\ldots,y_{k-1})|^p}{(\varkappa(y_1)\ldots\varkappa(y_{k-1}))^{p-1}}\mu\otimes\nu(dy_1,\ldots,dy_{k-1})<\infty.$$

Tool: Bounds on the contractions

Theorem

For
$$F = \sum_{q=1}^{k} l_q(f_q) \in L^2$$
 with $\operatorname{var}(F) = 1$,
 $d_W(F, \mathcal{N}) \leq C(k)(\max \|f_q \star_r^l f_{q'}\|_2 + \max_q \|f_q\|_4)$
where $1 \leq l \leq r \leq q \leq q'$ and $l \neq q'$

$$f_q \star_r^l f_{q'}(\mathbf{x}_{r-l}, \mathbf{y}_{q-r}, \mathbf{y}_{q'-r}') = \int f_q(\mathbf{x}_l, \mathbf{x}_{r-l}, \mathbf{y}_{q-r}) f_{q'}(\mathbf{x}_l, \mathbf{x}_{r-l}, \mathbf{y}_{q'-r}') d\mathbf{x}_l.$$

Theorem

If $h(\mathbf{x}_k)$ and $g(\mathbf{x}_q)$ are stationary and rapidly decreasing, for r, l as above,

$$\|h\star_{r}^{l}g\|_{L^{2}(X\times(\mathbb{R}^{d})^{k+q-r-l-1})}^{2} \leq \ell(X)A(h)A(g)$$

R. Lachieze-Rey ()

Chaos behaviour

$$F_{\lambda} = U_k(h_{\lambda}) = \sum_{q=1}^k F_{q,\lambda}.$$

Theorem

q-th chaos behaviour of $U_k(h_\lambda)$:

$$\operatorname{var}(F_{q,\lambda}) \sim C\lambda v_{\lambda}^{2k-q-1}$$

 $d_W(\tilde{F}_{q,\lambda},\mathcal{N}) \leq C' \sqrt{rac{v_{\lambda}^{1-q}}{\lambda}} \left(1 + \mathbb{1}_{\{q \neq 1\}} \sqrt{\left\{rac{v_{\lambda}^q \ if \ v_{\lambda} > 1}{v_{\lambda} \ otherwise}}
ight)$

First term: kernel 4-th moments. second term: kernel contractions.

- First chaoses win if $v_{\lambda} \to \infty$.
- Last chaoses win if $v_{\lambda} \rightarrow 0$.
- High order chaoses convergence is slower.

R. Lachieze-Rey ()

Applications

- $v_{\lambda} = \lambda$: All points interact \Rightarrow Geometric U-statistics.
- $v_{\lambda} = 1$: Standard behaviour/Thermodynamic regime.
- v_{λ} small: rarefaction of interactions: Slow CLT/no CLT.

Examples of functionals with a standard behaviour **Boolean model**:

- \mathcal{M} : Compact sets (with Fell Borel σ -algebra).
- $\{M_k; k \ge 1\}$ IID Random compact sets .
- $\{x_k; k \ge 1\}$ Poisson point process with intensity λ .
- $\eta_{\lambda} = \{(x_k, M_k)\}$ marked Poisson measure.

$$R_{\lambda} = \bigcup_{k:x_k \in X_{\lambda}} (M_k \oplus x_k)$$

• F_{λ} : U-statistic with stationary kernel

$$h((x, M); (x', M')) = \varphi(x - x') \mathbf{1}_{\{(M \oplus x) \cap (M' \oplus x') \neq \emptyset\}},$$

$$F_{\lambda} = \sum_{x_i
eq x_j \in \eta_{\lambda}} arphi(x_i - x_j) \mathbf{1}_{\{ ext{The grains with centers } x_i ext{ and } x_j ext{ touch}\}}.$$

Magnitude assumption on φ

$$\varphi(x-y) \leq ||x-y||^{\beta}, x, y \in \mathbb{R}^{d}.$$

Theorem

Assume that in the boolean model the typical grain has diameter R such that for some $\varepsilon > 0, \beta > -d/2$, and for $r \ge 1$

$$\mathbb{P}(R \ge r) \le Cr^{-(2(\beta+d)+1+\varepsilon)}$$

then for some C, C' > 0

$$\operatorname{var}(F_{\lambda}) \sim C\lambda$$

 $d_W(\widetilde{F}_{\lambda}, \mathcal{N}) \leq C' \lambda^{-1/2}.$

The optimal condition bears actually upon the decay of

$$\chi(x) = \mathbb{P}(M_1 \cap (M_2 \oplus x) \neq \emptyset), x \in \mathbb{R}^d.$$

Mini-symposium : Stochastic Analysis for

Number of intersections in a process of line segments.

