Rearrangements of Gaussian fields

Raphaël Lachièze-Rey

PLLUS Worshop, Kaiserslautern

February 11, 2011

Raphaël Lachièze-Rey ()

Rearrangements of Gaussian fields

February 11, 2011 1 / 21

2 Convergence of random measures

3 Rearrangement of random fields

___ ▶

Asymptotic rearrangement of the Brownian motion

4 / 21

Theorem (Davydov, Zitikis 2004)

X: Brownian motion.

 X_n : Piece-wise linear interpolation of X on $\{0, 1/n, \dots, 1\}$.

 $\mathfrak{C}X_n$: Convex rearrangement of X_n .

Then

$$\sup_{x\in[0,1]}\left|\frac{1}{\sqrt{n}}\mathfrak{C}X_n(x)-L(x)\right|\to 0,$$

L: Lorenz curve.

Other asymptotic convex rearrangements in Davydov & Vershik 1998. X^H : fBm with Hurst parameter H. Then

$$n^{H-1}\mathfrak{C}X_n^H \to L.$$

(L is the limit rearrangement for many Gaussian processes with stationary increments)

< 回 ト < 三 ト < 三 ト

Convex rearrangement

green: Piecewise linear function f.

Lower part (red): convex rearrangement of f, denoted by $\mathfrak{C}f$.

Rearrangement of the derivative

It corresponds to rearranging the derivative in a monotone way. If f' is the derivative of f, and $(\mathfrak{C}f)'$ the derivative of $\mathfrak{C}f$, we have

$$\lambda_1 f'^{-1} = \lambda_1 (\mathfrak{C} f)'^{-1}$$

The proof can be decomposed in two steps:

1: The probabilistic result:

Consider the image measure

$$\mu_n = \lambda_1 (n^{-1/2} \nabla X_n)^{-1}.$$

Then $\mu_n \Rightarrow \gamma_1$ a.s.. (λ_1 : 1-dim. Lebesgue, γ_1 : Normal distrib., \Rightarrow : weak convergence.) **2: The measure theory result:**

Theorem

If a sequence of convex functions $\{g_n : n \ge 1\}$ satisfies

$$\lambda_1(g_n^{-1}) \Rightarrow \mu$$

for some measure μ with finite first moment, then $g_n \rightarrow g$, with g convex and $\mu = \lambda_1 g^{-1}$.

Associated convex body of a 1-dimensional function

Resource distributed to a population of size N.

- Member labelled k receives r_k .
- Cumulative income function: $f(n) = \sum_{k \le n} r_k$.

f is extended to a piece-wise linear function on [0, N].

The area of the convex body can measure the inequalities over this particular resource (consider the equality case, where r_k is equal for all k)

February 11, 2011 10 / 21

2 Convergence of random measures

3 Rearrangement of random fields

∃ ► < ∃ ►</p>

< 4 → <

Gaussian fields

X: Centered Gaussian field, with covariance function

$$\sigma(z,\zeta) = \mathbb{E}X(z)X(\zeta), \, z,\zeta \in [0,1]^d.$$

 X_n : Approximations of a Gaussian field X on $[0,1]^d$. X_n is obtained by interpolation of X on a triangulation \mathcal{T}_n . There are regular simplices $\mathcal{T}_1, \ldots, \mathcal{T}_k$, and a discrete group Γ of \mathbb{R}^d such that

$$\mathcal{T}_n = \{\frac{1}{n}(\gamma + T_j): \gamma \in \Gamma, 1 \leq j \leq k\}.$$

Brownian sheet approximation

Results

Define

$$\mu_n = \lambda_d (b_n \nabla X_n)^{-1}$$

and

$$\sigma_{z,\zeta}^{(2)}(u,v) = \sigma(z,\zeta) + \sigma(z+u,\zeta+v) - \sigma(z+u,\zeta) - \sigma(z,\zeta+v),$$

the second order local increment of σ .

