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Tessellations

Definition

Tessellation: Set C = {C1,C2, ...} of convex compact cells, locally finite
(for all compact K , {i ; Ci ∩ K 6= ∅} is finite), such that

Rd = ∪iCi ,

int(Ci ) ∩ int(Cj) = ∅, i 6= j .

The corresponding closed set is M = ∪i∂Ci .
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Some examples of real structures – Potential applications.

Craquelée on a ceramic (Photo: G. Weil)
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cracking simulation (H.-J. Vogel)
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Rat muscle tissue (I. Erzen)
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Perla 2.jpg
Granit joints (D. Nikolayev, S. Siegesmund, S. Mosch, A. Hoffmann)
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Gris Perla.jpg
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Poisson tessellations

Union of random lines.
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Voronoi and Delaunay tessellation

Π: Point process on Rd .

x ∈ Π,Vx : Set of points of Rd for which x is the closest element of
Π,

Vx = {y ∈ R2; ‖x − y‖ = inf
x ′∈Π
‖x ′ − y‖}
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3D tessellations

3D Poisson hyperplanes tesselation:
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Mixed tessellations

( Schmidt, Voss 2010)

Grey tessellation: Low-level servers.

Black spots: High-level servers.

Black tessellation (High-level network): Voronoi tessellation
corresponding to black points.

Left: Low-level servers= Voronoi tessellation.
Right: Low-level servers=Poisson line tessellation.
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Parameters of the construction

Let H be the class of hyperplanes of Rd .

Intensity: a > 0.

Stationary measure ν on H, i.e. invariant under the action of
translations, and locally finite.

W : Compact window of Rd .

[W ] = {H ∈ H : H ∩W 6= ∅}.

ν locally finite:
ν([W ]) < +∞.

Renormalised restriction of ν to W :

νW (·) =
1

ν([W ])
ν([W ] ∩ ·).
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Modelisation of cracking on compact window

Start from a bounded window W , and after a random exponential time
with rate ν([W ]), cut the window W by a random line drawn according to
νW .
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Modelisation of cracking on compact window
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Each sub-cell C created behaves independantly: it is divided after a
random time ∼ E(ν([C ])) by a random line drawn according to νC .

Raphaël Lachièze-Rey () Ergodicity of STIT tessellations January 13th, 2011 10 / 33



Modelisation of cracking on compact window

�
�
�
�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
AA

Each sub-cell C created behaves independantly: it is divided after a
random time ∼ E(ν([C ])) by a random line drawn according to νC .
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Stop the process when time a is reached.
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Nagel, Weiss, Mecke (Jena)

Model of cell division.

Time process without memory (birth and death process).

Call MW ,a,ν the obtained “tessellation”,under the form of the union of the
cells boundaries.

MW ,a,ν =
⋃

C cell existing at time a

∂C .

It is a random element with values in the class F(W ) of closed sets of W .
F(W ) is endowed with the Fell topology, and the corresponding Borel
σ-algebra B.
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Examples(Simulations: J. Ohser)

Simulations of isotropic STIT tessellations. (ν is stationary and isotropic,
i.e. invariant under the action of rotations).

In the isotropic case, the death rate of a cell ν([C ]) is proportionnal to its
perimeter.

Raphaël Lachièze-Rey () Ergodicity of STIT tessellations January 13th, 2011 12 / 33



Non-isotropic example

Examples where ν is stationary (but not isotropic).

Here, ν([C ]) is proportionnal to the perimeter of the smallest rectangle
with sides parallels to the axes containing C .
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Binary tree
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Tessellation on Rd .
Consistency properties
Nagel and Weiss 2005:
If W ⊆W ′, then

MW ,a,ν ∩ int(W )
(d)
= MW ′,a,ν ∩ int(W ).

Theorem

Let {Wi ; i ∈ N} be a family of compact windows such that

(i) Wi ↑ Rd ,

(ii) Wi ⊂ int(Wi+1).

If a family of random closed sets {FWi
⊆Wi} satisfy

FWi
∩ int(Wi )

(d)
= FWj

∩ int(Wi ), j > i ,

then there exists a random closed set F of Rd such that

F ∩ int(Wi )
(d)
= FWi

, i ∈ N.
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There exists a random tessellation Ma,ν ∈ F(Rd) such that

(Ma,ν ∩W ) ∪ ∂W
(d)
= Ma,ν,W

for all compact W . It is the STIT tessellation with parameters a and ν.
We have

a = EHd−1(M ∩ [0, 1]d)

and a is the intensity.

There exists a direct construction of the tessellation with the help of a
point process on H× R+ (marked point process of hyperplanes).
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Iteration
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Rescaling
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Rescaling

× 2
⇒
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Iteration

Let M,M ′ be two random tessellations.

C1,C2, . . . cells of M.

M ′1,M
′
2, . . . independent copies of M ′, independent of the Ci .

Define the iterate of M and M ′by

M � M ′ = 2 ∪i ∪Cj cell of M′i
∂(Cj ∩ Ci ).

It is a definition in distribution.

