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Abstract. We consider a field f ◦ T i1
1 ◦ · · · ◦ T

id
d , where T1, . . . , Td are completely

commuting transformations in the sense of Gordin. If one of these transformations is
ergodic, we give sufficient conditions in the spirit of Hannan under which the partial
sum process indexed by quadrants converges in distribution to a brownian sheet.
The proof combines a martingale approximation approach with a recent CLT for
martingale random fields due to Volný. We apply our results to completely commuting
endomorphisms of the m-torus. In that case, the conditions can be expressed in terms
of the L2-modulus of continuity of f .

1. Introduction

Let (Ω,A, µ) be a probability space and T a (non-invertible) measure preserving map.
Let U be the associated Koopman operator (Uf = f ◦T for every f ∈ L1(Ω,A, µ)) and
U∗ be the associated Perron-Frobenius operator. In 1978, Gordin and Lif̌sic [10] (see
also [8]) observed that if f = (I − U∗)g for some g ∈ L2(µ) (i.e. f is a coboundary for
U∗), then one has a decomposition f = (g − UU∗g) + (U − I)U∗g into the sum of a
reverse martingale difference plus a coboundary (for U that time). This allows to prove
the central limit theorem (CLT) and the weak invariance principle (WIP) for f from
the corresponding results for stationary reverse martingale differences.

This fruitful approach presents a part of the martingale-approximation method,
known also as Gordin’s method and started with the seminal paper [8] from 1969.
It has been further developped in many papers (to go beyond the coboundaries for
U∗). Let us mention the following references where optimal or sharp results have been
obtained concerning the CLT as well as other limit theorems: Hannan [13, 14], Heyde
[15], Maxwell and Woodroofe [17], Peligrad and Utev [18], Gordin and Peligrad [11],
Cuny [4].

Consider now a family of commuting measure preserving transformations T1, . . . , Td.
In 2009, Gordin [9] proved a decomposition analogous to the above one (see Section
4), when the transformations are completely commuting (see the next section for the
definition) and f = (I − U∗1 ) · · · (I − U∗d )g. However, probably by lack of a CLT for
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“multi-dimensional” reverse martingale differences, he did not derive any CLT from
that decomposition.

Very recently, the third author [19] proved such a CLT. Actually, he worked in the
setting of martingale differences but, as shown in Section 3, its proof applies equally
in the reverse martingale case and yields also the weak invariance principle. In this
paper, we provide a suitable reverse-martingale approximation under a condition in the
spirit of Hannan, from which the CLT and the WIP follow. Note that the WIP under
Hannan’s condition has been recently obtained by Volný and Wang [20] in the case
where the random field can be expressed as a function of an iid random field. In the
one-dimensional setting this condition is known to be sharp (see for instance Dedecker
[6]). The results of Volný and Wang can, using [20], be extended to random fields which
are not Bernoulli.

We apply these results to prove a CLT and a WIP in the case where the transforma-
tions are commuting dilating endomorphisms of the m-dimensional torus. Note that, for
such commuting endomorphisms (not necessarily dilating), the CLT has been obtained
recently by mean of completely different technics under slightly stronger conditions, see
Section 5 for a deeper discussion.

2. Setting of the paper

Let us describe our setting.
Let (Ω,A, µ) be a probability space. Consider a family {T1, . . . , Td} of measure

preserving transformations on Ω.

Denote by U1, . . . , Ud the corresponding Koopman operators and by U∗1 , . . . , U
∗
d the

associated adjoint operators, also known in that context as the Perron-Frobenius oper-
ators. Recall that those operators are characterized as follows

Uif = f ◦ Ti ;∫
Ω

Uif g dµ =

∫
Ω

f U∗i g dµ ,

for every positive measurable functions f, g and every i ∈ {1, . . . , d}.
Definition 1. We say that the family {T1, . . . , Td} (or the family {U1, . . . , Ud}) is com-
pletely commuting if it is commuting and if moreover

(1) UiU
∗
j = U∗j Ui for any i, j ∈ {1, . . . , d}, i 6= j.

Notice that (as already observed by Gordin) this definition is slightly abusive since
that property depends on µ. Since µ will be fixed in the sequel, we will not worry about
that fact.

We consider now the natural filtrations associated with our transformations. For
every i ∈ {1, . . . , d} and every n ∈ N, denote F (i)

n := T−ni (A).
Then, it is well-known (and not hard to prove) that, for every i ∈ {1, . . . , d} and

every n ∈ N, we have
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(2) E(f |F (i)
n ) = Un

i (U∗i )nf for any f ∈ L1(Ω,A, µ).

On the other hand, since the Ui’s are clearly isometries (of any Lp, 1 ≤ p ≤ ∞), we
also have for every i ∈ {1, . . . , d}

(3) U∗i Uif = f for any f ∈ L1(Ω,A, µ).

The relevance of the property of complete commutation lies in the fact that for every
i, j ∈ {1, . . . , d} with i 6= j, and every n ∈ N, the operator Ui and the operator of

conditional expectation with respect to F (j)
n are commuting.

3. An invariance principle for stationary d-fields of reverse
martingale differences

In all of this section we suppose given a completely commuting family {T1, . . . , Td}
of transformations on the probability space (Ω,A, µ) and we make use of the previous
notations.

We shall use the notation n to specify that n is a vector. Then, if n = (n1, . . . , nd) ∈
Nd (with N = {0, 1 . . .}, and later N∗ = {1, 2 . . .}), we shall use the notation

Unf = Un1
1 · · ·U

nd
d f for any f ∈ L1(Ω,A, µ).

