Rearrangements of Gaussian fields

Raphaël Lachièze-Rey
PLLUS Worshop, Kaiserslautern

February 11, 2011
(1) Introductory example: Brownian motion
(2) Convergence of random measures
(3) Rearrangement of random fields

(1) Introductory example: Brownian motion

(2) Convergence of random measures

(3) Rearrangement of random fields

Asymptotic rearrangement of the Brownian motion

Theorem (Davydov, Zitikis 2004)

X : Brownian motion.
X_{n} : Piece-wise linear interpolation of X on $\{0,1 / n, \ldots, 1\}$.
$\mathfrak{C} X_{n}$: Convex rearrangement of X_{n}.
Then

$$
\sup _{x \in[0,1]}\left|\frac{1}{\sqrt{n}} \mathfrak{C} X_{n}(x)-L(x)\right| \rightarrow 0
$$

L: Lorenz curve.
Other asymptotic convex rearrangements in Davydov \& Vershik 1998. X^{H} : fBm with Hurst parameter H. Then

$$
n^{H-1} \mathfrak{C} X_{n}^{H} \rightarrow L .
$$

(L is the limit rearrangement for many Gaussian processes with stationary increments)

Convex rearrangement

green: Piecewise linear function f.
Lower part (red): convex rearrangement of f, denoted by $\mathfrak{C} f$.

Rearrangement of the derivative

It corresponds to rearranging the derivative in a monotone way. If f^{\prime} is the derivative of f, and $(\mathfrak{C} f)^{\prime}$ the derivative of $\mathfrak{C} f$, we have

$$
\lambda_{1} f^{\prime-1}=\lambda_{1}(\mathfrak{C} f)^{\prime-1}
$$

The proof can be decomposed in two steps:
1: The probabilistic result:
Consider the image measure

$$
\mu_{n}=\lambda_{1}\left(n^{-1 / 2} \nabla X_{n}\right)^{-1}
$$

Then $\mu_{n} \Rightarrow \gamma_{1}$ a.s..
(λ_{1} : 1-dim. Lebesgue, γ_{1} : Normal distrib., \Rightarrow : weak convergence.)
2: The measure theory result:

Theorem

If a sequence of convex functions $\left\{g_{n}: n \geq 1\right\}$ satisfies

$$
\lambda_{1}\left(g_{n}^{-1}\right) \Rightarrow \mu
$$

for some measure μ with finite first moment, then $g_{n} \rightarrow g$, with g convex and $\mu=\lambda_{1} g^{-1}$.

Associated convex body of a 1-dimensional function

 Resource distributed to a population of size N.- Member labelled k receives r_{k}.
- Cumulative income function: $f(n)=\sum_{k \leq n} r_{k}$. f is extended to a piece-wise linear function on $[0, N]$.

The area of the convex body can measure the inequalities over this particular resource (consider the equality case, where r_{k} is equal for all k)

(1) Introductory example: Brownian motion

(2) Convergence of random measures

(3) Rearrangement of random fields

Gaussian fields

X : Centered Gaussian field, with covariance function

$$
\sigma(z, \zeta)=\mathbb{E} X(z) X(\zeta), z, \zeta \in[0,1]^{d} .
$$

X_{n} : Approximations of a Gaussian field X on $[0,1]^{d}$.
X_{n} is obtained by interpolation of X on a triangulation \mathcal{T}_{n}.
There are regular simplices T_{1}, \ldots, T_{k}, and a discrete group Γ of \mathbb{R}^{d} such that

$$
\mathcal{T}_{n}=\left\{\frac{1}{n}\left(\gamma+T_{j}\right): \gamma \in \Gamma, 1 \leq j \leq k\right\}
$$

Brownian sheet approximation

Results

Define

$$
\mu_{n}=\lambda_{d}\left(b_{n} \nabla X_{n}\right)^{-1}
$$

and

$$
\sigma_{z, \zeta}^{(2)}(u, v)=\sigma(z, \zeta)+\sigma(z+u, \zeta+v)-\sigma(z+u, \zeta)-\sigma(z, \zeta+v)
$$

the second order local increment of σ.
Theorem
Assume the following: For all u, v in \mathbb{R}^{d}

$$
\left(n b_{n}\right)^{2} \sigma_{z, z}^{(2)}\left(n^{-1} u, n^{-1} v\right) \rightarrow \sigma_{z}^{\text {diag }}(u, v)
$$

uniformly in $z \in[0,1]^{d}$.
Then there is a deterministic measure μ such that, for all Borel set B,