Theorem

Assume the following: For all u, v in \mathbb{R}^d

$$(nb_n)^2 \sigma_{z,z}^{(2)}(n^{-1}u, n^{-1}v) \rightarrow \sigma_z^{diag}(u, v)$$

uniformly in $z \in [0, 1]^d$. Then there is a deterministic measure μ such that, for all Borel set B,

$$\mathbb{E}\int_{[0,1]^d}\mathbf{1}_{\{b_n\nabla X_n(z)\in B\}}dz=\mathbb{E}(\mu_n(B))\to \mu(B).$$

examples

Multifractional Brownian field:

$$\sigma(z,\zeta) = \|z\|^{\alpha} + \|\zeta\|^{\alpha} - \|z-\zeta\|^{\alpha}, \, \alpha \in (0,2)$$

$$\begin{cases} \sigma_{z,z}^{(2)}(u,v) = \|u\|^{\alpha} + \|v\|^{\alpha} - \|u-v\|^{\alpha} = \sigma_{z}^{diag}(u,v), \\ b_{n} = n^{\alpha/2-1} \end{cases}$$

Brownian sheet:

$$\sigma(z,\zeta)=\prod_i\min(z_i,\zeta_i).$$

$$\begin{cases} \sigma_z^{\text{diag}}(u,v) = \langle l(z), u \wedge v - u \wedge 0 - v \wedge 0 \rangle, \\ b_n = \sqrt{n} \end{cases}$$

with

$$I(z) = (z_2 \ldots z_d, z_1 z_3 \ldots z_d, \ldots, z_1 \ldots z_{d-1}).$$

э

(日) (同) (日) (日) (日)

φ_n : Characteristic function of μ_n .

Theorem

Let $h \in \mathbb{R}^d$.

$$\mathbb{E}|\varphi_n(h) - \mathbb{E}\varphi_n(h)|^4 \\ \leq C \left((n/b_n)^2 \sum_{S,S' \in \mathcal{T}_n} \operatorname{vol}(S) \operatorname{vol}(S') |\sigma_{z,\zeta}^{(2)}(n^{-1}u, n^{-1}v)| \right)^2$$

(u, v are the directions of edges of resp. S and S'.)

3

E + 4 E +

< 4 → <

For the Multivariate Brownian field and the Brownian sheet, the right hand member is in $O(n^{-2})$, whence (Borel-Cantelli),

$$\mu_n \Rightarrow \mu$$

a.s..

Remarks:

- μ is deterministic,
- the convergence happens on each sample path.

New consistent estimators for parameters $\sigma(z, \zeta)$:

- Regularity parameters (Hurst Index),
- Directional parameters (Privileged axes)

< 🗗 🕨

Multidimensional rearrangement

Let $f:[0,1]^d \to \mathbb{R}$, differentiable a.e. such that

$$\int_{[0,1]^d} \|\nabla f(x)\| dx < +\infty.$$

A convex function C is a convex rearrangement of f if

$$\lambda_d \nabla f^{-1} = \lambda_d \nabla C^{-1}.$$

Theorem (Brenier, 91)

Every function f with finite gradient mass has a convex rearrangement $\mathfrak{C}f$. The convex rearrangement is unique up to a constant.

Asymptotic rearrangement

- f: "irregular function"
- f_n : Functions with finite gradient mass, the f_n converge to f. Is there a function C, and positive numbers $\{b_n; n \ge 1\}$, such that

$$b_n \mathfrak{C} f_n \to C?$$

If yes, C is an asymptotic convex rearrangement.

Theorem

 $\{f_n; n \ge 1\}$: Functions with finite gradient mass,

 $\{b_n; n \ge 1\}$: Positive numbers.

The following assertions are equivalent

(i) Weak convergence $\lambda_d \nabla (b_n f_n)^{-1} \Rightarrow \mu$. (ii) $b_n \mathfrak{C} f_n(z) \to C(z)$, for $z \in \operatorname{int}([0,1]^d)$, (iii) $\nabla (b_n \mathfrak{C} f_n)^{-1} \to \nabla C$ in the L^1 sense on every sub-compact, whence $C \in \mathfrak{C} f$.

In this case: $\mu = \lambda_d \nabla C^{-1}$.

Asymptotic rearrangement of the Brownian sheet

$$n^{-1/2}\mathfrak{C}X_n(z)
ightarrow C(z)$$
 a.s., $z \in (0,1)^2$,