Definition 2. We shall say that (fn)n∈Nd is a commuting stationary d-field of reverse

martingale differences if there exists f ∈ L1(Ω,A, µ) with E(f |F (i)
1 ) = 0 for every

i ∈ {1, . . . , d} such that fn = Unf .

Let {e1, . . . , ed} be the canonical basis in Rd. If (fn)n∈Nd is a commuting stationary
d-field of reverse martingale differences, then, for every i ∈ {1, . . . , d}, we have (with f
as in the definition), U∗i f = 0 and
(4)

E(fn|F (i)
ni+m) = Uni+m

i (U∗i )ni+mUnf = Un+mei(U∗i )kf = 0 for any m ∈ N∗, n ∈ Nd.

For every k, h ∈ Nd, we shall write k � h if for every i ∈ {1, . . . , d} we have ki ≤ hi.
For every n ∈ Nd and every t ∈ [0, 1]d, we shall write [nt] := ([n1t1], . . . , [ndtd]), where
[·] stands for the integer part.

Let (Unf)n∈Nd be a random field on (Ω,A, µ). For every n = (n1, . . . , nd) ∈ Nd and

every t = (t1, . . . , td) ∈ [0, 1]d set

Sn,t(f) :=
∑

0�k�[nt]

d∏
i=1

(ki ∧ (niti − 1)− ki + 1)Ukf ,

and Tn,t(f) :=
Sn,t(f)

(
∏d

i=1 ni)
1/2

.
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Theorem 1. Let (Unf)n∈Nd be a commuting stationary d-field of reverse martingale dif-
ferences with f ∈ L2(Ω,A, µ). Assume that one of the Ui’s is ergodic. Then, the process
(Tn,t(f))t∈[0,1]d)n∈Nd converges in law in C([0, 1]d) to (‖f‖2Wt)t∈[0,1]d, where (Wt)t∈[0,1]d

is the standard d-dimensional brownian sheet.

Remark. Recall that (Wt)t∈[0,1]d is the centered gaussian process characterized by

E(WsWt) =
∏d

i=1(si ∧ ti). The ergodicity will be needed at the very end of the proof,
in order to prove Lemma 4 below.

As usual we shall prove that result in two steps. The first one consists in proving
tightness. The second one consists in proving convergence of the finite dimensional
distributions.

3.1. Proof of the tightness. The tightness has been proved by Volný and Wang [20]
in the case of martingale differences rather than reverse martingale differences. Their
argument carry on to our setting provided that we have a maximal inequality of Cairoli’s
type for reverse martingale fields.

We shall just state the appropriate version of Cairoli’s maximal inequality needed
and refer to [20] for the proof of the tightness. We state it in the stationary case, but
it holds in a more general setting.

Proposition 2 (Cairoli, [1]). Let (Unf)n∈Nd be a commuting stationary d-field of re-

verse martingale differences with f ∈ Lp(Ω,A, µ), p > 1. Then, for every n ∈ Nd we
have

(5) E

max
1�k�n

∣∣∣∣∣∣
∑

0�i�k

U if

∣∣∣∣∣∣
p ≤ 2dp

(
p

p− 1

)d
E

(∣∣∣∣∣ ∑
0�i�n

U if

∣∣∣∣∣
p)

Proof. We explain how to derive the result from Cairoli’s original result when d = 2.
Let n ∈ N2. For every 0 � k � n write gk := Un−kf . Then, (

∑
0�i�k gi)0�k�n is a

so-called orthomartingale. Moreover, we see that for every 0 � k � n,∑
0�i�k

U if =
∑

0�i�n

U if −
∑

(k1,0)�i�n

U if −
∑

(0,k2)�i�n

U if +
∑

(k1,k2)�i�n

U if

=
∑

0�i�n

gi −
∑

0�i�(n1−k1,0)

gi −
∑

0�i�(0,n2k2)

gi +
∑

0�i�(n1−k1,n2−k2)

gi .

�

3.2. Convergence of the finite dimensional distributions. We have to prove that
for every (tk)0≤k≤L with tk ∈ [0, 1]d,

(6)
(
Tn,t0(f), . . . , Tn,tL(f)

)
⇒
(
Wt0

(f), . . .WtL
(f)
)

as n1, . . . , nd → +∞.
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Note first that, if

S̃n,t(f) :=
∑

0�k�[nt]−1

Ukf and T̃n,t(f) :=
S̃n,t(f)

(
∏d

i=1 ni)
1/2

,

where 1 = (1, . . . , 1), then ‖Tn,t(f) − T̃n,t(f)‖2 → 0 as n1, . . . , nd → +∞. This follows
easily from the fact that, using the reverse-martingale property,

‖Sn,t(f)− S̃n,t(f)‖2
2 ≤ ‖f‖2

2

 d∑
i=1

∏
j∈{1,...,d},j 6=i

nj

 .

Hence, is suffices to prove (6) with T̃n,ti instead of Tn,ti . Let (ak)0≤k≤L be L + 1 real
numbers. By the Cramer-Wold device, it suffices to prove that

L∑
k=0

akT̃n,tk(f)⇒
L∑
k=0

akWtk
(f) .

As a second simple remark, note that the sum
∑L

k=0 akT̃n,tk(f) can be written as a
weighted sum over disjoint and adjacent rectangles. Hence, it suffices to prove the
convergence in distribution for such rectangles.

