Recent Berry-Esseen bounds obtained with Stein's method and Poincare inequalities, with Geometric applications

Raphaël Lachièze-Rey, Univ. Paris 5 René Descartes,

Georgia Tech.

Minimal spanning tree

- X : Finite set in \mathbb{R}^{d}
- $M(X)$: Connected graph on X minimizing

$$
\sum_{\{x, y\} \text { edge }}\|x-y\|
$$

- Unique if the points of X are "in general position" (for interesting random point processes, happens a.s.) $M(X)$: Minimal Spanning Tree
- No loops
- We are interested in the functional

$$
\varphi(X)=\sum_{\{x, y\} \text { edge of } M(X)}\|x-y\|
$$

Example

Random input

The random input X_{n} will tipically be,

- either a Poisson process with intensity 1 on the window $\mathbb{X}_{n}:=\left[0, n^{1 / d}\right]^{d}$ "Poisson input"
- Or a set of n uniform iid points on \mathbb{X}_{n} "Binomial input", and we study the law of $\varphi\left(X_{n}\right)$ in the asymptotics $n \rightarrow \infty$.

What happens when you remove a point

- If you remove a point, it might not make a big difference, but it might also change the structure far away. With high probability?

What happens when you remove a point

- If you remove a point, it might not make a big difference, but it might also change the structure far away. With high probability?

First and second order derivatives

- For establishing limit theorems, we will quantify this dependency through discrete derivatives.
- Introduce the first order derivative, for $x \in \mathbb{R}^{d}$:

$$
D_{x} \varphi(X)=\varphi(X \cup\{x\})-\varphi(X)
$$

Related to a classical notion of influence

- Say that a point y has no interaction with a point x if

$$
D_{x} \varphi(X \cup\{y\})=D_{x} \varphi(X)
$$

i.e.

$$
D_{y}\left(D_{x} \varphi(X)\right)=0
$$

- This is termed the second order derivative and is symmetric in x, y :

$$
D_{y, x}^{2} \varphi(X)=\varphi(X \cup\{x, y\})-\varphi(X \cup\{x\})-\varphi(Y \cup\{y\})+\varphi(X)
$$

- x and y "don't interact" if $D_{y, x}^{2} \varphi(X)=0$.

Stabilization

- N : Gaussian standard variable
- $\tilde{\varphi}\left(X_{n}\right)=\operatorname{Var}\left(\varphi\left(X_{n}\right)\right)^{-1 / 2}\left(\varphi\left(X_{n}\right)-\mathbf{E} \varphi\left(X_{n}\right)\right)$

We already know since the 90's (Kesten \& Lee) that

$$
\tilde{\varphi}\left(X_{n}\right) \rightarrow N
$$

in law, as $n \rightarrow \infty$. They introduced the idea of stabilization radius: Given a point $x \in \mathbb{R}^{d}$, there is a.s. a radius $R_{x}>0$ independent of n such that for $y \notin B(x, R)$,

$$
D^{2} \varphi_{x, y} \varphi\left(X_{n}\right)=0
$$

The question is: At what speed does the convergence occur?

- d_{W} : Wasserstein distance, defined by

$$
d_{W}(U, V)=\sup _{h 1-\text { Lipschitz }}|\mathbf{E}[h(U)-h(V)]| .
$$

- d_{K} : Kolmogorov distance, defined by

$$
d_{K}(U, V)=\sup _{t \in \mathbb{R}}|\mathbf{P}(U \leqslant t)-\mathbf{P}(V \leqslant t)|
$$

The aim of a "2d-order Poincaré inequality" in the Poisson framework is to bound $d_{W}(\tilde{\varphi}(X), N)\left(\right.$ or $\left.d_{K}(\tilde{\varphi}(X), N)\right)$ in terms of $\mathbf{P}\left(D_{x, y}^{2} \varphi(X) \neq 0\right)$.