- M_k ; $k \ge 1$ Line segments with random IID lengths.
- $\varphi(x, y) = 1.$

Then F_{λ} is the number of intersections of segments with centers in X_{λ} .

Figure: Zbynek Pawlas

Theorem (Pawlas 2012)

There is standard behaviour if for some $\varepsilon > 0$

$$\mathbb{P}(length(M_1) \ge r) \le Cr^{-5-\varepsilon}, r \ge 1.$$

sub-hypergraph counting and telecommunications network **Decreusefond et al.**

- $\eta_{\lambda} = \{x_k; k \ge 1\}$ Poisson point process with intensity $\lambda \ell$ on the torus.
- *k*-th order hypergraph $\mathcal{H}_{k,\lambda}$: Data of *k*-tuples $(x_1, \ldots, x_k) \in \eta_{\lambda}$ such that $||x_i x_j|| \le \varepsilon$
- Exact mean formulas for $\mathcal{H}_{k,\lambda}$ and related topological quantities.

Our approach:

- $\{m_k; k \ge 1\}$ random radii around the points.
- Edge effects: $\eta_{\lambda} = \{y_k = (x_k, m_k); k \ge 1\}$ on $X_{\lambda} = [-\lambda^{1/d}, \lambda^{1/d}]$.
- $\mathcal{H}_{k,\lambda}$: k-tuples (y_1, \ldots, y_k) such that for all $i \neq j$, $||x_i x_j|| \leq m_i$.

Results(*R*=typical radius) :

Theorem

If $\mathbb{E} R^{4d+arepsilon} < \infty$,

$$\operatorname{var}(F_{k,\lambda}) \sim C\lambda$$

 $d_W(\tilde{\mathcal{H}}_{k,\lambda},\mathcal{N}) \leq C'\lambda^{-1/2}$

Geometric U-statistics: $\alpha_{\lambda} = \lambda^{1/d}$

Points interact regardless of the distance:

$$F_{\lambda} = \sum_{\mathbf{y}_k \in \eta_{\lambda}} h(\lambda^{-1/d} y_1, \dots, \lambda^{-1/d} y_k).$$

General form of a Geometric U-statistic:

• (X, μ) loc. compact measured space

•
$$\mu_{\lambda} = \lambda \mu$$

•
$$h(y_1, \ldots, y_k)$$
: kernel on X^k .

$$F_{\lambda} = \sum_{\mathbf{y}_k \in \eta_{\lambda}} h(x_1, \ldots, x_k).$$

Examples[Reitzner and Schulte]

- Number of k-tuples of points in convex position ⇒ Approximation of Sylvester's constant in a convex body.
- Intersections of flats in a compact window.

Results

$$F_\lambda = \sum_{q=1}^k arkappa_{k,q} F_{q,\lambda}$$

and $F_{q,\lambda} = \lambda^{k-i} I_q(h_q)$

Kernel projections:

$$h_q(\mathbf{y}_q) = \int_{X^q} h(\mathbf{y}_q, \mathbf{y}_{k-q}) d\mu(\mathbf{y}_q)$$

Asymptotic behaviour:

Theorem

 $\mathrm{var}(F_{q,\lambda}) \sim C \lambda^{2k-q} \ F_{q,\lambda} o G_q(h_q)$

where $G_q(h_q)$ is a Gaussian chaos of order q.

Summary for geometric U-statistics

$$q_0 = \min\{q : \|h_q\|_2 \neq 0\}.$$

 F_{λ} behaves like $F_{q_0,\lambda}$.

- Reitzner and Schulte. $q_0 = 1 \Rightarrow$ CLT at speed $\lambda^{-1/2}$
- LR and Peccati: $q_0 \ge 2 \Rightarrow$ no CLT, convergence to $G_{q_0}(h_{q_0})$.
- Peccati and Thaele: $q_0 = 2$: Speed of convergence to G_2 , a Γ random variable.

Poisson regime: $\lambda \alpha_{\lambda} \rightarrow c$

Peccati (2011) : sufficient conditions for the convergence to a Poisson law in terms of the contractions.

Mixed chaos behaviour

Multi-dimensional CLTs: Peccati, Zengh, Minh, Schulte, Thaele, Last, Penrose, Reitzner, LR ...

Peccati , **Bourguain 2012**: Portmanteau inequalities \Rightarrow Mixed limit theorems.

Example. Disk graph with influence volume v_{λ} such that $\lambda v_{\lambda}^{3-1} \to 0$ and $\lambda v_{\lambda}^{2-1} \to \infty$. Consider

 $F_{2,\lambda} = \#$ segments $F_{3,\lambda} = \#$ triangles.

Then

$$(\tilde{F}_{2,\lambda},\tilde{F}_{3,\lambda})\to (\mathcal{N},\mathcal{P})$$

where \mathcal{N} and \mathcal{P} are independent.