We shall make the proof when d = 2, the general case can be proved by induction.
Let t0 = 0 < t1 < · · · < tK ≤ 1 and s0 = 0 < s1 < · · · < sK ≤ 1. Let also (ak,`)1≤k,`≤K
be real numbers. From the remarks above, it suffices to prove that

Vn1,n2 =
1

√
n1n2

K∑
k=1

K∑
`=1

ak,`

[ntk]−1∑
i=[n1tk−1]

[ns`]−1∑
j=[n2s`−1]

U i
1U

j
2 (f)

⇒
K∑
k=1

K∑
`=1

ak,`
(
W(tk,s`)(f) +W(tk−1,s`−1)(f)−W(tk,s`−1)(f)−W(tk−1,s`)(f)

)
.

as n1, n2 →∞. Notice that the random variable on right hand is distributed according
to N (0,Γ), with

Γ = ‖f‖2
2

K∑
k=1

K∑
`=1

a2
k,`(tk − tk−1)(s` − s`−1) .

Clearly, it suffices to prove the desired convergence in distribution when n1, n2 → +∞
along any sequence (mr, nr)r≥1. Hence, let us fix a sequence (mr, nr)r≥1 such that
mr, nr → +∞ as r → +∞. It remains to prove that

(7) Vr =
1

√
mrnr

K∑
k=1

K∑
`=1

ak,`

[mrtk]−1∑
i=[mrtk−1]

[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)⇒ N (0,Γ)

Proof of (7). Since one of the U ′is is assumed to be ergodic, let us assume that U2 is.
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We will apply the following result of McLeish as stated in Hall and Heyde [12] (see
Theorem 3.6 p. 77). This theorem is stated for an array of martingale differences, but
a simple change of time gives the next proposition. We first mention what we mean by
an array of reverse martingale differences.

Definition 3. Let ((Xr,k)0≤k≤pr−1)r≥1 be an array of variables and ((Gr,k)0≤k≤pr−1)r≥1

be an array of σ-algebras, such that for every r ≥ 1, (Gr,k)0≤k≤pr−1 is decreasing. We
say that ((Xr,k, (Gr,k)0≤k≤pr−1)r≥1 is an array of reverse martingale differences if Xr,k

is Gr,k-measurable for every r ≥ 1 and 1 ≤ k ≤ pr and if E(Xr,k|Gr,k+1) = 0 for every
r ≥ 1 and every 0 ≤ k ≤ pr − 2.

Proposition 3 (McLeish). Let ((Xr,k, (Gr,k)0≤k≤pr−1)r≥1 be an array of reverse martin-
gale differences in L2. Assume that

(i) sup0≤k≤pr−1 |Xr,k|
P→ 0 ;

(ii) sup0≤k≤pr−1 E(X2
r,k) <∞ ;

(iii)
∑pr−1

k=0 X2
r,k

P→ V for some V ≥ 0;

Then,
∑

0≤k≤pr−1Xr,k converges in distribution to N (0, V ).

To apply this proposition, we write

1
√
mrnr

mr−1∑
i=0

K∑
k=1

1{[mrtk−1]≤i≤[mrtk]−1}

 K∑
`=1

ak,`

[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)

 :=
mr−1∑
i=0

Zr,i .

Note that Zr,i is a reverse martingale difference with respect to Gr,i = F (1)
i . We shall

now prove that (Zr,i)0≤i≤mr−1 satisfies (i), (ii) and (iii) of Proposition 3 (with V = Γ
for (iii)).
Proof of (i) and (ii). We have

sup
0≤i≤mr−1

|Zr,i| ≤

(
sup

1≤k≤K

K∑
`=1

|ak,`|

)
sup

1≤`≤K
sup

0≤i≤mr−1

1
√
mrnr

∣∣∣∣∣∣
[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)

∣∣∣∣∣∣ .
Hence we just have to prove that for every ε > 0, and every 1 ≤ ` ≤ K,

γ`,ε,r := µ

 sup
0≤i≤mr−1

1
√
mrnr

∣∣∣∣∣∣
[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)

∣∣∣∣∣∣ ≥ ε

 −→
r→+∞

0.

Using the stationarity and Markov inequality, we obtain that

γj,ε,r ≤ mrµ

 1
√
mrnr

∣∣∣∣∣∣
[nrs`]−1∑
j=[nrs`−1]

U j
2 (f)

∣∣∣∣∣∣ ≥ ε


≤ 1

ε2
E

 1
√
nr

[nrs`]−1∑
j=[nrs`−1]

U j
2 (f)

2

1∣∣∣∣∑[nrs`]−1

j=[nrs`−1]
Uj
2 (f)

∣∣∣∣>√mrnrε

 .
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Notice that (U i
2f)0≤ı≤mr−1 is a stationary sequence of reverse martingale differences.

Now, it is well-known (using stationarity, truncation and Burkholder inequality) that
the family

(Yr,`)r≥1 :=

 1
√
nr

[nrs`]−1∑
j=[nrs`−1]

U j
2 (f)

2
r≥1

is uniformly integrable, and (i) easily follows.

In the same way, (ii) can be proved by using the stationarity and the fact that
(Yr,`)r≥1 is bounded in L1.

Proof of (iii). This is the difficult part. It suffices to prove that

lim
r→∞

∥∥∥∥∥
mr−1∑
i=0

Z2
r,i − Γ

∥∥∥∥∥
1

= 0 .

Now

Z2
r,i =

K∑
k=1

1

m r
1{[mrtk−1]≤i≤[mrtk]−1}

 K∑
`=1

ak,`
1√
nr

[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)

2

.