Stein's method and Berry-Essèen bounds

We have $\mathbf{E}\left[N f(N)-f^{\prime}(N)\right]=0$ for f smooth enough. Stein's method gives, for any variable U,

$$
\begin{aligned}
& d_{W}(U, N) \leqslant c \sup _{f:}^{f f f\left\|_{\infty} \leqslant 1,\right\| f^{\prime} \|_{\infty} \leqslant 1},\left\|f^{\prime \prime}\right\|_{\infty} \leqslant 1 \\
& (*) \\
& d_{K}(U, N) \leqslant c U f(U)-f^{\prime}(U) \mid \\
& \sup _{t \in \mathbb{R}, f \text { satisfies }(* *)}\left|\mathbf{E} U f(U)-f^{\prime}(U)\right| .
\end{aligned}
$$

where f satisfies $(* *)$ if it satisfies $(*)$ and some second order Taylor inequality depending on t :

$$
|\underbrace{f(s+h)-f(s)-f^{\prime}(s) h}_{\text {2d order difference }}| \leqslant \underbrace{h^{2}(|s|+1)}_{2 \text { d order term }}+\underbrace{h\left(\mathbf{1}_{\{x \leqslant t \leqslant x+h\}}-\mathbf{1}_{\{x+h \leqslant t \leqslant x\}}\right)}_{\text {has to be dealt with specifically }} .
$$

In the case of a random input X and a functional $\varphi(X)$, the challenge is then to express

$$
\mathrm{E}\left[\varphi(X) f(\varphi(X))-f^{\prime}(\varphi(X))\right]
$$

in terms of the derivatives $D_{x} \varphi(X), D_{x, y}^{2} \varphi(X)$. This is where Stein's method has to be combined with other analytic methods

- Malliavin calculus for Poisson input Peccati, Nourdin, Last, Reitzner, Schulte, LR, ... Based on an orthogonal chaotic decomposition
- Another specific decomposition for binomial input Chatterjee, Peccati \& LR
In some sense, Stein's method deals with the target law, and the decomposition deals with the random input process.

A "2d-order Poincaré"-like inequality LR, Schulte, Yukich

We need

$$
\begin{array}{r}
\sup _{x \in X_{n}} \sup _{A \subset X_{n},|A| \leqslant 1} \mathrm{E}\left[D_{x} \varphi\left(X_{n-1-|A|} \cup A\right)^{7}\right] \leqslant \text { constant, } \\
\psi_{n}(x, y)=\sup _{A \subset X_{n},|A| \leqslant 1} \mathrm{P}\left(D_{X, y}^{2} \varphi\left(X_{n-2-|A|} \cup A\right) \neq 0\right)^{1 / 6}, x, y \in \mathbb{E} \\
\text { small when } x, y \text { are far away }
\end{array}
$$

Then, with $\sigma^{2}=\operatorname{Var}\left(\varphi\left(X_{n}\right)\right)$, typically $\sigma^{2} \sim n$

$$
\begin{aligned}
d_{K}\left(\tilde{\varphi}\left(X_{n}\right), N\right) \leqslant \frac{n}{\sigma^{3}}+\frac{1}{\sigma^{2}}[\sqrt{n} & +n \sqrt{\int_{X_{n}^{2}} \psi_{n}(x, y) d x d y} \\
& \left.+n^{3 / 2} \sqrt{\int_{X_{n}}\left(\int_{X_{n}} \psi_{n}(x, y) d y\right)^{2} d x}\right]
\end{aligned}
$$

Comments

- Based on previous works of Chatterjee 2008, and LR\&Peccati 2015
- A similar result exists with Poisson input Last, Peccati, Schulte 2014
- Already used to give optimal Berry-Essèen bounds for more simple functionals, or combinatorial functionals
- Boolean model LR, Peccati
- Nearest neighbour graph Last, Peccati, Schulte
- Voronoi tessellation (Voronoi set approximation) LR, Peccati
- Proximity graphs (work in progress) Goldstein, Johnson, LR
- Longest increasing subsequences? (with C. Houdré)

All these examples are exponentially stabilizing. This is not the case for

- Minimal spanning tree
- Random sequential packing
- Travelling salesman problem
- Matching problems
- ...