The operation is not commutative.
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STable under ITeration (Mecke, Nagel, Weiss)

Every STIT tessellation Ma,ν satisfies

Ma,ν � Ma,ν
(d)
= Ma,ν .

Furthermore, every random tessellation M that satisfies this property is a
STIT.

Raphaël Lachièze-Rey () Ergodicity of STIT tessellations January 13th, 2011 30 / 33



Attraction pool

Let M be a stationary tessellation. Define by induction{
M1 = M,

Mn+1 = Mn � Mn.

Then
Mn ⇒ Ma,ν ,

for a certain STIT tessellation Ma,ν .
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Mixing properties

A stationary tessellation M is mixing if

P(M ∩ K = ∅,M ∩ (K ′ + h) = ∅)→‖h‖→∞ P(M ∩ K = ∅)P(M ∩ K ′ = ∅),

for all compacts K ,K ′.

Theorem (L.,2009)

Let M be a STIT tessellation. Then for all compacts K and K ′,

P(K ∩M = ∅, (K ′ + h) ∩M = ∅)− P(K ∩M = ∅)P((K ′ + h) ∩M = ∅)
= O(1/‖h‖)
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Poisson point processes,
marked with birth times

space

time

-

6 R× (0,∞)
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Now replace R by
H ... the set of all lines in R2
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Poisson line processes Γt ,
marked with birth times

space

time

-

6
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Poisson point process Γ on H× (0,∞)
with intensity measure ν × `+

ν translation invariant on H
`+ ... Lebesgue measure on (0,∞)
For all t > 0

Γt = {h : (h, s) ∈ Γ : s < t}

is a spatially homogeneous Poisson line process in R2.
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A preliminary construction
How to start a division of the whole plane when all segments have to have
a finite length?
And all nodes are of T -type.
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�

The crucial idea (by Joseph Mecke):
Consider the process (Zt)t>0 of the o-cells of (Γt)t>0.
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For all t > 0 the Poisson line process Γt is a.s. not empty.
Assume that the directional distribution R of the lines is not concentrated
in a single point.
Then Γt generates a tessellation with a compact convex polygon Zt that
a.s. contains the origin o in its interior.
=⇒ Stochastic process (Zt)t>0 of o-cells of (Γt)t>0.
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The isotony
Γt1 ⊆ Γt2 for t1 < t2

implies
Zt1 ⊇ Zt2 for t1 < t2.

The process (Zt)t>0 is piecewise constant.
Z . . . the set of all integers.
Monotonic sequence (σk)k∈Z of times where (Zt)t>0 changes its state.
σk is the time when the interior int Zσk−1

is hit by a line from Γ.

. . . < σ−2 < σ−1 < σ0 < σ1 < 1 < σ2 < . . .
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We obtain
lim

k→−∞
σk = 0 and lim

k→∞
σk =∞

Crucial for the construction

Zσk
↑ R2 a.s. if k ↓ −∞

Also
Zσk
↓ {o} a.s. if k ↑ ∞

Raphaël Lachièze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33



A preliminary tessellation of R2

For t > 0 we define a tessellation Ψt with the cells

Zt and Zσk−1
\ Zσk

, σk < t.

All these cells are compact, convex and have a pairwise disjoint interior.
Due to

Zσk
↑ R2 a.s. if k ↓ −∞

the cells fill the plane, i.e. for all t > 0

Zt ∪
⋃
σk<t

Zσk−1
\ Zσk

= R2

Raphaël Lachièze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33



r
Zt

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������������������
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Raphaël Lachièze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33



r
Zt

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������������������

((((
((((

((((
(((

Raphaël Lachièze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33



r
Zt

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������������������

((((
((((

((((
(((

cell of Ψt
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The random tessellation Ψt is non-homogeneous
(spatially non-stationary).
Intuitively, the older cells of Ψt ,
Zσk−1

\ Zσk
with σk close to the time 0

(the
moment of the ’Big Bang’)
are very far from the origin o ∈ R2

and they tend to be larger than the younger ones.
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The final steps of the construction –
generating a spatially homogeneous
random tessellation

For t > 0: non-homogeneous tessellation Ψt with the cells

Zt and Zσk−1
\ Zσk

, σk < t.

A cell
Zσk−1

\ Zσk

is born at the time σk < t.
During the time interval (σk , t) this bounded cell is divided by random
chords as described in the beginning.
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Restricted to the cell Zσk−1
\ Zσk

and starting at time σk
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Restricted to the cell Zσk−1
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Restricted to the cell Zσk−1
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Restricted to the cell Zσk−1
\ Zσk
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Restricted to the cell Zσk−1
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Restricted to the cell Zσk−1
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... and finishing at time t.

Raphaël Lachièze-Rey () Ergodicity of STIT tessellations January 13th, 2011 33 / 33



Thus the cells Zσk−1
\ Zσk

are filled during the time interval (σk , t)
such that the resulting tessellation Φt

is spatially homogeneous,

STIT, i.e. stable under iteration/nesting of tessellations.
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