Hence, it suffices to prove that

lim
r→∞

K∑
k=1

∥∥∥∥∥∥ 1

m r

[mrtk]−1∑
i=[mrtk−1]

 K∑
`=1

ak,`
1√
nr

[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)

2

− γk

∥∥∥∥∥∥
1

= 0

where γk = ‖f‖2
2

∑K
`=1 a

2
k,`(tk − tk−1)(s` − s`−1). By stationarity, it suffices to prove

that, for each k ∈ {1, . . . , K},

lim
r→∞

∥∥∥∥∥∥ 1

mr

[mrtk]−[mrtk−1]−1∑
i=0

 K∑
`=1

ak,`
1√
nr

[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)

2

− γk

∥∥∥∥∥∥
1

= 0 .

Setting ur = [mrtk]− [mrtk−1], this is equivalent to

(8) lim
r→∞

∥∥∥∥∥∥ 1

ur

ur−1∑
i=0

 K∑
`=1

ak,`
1√
nr

[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)

2

− ‖f‖2
2

K∑
`=1

a2
k,`(s` − s`−1)

∥∥∥∥∥∥
1

= 0 .

In order to prove (8), let us admit the following lemma for a while.

Lemma 4. Let ε > 0. If U2 is ergodic, there exist integers v ≥ 1 (large enough) and
p(v) (large enough), such that for every n ≥ p(v)

(9)

∥∥∥∥∥∥1

v

v−1∑
i=0

 1√
n

K∑
`=1

ak,`

[ns`]−1∑
j=[ns`−1]

U i
1U

j
2 (f)

2

−∆k

∥∥∥∥∥∥
1

< ε ,
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where ∆k := ‖f‖2
2

∑K
`=1 a

2
k,`(s` − s`−1).

Let

Fr,i =
K∑
`=1

ak,`
1√
nr

[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f) .

Let r ≥ 1, such that ur ≥ v and write ur = vqr + tr, with qr ≥ 1 and tr ∈ {0, . . . , v−1}.
We have that

(10)
1

ur

ur−1∑
i=0

F 2
r,i −∆k =

v

ur

qr−1∑
k=0

1

v

(k+1)v−1∑
i=kv

F 2
r,i −∆k

+
1

ur

ur−1∑
i=vqr

F 2
r,i −

tr∆k

ur

By stationarity, and Lemma 4, we see that, for nr ≥ p(v)

(11)

∥∥∥∥∥∥ vur
qr−1∑
k=0

1

v

(k+1)v−1∑
i=kv

F 2
r,i −∆k

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥1

v

v−1∑
i=0

 1
√
nr

K∑
`=1

ak,`

[nrs`]−1∑
j=[nrs`−1]

U i
1U

j
2 (f)

2

−∆k

∥∥∥∥∥∥
1

< ε .

On another hand, for a fixed v, one has

(12) lim
r→∞

∥∥∥∥∥ 1

ur

ur−1∑
i=vqr

F 2
r,i −

tr∆k

ur

∥∥∥∥∥
1

= 0 .

From (10), (11) and (12), we see that (8) holds. This completes the proof of (iii). �

Proof of Lemma 4 The proof relies on the following convergence in law.

Lemma 5. Let v ≥ 1. The sequence of random vectors 1√
n

K∑
`=1

ak,`

[ns`]−1∑
j=[ns`−1]

U i
1U

j
2 (f)


1≤i≤v

converges in distribution to (Ni)1≤i≤v, where the Ni’s are iid with common distribution

N (0, ‖f‖2
2

∑K
`=1 a

2
k,`(s` − s`−1)).

Lemma 4 follows easily from Lemma 5, a truncation argument and the law of large
numbers in L1 for (N2

i )1≤i≤v (with v → +∞).

Lemma 5 can be proved by applying Proposition 3, but it is shorter to notice that
it is a consequence of the WIP for stationary and ergodic Rv-valued reverse martingale
differences (note that it is the only place where we use the ergodicity of U2). Indeed,
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letting V (f) = (U1
1 (f), . . . , U v

1 (f))′, it follows from the WIP that 1√
n

[ns1]−1∑
j=0

V (U j
2 (f)), . . . ,

1√
n

[nsK ]−1∑
j=[nsK−1]

V (U j
2 (f))


converges in distribution to (G1, . . . , GK), where the G`’s are independent Gaussian
random vectors with respective covariance matrix (s` − s`−1)E(V (f)V (f)′). Now since
E(U i

1(f)U j
1 (f)) = 0 if i 6= j, we see that E(V (f)V (f)′) = ‖f‖2

2Idv, where Idv is the
identity v × v matrix. Lemma 5 follows straightforwardly.

4. Reverse martingale approximation

We shall consider again a completely commuting family of (non invertible) measure
preserving transformations T1, . . . , Td.

In all that section we assume the following property

‖(U∗i )nf‖2 −→n→+∞
0 for any i ∈ {1, . . . , d}, and any f ∈ L2(Ω,A, µ) with E(f) = 0 .

This property is equivalent to the fact that each Ti is exact (see Definition 4.14 in
Walters [21]).

We shall now prove a (reverse) martingale approximation result under a condition in
the spirit of Hannan. For f ∈ L2(µ) set

‖f‖X2 : =
∑

n1,...,nd∈N

∥∥∥∥∥
d∏
i=1

(Uni
i (U∗i )ni − Uni+1

i (U∗i )ni+1)f

∥∥∥∥∥
2

(13)

=
∑

n1,...,nd∈N

∥∥∥∥∥
d∏
i=1

((U∗i )ni − Ui(U∗i )ni+1)f

∥∥∥∥∥
2

,

and
X2 := {f ∈ L2(µ) : ‖f‖X2 <∞} .