In many applications, it is easy to get a good estimate on the second order derivative. Example : Nearest neighbours graph length :

$$
\varphi(X)=\sum_{x \in X}\|x-N N(x, X)\|
$$

where $N N(x, X)$ is the nearest neighbour of x in X. We have
$D_{x, y}^{2} \varphi(X) \neq 0$ implies that some ball with diameter $\|x-y\|$ contains at most one point of X.

Therefore, with Poisson or binomial input,

$$
\mathbf{P}\left(D_{x, y}^{2} \varphi(X) \neq 0\right) \leqslant c\|x-y\|^{-d} \exp \left(-c n\|x-y\|^{d}\right)
$$

for some $c>0$. This is enough to get $d(\tilde{\varphi}(X), N) \leqslant C n^{-1 / 2}$ for some $C>0$, with either Poisson or binomial input, and Wasserstein or Kolmogorov distance.

Derivatives estimates for the MST

Getting a bound for the MST is harder. Recall that

$$
\varphi(X)=\sum_{\{x, y\} \text { edge of the MST }}\|x-y\| .
$$

It is easy to see that

$$
\left|D_{x} \varphi(X)\right| \leqslant\|x-N N(x, X)\|+\|x-\underbrace{N N(x, X \backslash N N(x, X))}_{\text {Second nearest neighbour }}\|
$$

which gives a constant $C>0$ such that, for all $n \geqslant 1, x \in X_{n}$

$$
\mathbf{E}\left|D_{x} \varphi\left(X_{n}\right)\right|^{7} d x \leqslant C
$$

Second-order derivative

- Getting a good estimate on

$$
\mathbf{P}\left(D_{x, y}^{2} \varphi(X) \neq 0\right)
$$

is the key for obtaining a good bound on $d_{w}(\tilde{\varphi}(X), N)$.

- Chatterjee \& Sen 2013 obtained a bound directly without using such estimates. They obtained that in dimension 2 , for some $\gamma>0$,

$$
d_{W}(\tilde{\varphi}(X), N) \leqslant C n^{-\gamma}
$$

and γ is related to the 2 -arm exponent β, that we define below.

Two-arm event in x among $B(x, R)$ at level $\ell>0$

Two-arm event

Given a point set X, a distance $\ell>0$, define

$$
X^{\oplus \ell}=\bigcup_{x \in X} B(x, \ell)
$$

For $x \in X$ and $R>0$, a two-arm event with these parameters is realized if

- $(X \backslash x)^{\oplus \ell} \cap B(x, R)$ has at least two connected components C_{1}, C_{2}
- $C_{1} \cup C_{2} \cup B(x, \ell)$ is connected
- C_{1} and C_{2} both touch $\partial B(x, R)$.

Minimax property of the MST

- Given a finite set X in general position and $x, y \in X, x$ and y are connected in X iff there is no path $x_{0}=x, x_{1} \in X, \ldots, x_{q-1} \in X, x_{q}=y$ such that $\left\|x_{i}-x_{i+1}\right\|<\|x-y\|$.
- In other words, x and y are connected in the MST by the path γ minimizing

$$
\max _{\{a, b\} \text { edge of } \gamma}\|a-b\| \text {. }
$$

Minimax property

- Given a finite set X in general position and $x, y \in X, x$ and y are connected in X iff there is no path $x_{0}=x, x_{1} \in X, \ldots, x_{q-1} \in X, x_{q}=y$ such that $\left\|x_{i}-x_{i+1}\right\|<\|x-y\|$.
- In other words, x and y are connected in the MST by the path γ minimizing

$$
\max _{\{a, b\} \text { edge of } \gamma}\|a-b\| \text {. }
$$

Stabilization radius

- Given $x \in X$, we are looking for some $R>0$ such that for y outside $B(x, R), D_{x, y}^{2} M(X)=0$.
- Such a number is called a stabilization radius. This notion is fundamental for understanding the asymptotics of geometric functionals.
- To estimate $R=R(x, X)$, we introduce z "close to" x, and study if the removal/addition of a point y outside $B(x, R)$ can affect the presence of the edge $\{x, z\}$ in the MST.