$$
\mathbb{E} \int_{[0,1]^{d}} \mathbf{1}_{\left\{b_{n} \nabla X_{n}(z) \in B\right\}} d z=\mathbb{E}\left(\mu_{n}(B)\right) \rightarrow \mu(B)
$$

examples

Multifractional Brownian field:

$$
\begin{gathered}
\sigma(z, \zeta)=\|z\|^{\alpha}+\|\zeta\|^{\alpha}-\|z-\zeta\|^{\alpha}, \alpha \in(0,2) \\
\left\{\begin{array}{l}
\sigma_{z, z}^{(2)}(u, v)=\|u\|^{\alpha}+\|v\|^{\alpha}-\|u-v\|^{\alpha}=\sigma_{z}^{\text {diag }}(u, v), \\
b_{n}=n^{\alpha / 2-1}
\end{array}\right.
\end{gathered}
$$

Brownian sheet:

$$
\begin{gathered}
\sigma(z, \zeta)=\prod_{i} \min \left(z_{i}, \zeta_{i}\right) \\
\left\{\begin{array}{l}
\sigma_{z}^{\mathrm{diag}}(u, v)=\langle l(z), u \wedge v-u \wedge 0-v \wedge 0\rangle \\
b_{n}=\sqrt{n}
\end{array}\right.
\end{gathered}
$$

with

$$
I(z)=\left(z_{2} \ldots z_{d}, z_{1} z_{3} \ldots z_{d}, \ldots, z_{1} \ldots z_{d-1}\right)
$$

φ_{n} : Characteristic function of μ_{n}.
Theorem
Let $h \in \mathbb{R}^{d}$.

$$
\mathbb{E}\left|\varphi_{n}(h)-\mathbb{E} \varphi_{n}(h)\right|^{4}
$$

$$
\leq C\left(\left(n / b_{n}\right)^{2} \sum_{S, S^{\prime} \in \mathcal{T}_{n}} \operatorname{vol}(S) \operatorname{vol}\left(S^{\prime}\right)\left|\sigma_{z, \zeta}^{(2)}\left(n^{-1} u, n^{-1} v\right)\right|\right)^{2}
$$

(u, v are the directions of edges of resp. S and S^{\prime}.)

For the Multivariate Brownian field and the Brownian sheet, the right hand member is in $O\left(n^{-2}\right)$, whence (Borel-Cantelli),

$$
\mu_{n} \Rightarrow \mu
$$

a.s..

Remarks:

- μ is deterministic,
- the convergence happens on each sample path.

New consistent estimators for parameters $\sigma(z, \zeta)$:

- Regularity parameters (Hurst Index),
- Directional parameters (Privileged axes)

(1) Introductory example: Brownian motion

(2) Convergence of random measures

(3) Rearrangement of random fields

Multidimensional rearrangement

Let $f:[0,1]^{d} \rightarrow \mathbb{R}$, differentiable a.e. such that

$$
\int_{[0,1]^{d}}\|\nabla f(x)\| d x<+\infty
$$

A convex function C is a convex rearrangement of f if

$$
\lambda_{d} \nabla f^{-1}=\lambda_{d} \nabla C^{-1}
$$

Theorem (Brenier, 91)

Every function f with finite gradient mass has a convex rearrangement $\mathfrak{C} f$. The convex rearrangement is unique up to a constant.

Asymptotic rearrangement

- f : "irregular function"
- f_{n} : Functions with finite gradient mass, the f_{n} converge to f. Is there a function C, and positive numbers $\left\{b_{n} ; n \geq 1\right\}$, such that

$$
b_{n} \mathfrak{C} f_{n} \rightarrow C ?
$$

If yes, C is an asymptotic convex rearrangement.

Theorem

$\left\{f_{n} ; n \geq 1\right\}$: Functions with finite gradient mass, $\left\{b_{n} ; n \geq 1\right\}$: Positive numbers.
The following assertions are equivalent
(i) Weak convergence $\lambda_{d} \nabla\left(b_{n} f_{n}\right)^{-1} \Rightarrow \mu$.
(ii) $b_{n} \mathfrak{C} f_{n}(z) \rightarrow C(z)$, for $z \in \operatorname{int}\left([0,1]^{d}\right)$,
(iii) $\nabla\left(b_{n} \mathfrak{C} f_{n}\right)^{-1} \rightarrow \nabla C$ in the L^{1} sense on every sub-compact, whence $C \in \mathfrak{C} f$.

In this case: $\mu=\lambda_{d} \nabla C^{-1}$.

Asymptotic rearrangement of the Brownian sheet

$$
n^{-1 / 2} \mathfrak{C} X_{n}(z) \rightarrow C(z) \quad \text { a.s. }, \quad z \in(0,1)^{2},
$$