It is not hard to prove as in the one-dimensional case (see for instance the proof of
Proposition 12 in [5]) that a sufficient condition for f to be in X2 is that

(14)
∑

n1,...,nd∈N

‖(U∗1 )n1 · · · (U∗d )ndf‖2

(n1 · · ·nd)1/2
<∞ .

We first prove a maximal inequality. Its statement, as well as its proof, are analogous
to Lemma 5.2 of [20].

Lemma 6. Let f ∈ X2. Then,

(15) E

max
1�k�n

∣∣∣∣∣∣
∑

0�i�k

U if

∣∣∣∣∣∣
2 ≤ 23d(n1 · · ·nd)‖f‖2

X2
.



10 CHRISTOPHE CUNY, JÉRÔME DEDECKER, AND DALIBOR VOLNÝ

Proof. Let f ∈ X2. Using that for every i ∈ {1, . . . , d}, ‖(U∗i )nf‖2 −→ 0 as n → ∞,
we obtain the following orthogonal decomposition

(16) f =
∑

m1,...,md∈N

d∏
i=1

(
Umi
i (U∗i )mi − Umi+1

i (U∗i )mi+1
)
f :=

∑
m∈Nd

fm .

Then, clearly

max
1�k�n

∣∣∣∣∣∣
∑

0�i�k

U if

∣∣∣∣∣∣ ≤
∑
m∈Nd

max
1�k�n

∣∣∣∣∣∣
∑

0�i�k

U ifm

∣∣∣∣∣∣
Now, for every m = (m1, . . . ,md) ∈ Nd, (U ifm)i∈Nd is a commuting stationary d-
field of reverse martingale differences associated with fm ∈ L2(Ω,Am, µ), where Am =
T−m1

1 ◦ · · · ◦ T−md
d (A). Hence, the result follows from Proposition 2. �

We shall also need the following lemma.

Lemma 7. Let T1 be a measure preserving transformation and U1 the associated Koop-
man operator. Let f, g ∈ L2(Ω,A, µ) be such that for h ∈ {f, g},

(17)
∑
n≥0

∥∥((U∗1 )n − U1(U∗1 )n+1
)
h
∥∥

2
<∞ .

Then,
∑

k∈Z |E(Uk+

1 f Uk−
1 g)| <∞, where k+ = max{0, k} and k− = max{0,−k}. More-

over, writing f̃ :=
∑

k≥0((U∗1 )k − U1(U∗1 )k+1)f and g̃ :=
∑

k≥0((U∗1 )k − U1(U∗1 )k+1)g,

(18) E
(
f̃ g̃
)

=
∑
k∈Z

E
(
Uk+

1 f Uk−

1 g
)
.

Proof. The absolute convergence of the series will follow from the proof. Hence, we only
prove (18). For every f ∈ L2(Ω,A, µ) such that E(f) = 0, using that ‖(U∗1 )nf‖2 −→

n→+∞
0,

we have

f =
∑
n∈N

(
Un

1 (U∗1 )n − Un+1
1 (U∗1 )n+1

)
f ,(19)

where the summands are orthogonal.
Let

Ak,`(f, g) = E
(((

(U∗1 )k − U1(U∗1 )k+1
)
f
) ((

(U∗1 )` − U1(U∗1 )`+1
)
g
))

Using (17) to permute E and
∑

, we have (with absolute convergence)

E
(
f̃ g̃
)

=
∑
k,`∈N

Ak,`(f, g) =
∑

k,` : k>`

Ak,`(f, g) +
∑

k,` : k<`

Ak,`(f, g) +
∑

k,` : k=`

Ak,`(f, g) .

The first two sums on right hand are symmetric one from the other, hence we shall
deal only with the second one. Since E

(((
U∗1 )k − U1(U∗1 )k+1

)
f
) (
U1(U∗1 )`+1g

))
= 0 for
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` ≥ k, ∑
k∈N

∑
`>k

Ak,`(f, g) =
∑
k∈N

∑
m∈N∗

E
(((

Uk
1 (U∗1 )k − Uk+1

1 (U∗1 )k+1
)
f
)

(U∗1 )mg
)

=
∑
m∈N∗

E (Um
1 f g) ,

where we have used (19). In the same way∑
k∈N

Ak,k(f, g) =
∑
k∈N

E
(((

Uk
1 (U∗1 )k − Uk+1

1 (U∗1 )k+1
)
f
)
g
)

= E(fg) .

Theorem 8. Let f ∈ X2. Then, there exists a commuting stationary d-field of reverse
martingale differences (Un(d))n∈Nd with d ∈ L2(µ) such that

(20) E

max
0�k�n

∣∣∣∣∣∣
∑

0�i�k

U if − U id

∣∣∣∣∣∣
2 = o(n1 · · ·nd), as n1, . . . , nd → +∞ ,

and ‖d‖2
2 =

∑
n∈Nd E(Un+

f Un−
f), where we use the notations n+ = (n+

1 , . . . , n
+
d ) and

n− = (n−1 , . . . , n
−
d ).

Proof. By (19) we see that ‖ · ‖X2 is definite on X2 hence that it is a norm. Moreover,
(X2, ‖ · ‖X2) is a Banach space.

Let i ∈ {1, . . . , d}. We easily see that ‖(U∗i )nf‖X2 −→ 0 as n → +∞. Hence, U∗i is
mean ergodic on X2 (with no fixed points), that is

X2 = (I − U∗i )X2

X2
.