Case 1: x and z are not connected no matter what is X outside $B(x, R)$

Case 2: x and z are connected no matter what is X outside $B(x, R)$

Case 3 : Depends on $X \cap B(x, R)^{c}$

Several cases occur. Call $\ell=\|x-z\|, C(x)$ the connected component of $(X \backslash\{z\})^{\oplus \ell}$ containing $x, C(z)$ the component of z in $(X \backslash\{x\})^{\oplus \ell}$.

- If $C(x)$ and $C(z)$ meet inside $B(x, R)$, by the minimax property, $\{x, z\}$ is not an edge of the MST, no matter what is X outside $B(x, R)$
- If $C(x)$ is contained in $B(x, R)$ and disjoint from $C(z)$, then $\{x, z\}$ is an edge no matter what.
- If $C(x)$ and $C(y)$ do not meet inside $B(x, R)$, but both touch the boundary, they might be connected outside $B(x, R)$, or not. This is a two arm-event. Therefore

$$
\begin{aligned}
& \mathbf{P}(\{z, x\} \text { affected by } X \backslash B(x, R)) \\
& \quad \leqslant \mathbf{P}(\text { two-arm event in } B(x, R) \text { at level } \ell=\|z-x\|) .
\end{aligned}
$$

We need to estimate this probability.

Critical radius

It turns out that this problem is easily solved in some cases:

- If ℓ is small, the component $C(x)$ quickly "extincts", and the radius R is very small with high probability.
- If ℓ is large, the components $C(x)$ and $C(z)$ are unlikely to stay disconnected for very long, here again R is small.
- There is a critical value ℓ^{*}, which is also the continuum percolation threshold, around which a good uniform estimate cannot be obtained.
Unfortunately, several (random) z, and therefore several (random) ℓ, have to be tested. A "two-arm exponent β " is such that

$$
\mathbf{P}(\text { two-arm event in } B(x, R) \text { at level } \ell) \leqslant c R^{-d \beta}
$$

for ℓ uniformly in some interval $\left[\ell^{*}-\varepsilon, \ell^{*}+\varepsilon\right]$.

Berry-Essèen bounds

- In dimension 2, Chatterjee manages to exhibit such a positive $\beta>0$. He then obtains Berry-Essen bounds in $n^{-\frac{\beta}{\beta+p}}$, where $p>1$ is arbitrary (with an ad-hoc method).
- In dimension $d \geqslant 3$, he obtains

$$
\mathbf{P}(\text { two-arm event in } B(x, R) \text { at level } \ell) \leqslant C \log (n)^{-d / 2}
$$

which gives a Berry-Esseen bound in $\log (n)^{-d / 8 p}$.
Work in progress : We use the general bounds obtained with second order derivatives to generalise his results to binomial input and Kolmogorov distance.

Number of connected components

- X : random point process
- F : union of balls centred in X with random radii/critical radius

$$
\varphi(X)=\#\{\text { connected components of } F\}
$$

- Then

$$
D_{x, y}^{2} \varphi(X) \neq 0
$$

if x and y are two "breaking points" of a connected component of F.

- Let $x \in X, R>0$. A two-arm event is realized in $B(x, R)$ if removing x cuts its connected component in 2 components that touch the boundary. If such an event is not realized, $D_{x, y}^{2} \varphi(X)=0$ for any y outside $B(x, R)$.