Then, it follows that

(21) X2 =
∏

1≤i≤d

(I − U∗i )X2

X2

.

Define a linear operator D on X2 by setting

Df :=
∑
n∈Nd

d∏
i=1

(
(U∗i )ni − Ui(U∗i )ni+1

)
f .

Let us observe that if f =
∏

1≤i≤d(I−U∗i )g with g ∈ X2, then Df =
∏

1≤i≤d(I−UiU∗i )g.

Obviously,

(22) ‖D(f)‖2 ≤ ‖f‖X2 .

Let us prove (20) with d = D(f). Let us admit for a while that (20) holds whenever
f belongs to

∏
1≤i≤d(I − U∗i )X2. Let us show then that (20) holds for every f ∈ X2.
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Let f ∈ X2. Let ε > 0. By (21), there exists g ∈ X2 such that∥∥∥∥∥f − ∏
1≤i≤d

(I − U∗i )g

∥∥∥∥∥
X2

< ε .

For every n ∈ Nd, we have, setting g̃ :=
∏

1≤i≤d(I − U∗i )g,∣∣∣∣∣∣
∑

0�k�n

(
Ukf − UkDf

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

0�k�n

(
Ukf − Ukg̃

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

0�k�n

(
Ukh− UkDg̃

)∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

0�k�n

(
UkD(f − g̃)

)∣∣∣∣∣∣ .
Using (15) to deal with the first term above and (22) and (5) to deal with the third
term, and since we admit for the moment that (20) holds for g̃, we infer that

lim sup
n1,...,nd→+∞

1

n1 · · ·nd
E

max
1�k�n

∣∣∣∣∣∣
∑

0�i�k

U if − U id

∣∣∣∣∣∣
2 ≤ Cε ,

and (20) follows by letting ε→ 0.
It remains to deal with the case where f =

∏
1≤i≤d(I − U∗i )g, for some g ∈ X2.

To do so we use the following simple identity (see also Gordin [9], Proposition 1):

for i ∈ {1, . . . , d}, I − U∗i = I − UiU∗i + (Ui − I)U∗i .

Let f =
∏

1≤i≤d(I − U∗i )g with g ∈ X2. We have

f = Df +
∑

E⊂{1,...,d},E 6=∅

∏
i∈Ec

(I − UiU∗i )
∏
j∈E

(Uj − I)U∗j g

: = Df + h .(23)

The proof relies on the fact that the remainder in (23) (i.e. h) behaves like a cobound-
ary in some “directions” and like a sum of reverse martingale differences in the other
“directions”. For the sake of simplicity, we only prove the results for d = 2, but the
general case can be handled similarly.

We have

f −Df = (I − U1U
∗
1 )(U2 − I)U∗2 g + (I − U2U

∗
2 )(U1 − I)U∗1 g + (U1 − I)(U2 − I)U∗1U

∗
2 g .

For every 0 ≤ k1 ≤ n1 and every 0 ≤ k2 ≤ n2, we have∑
0≤i1≤k1

U i1
1

∑
0≤i2≤k2

U i2
2 (I − U2U

∗
2 )(U1 − I)U∗1 g = (Uk1

1 − I)
∑

0≤i2≤k2

U i1
1 (I − U2U

∗
2 )U∗1 g .
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Define Zk1,n2 := max1≤k2≤n2 |
∑

0≤i2≤k2 U
i2
2 (I−U2U

∗
2 )Uk1

1 U∗1 g|. For every A > 0, we have

max
1≤k1≤n1

max
1≤k2≤n2

∣∣∣∣∣ ∑
0≤i1≤k1

U i1
1

∑
0≤i2≤k2

U i2
2 (I − U2U

∗
2 )(U1 − I)U∗1 g

∣∣∣∣∣
2

≤ 2|Z0,n2|2 + 2n2A
2 + 2

∑
0≤k1≤n1

∣∣∣Zk1,k21{|Zk1,n2
|≥A
√
n2}

∣∣∣2 ,
and, by stationarity

E

 max
1≤k2≤n2

max
1≤k1≤n1

∣∣∣∣∣ ∑
0≤i1≤k1

U i1
1

∑
0≤i2≤k2

U i2
2 (I − U2U

∗
2 )(U1 − I)U∗1 g

∣∣∣∣∣
2


≤ 2E
(
|Z0,n2|2

)
+ 2n2A

2 + 2n1E
(∣∣∣Z0,n21{|Z0,n2 |≥A

√
n2}

∣∣∣2) .

Since, (Z2
0,n2

/n2)n2≥1 is uniformly integrable, it follows that

1

n1n2

E

 max
1≤k2≤n2

max
1≤k1≤n1

∣∣∣∣∣ ∑
0≤i1≤k1

U i1
1

∑
0≤i2≤k2

U i2
2 (I − U2U

∗
2 )(U1 − I)U∗1 g

∣∣∣∣∣
2
 −→

n1,n2→+∞
0 .

We may deal similarly with the sum associated with the term (I−U1U
∗
1 )(U2−I)U∗2 g.

To deal with the sum associated with the term (U1 − I) − U2 − I)U∗1 )U∗2 g is somehow
easier.

To finish the proof of the theorem, it remains to identify ‖Df‖2
2. But, this follows by

applying inductively Lemma 7, noticing that∑
n∈Nd

d∏
i=1

(
(U∗i )ni − Ui(U∗i )ni+1

)
=

d∏
i=1

∑
ki∈N

(
(U∗i )ki − Ui(U∗i )ki+1

)
and using the fact that (U1, . . . , Ud) is completely commuting. �

5. Expanding endomorphisms of the m-dimensional torus

Let A be a m×m (m ≥ 1) matrix with integer entries. We say that A is expanding
if all its eigenvalues have modulus strictly greater than 1.

A induces a transformation θA of the m-dimensional torus [0, 1)m, preserving the
Lebesgue-Haar measure λ. We denote by UA the corresponding Koopman operator,
and by U∗A the Perron-Frobenius operator.

Let us give a simple condition under which θA and θB are completely commuting.

Lemma 9. Let A and B be two expanding m×m (m ≥ 1) matrices with integer entries.
Assume that A and B commutes and that they have coprime determinants. Then, θA
and θB are completely commuting.
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Proof. We have to prove that U∗AUB = UBU
∗
A. Let Γ be representatives of Zm/AZm

with distinct images in Zm/AZm. By (34) (using that A−1 and B commute), it suffices
to prove that B induces a bijection (modulo Zm) of the set (A−1γ)γ∈Γ.

Let γ, γ′ ∈ Γ be such that there exists β ∈ Zm such that BA−1γ = BA−1γ′ + β. Set
δ := γ − γ′ ∈ Zm. Writing A−1 = (detA)−1Ã, where Ã is the adjugate matrix of A
(with integer entries) and similarly, B−1 = (detB)−1B̃, we see that

(detB)Ãδ = (detA)B̃β .

Since detB ∧ detA = 1, by Gauss lemma, we infer that detA divides all entries Ãδ,
hence that A−1δ ∈ Zm and δ ∈ AZm. By definition of Γ, we see that γ = γ′ and the
lemma is proved. �

The fact that A and B have coprime determinants is by no mean necessary for θA
and θB to be completely commuting as one may see from the following basic example:

A =

(
2 0
0 3

)
and B =

(
3 0
0 2

)
.

The next proposition is an easy consequence of a result by Fan [7] (see Proposition
13 of the Appendix). Recall that the modulus of continuity in L2 is given by

Ω2,f (δ) := sup
0≤|x|≤δ

‖f(·+ x)− f‖2 ,

where |x| stands for the euclidean norm of x ∈ [0, 1)m.

Proposition 10. Let A1, . . . , Ad be commuting expanding m×m matrices with integral
entries. Let λmin > 1 be the infimum of the modulus of their eigenvalues. There exists
C > 0 such that, for every f ∈ L2(λ) and every n1, . . . , nd ∈ N,

(24) ‖(U∗A1
)n1 · · · (U∗Ad

)ndf‖2 ≤ Ω2,f

(
Cλ
−(n1+···+nd)
min

)
.

Proof. Let us first notice that (U∗A1
)n1 · · · (U∗Ad

)nd is the Perron-Frobenius operator
associated with θAd

nd ···A1
n1 . Now, since the matrices are commuting, it follows from

standard linear algebra results, that the set of the eigenvalues of Ad
nd · · ·A1

n1 is in-
cluded in {λdnd · · ·λ1

n1 : λi is an eigenvalue of Ai}. In particular, Ad
nd · · ·A1

n1 is an
expanding matrix. Then, the result follows from Proposition 13, noticing that

∆
(
A−n1

1 · · ·A−nd
d ([0, 1]m)

)
≤ Cλ

−(n1+···+nd)
min ,

where ∆
(
A−n1

1 · · ·A−nd
d ([0, 1]m)

)
is the diameter of A−n1

1 · · ·A−nd
d ([0, 1]m). �

We shall use the following notation: U i = U i1
A1
· · ·U id

Ad
for every (i1, . . . , id) ∈ Nd.

Theorem 11. Let d ≥ 1. Let f ∈ L2([0, 1)m, λ) centered such that

(25)

∫ 1

0

| log(t)|(d−2)/2

t
Ω2,f (t) dt <∞ .

Let A1, . . . , Ad be expanding m × m matrices with integral entries. Assume that they
are commuting and that their determinants are pairwise coprime. Then, there exists
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a stationary d-field of reverse martingale differences (Un(d))n∈Nd with d ∈ L2(λ) such
that

(26) E

max
1�k�n

∣∣∣∣∣∣
∑

0�i�k

U if − U id

∣∣∣∣∣∣
2 = o(n1 · · ·nd) as n1, . . . , nd → +∞ .

In particular, we have an invariance principle.

Remark. We see that if Ω2,f (t) = o(| log(t)|−d/2−ε) (t → 0) (25) holds. A CLT has
been obtained by Cohen and Conze [2] under the condition Ω2,f (t) = o(| log(t)|−d−ε)
(t→ 0). However, the results of [2] apply to general arrays and to commuting families
of general endomorphisms (including for instance automorphisms) inducing a totally
ergodic Nd-action (see their paper for more informations).

Proof. It follows from (31) and a density argument that ‖(U∗Ai
)nf‖2 → 0 as n→ +∞

for every centered f ∈ L2(λ) and every i ∈ {1, . . . , d}. Hence, by Theorem 8, we just
have to check that (14) holds. Using (31), we see that (14) will hold provided that

(27)
∑

n1,...,nd∈N∗

Ω2,f (Cλ
−(n1+···+nd)
min )

(n1 · · ·nd)1/2
<∞ .

Now, making the change of index n1 + · · ·+ nd → nd,∑
n1,...,nd∈N∗

Ω2,f (Cλ
−(n1+···+nd)
min )

(n1 · · ·nd)1/2

=
∑

n1,...,nd−1∈N∗

∑
nd≥n−1+···+nd−1+1

Ω2,f (Cλ
−nd
min)

(n1 · · · (nd − n1 − · · · − nd−1))1/2
.

Notice that for every m ≥ 1, we have∑
1≤n1≤m−1

1√
n1(m− n1)

≤
√

2/m
∑

1≤n1≤m/2

1
√
n1

+
√

2/m
∑

m/2≤n1≤m−1

1√
m− n1

≤ D ,

for a constant D > 0 independent of m.

Hence (27) holds if and only if∑
nd≥1

∑
n2,...,nd−1∈N∗ :n2+···+nd−1≤nd−1

Ω2,f (Cλ
nd
min)

√
n2 · · ·nd−2

≤
∑
nd≥1

( ∑
1≤j≤nd

1√
j

)d−2

Ω2,f (Cλ
nd
min) ≤ C

∑
nd≥1

n
(d−2)/2
d Ω2,f (Cλ

nd
min) <∞ ,

which is equivalent to (25) by comparing series and integrals. �

We shall now give a sufficient condition in terms of Fourier coefficients.
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Lemma 12. Let f ∈ L2([0, 1)m) with Fourier coefficients (cn(f))n∈Zm. For every k ≥ 1,
define

Ak(f) := max
1≤i≤m

∑
n∈Zm : |ni|≥k

|cn(f)|2 .

If

(28)
∑
k≥1

(log k)(d−2)/2

k
(Ak(f))1/2 <∞

then (25) holds.

Remark. Note that (28) holds as soon as Ak(f) = O((log k)−d−ε) , for some ε > 0.
Conversely, if (28) is satisfied, since (Ak(f))k≥1 is non increasing, we see that, Ak(f) =
o((log k)−d). Note also that Levin [16] proved the CLT (he also announced the weak
invariance principle in [16]) under a condition that is easily seen to be equivalent to∑

k≥1

(log k)d−1

k
(Ak(f))1/2 <∞ .

He worked in the same setting as Cohen and Conze [2].

Proof. Let us first notice that (25) is equivalent to∑
k≥1

(log k)(d−2)/2

k
Ω2,f (1/k) <∞ .

Let k ≥ 1 and x ∈ Rm with |x| ≤ 1/k. We have

‖f(·+ x)− f‖2
2 =

∑
n∈Zm

|cn(f)|2|1− e2iπ〈n,x〉|2 .

In particular, majorizing |1− e2iπ〈n,x〉| either by 2 or by 2π|n| |x|, we see that

(Ω2,f (1/k))2 ≤
∑

n∈{−k,...,k}m
|cn(f)|2 4π2|n|2

k2
+ Cm

m∑
i=1

∑
n∈Zm :|ni|≥k

|cn(f)|2

≤ C̃m
k2

m∑
i=1

∑
n∈Zm :|ni|≤k

n2
i |cn(f)|2 + Cm

m∑
i=1

∑
n∈Zm :|ni|≥k

|cn(f)|2 ,

for two positive constants Cm and C̄m. The second sum on right hand can be handled
directly by using (28), and it remains to prove that

(29)
∑
k≥1

(log k)(d−2)/2

k2
(Bk(f))1/2 <∞ ,

where
Bk(f) := max

1≤i≤m

∑
n∈Zm : |ni|≤k

n2
i |cn(f)|2 .
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Let us prove that (28) implies (29). Let

A
(i)
k :=

∑
n∈Zm : |ni|≥k

|cn(f)|2 .

We have∑
n∈Zm : |ni|≤k

n2
i |cn(f)|2 =

k∑
j=0

j2(A
(i)
j − A

(i)
j+1) =

k∑
j=1

A
(i)
j (j2 − (j − 1)2)− k2A

(i)
k+1 .

Hence, we infer that (29) hold as soon as

(30) B :=
∑
k≥1

(log k)(d−2)/2

k2

(
k∑
j=1

jAj(f)

)1/2

<∞ ,

To prove that (28) implies (30), we first notice that (28) is equivalent to∑
n≥0

n(d−2)/2
√
A2n(f) <∞

(to see this it suffices to use the monoticity of Ak). Next

B =
∞∑
n=0

2n+1∑
k=2n

(log k)(d−2)/2

k2

(
k∑
j=1

jAj(f)

)1/2

≤ C
∞∑
n=0

n(d−2)/2

2n

(
2n+1∑
j=1

jAj(f)

)1/2

.

In the same way, using the monoticity of Ak,(
2n+1∑
j=1

jAj(f)

)1/2

=

 n∑
k=0

2k+1∑
j=2k

jAj

1/2

≤

(
2

n∑
k=0

22kA2k

)1/2

≤
√

2
n∑
k=0

2k
√
A2k .

It follows that

B ≤ C

∞∑
n=0

n(d−2)/2

2n

n∑
k=0

2k
√
A2k ≤ D

∑
k≥0

k(d−2)/2
√
A2k(f) <∞

which completes the proof. �

6. Appendix

Proposition 10 of Section 5 is a consequence of the following proposition, due to Fan
[7]. We shall give the proof for the sake of completeness and because the reference [7]
is hard to obtain.

Proposition 13 (Fan, [7]). There exists C > 0 such that for every expanding m ×m
matrices A with integral entries, for every f ∈ L2(λ) with λ(f) = 0,

(31) ‖U∗Af‖2 ≤ Ω2,f

(
∆
(
A−1([0, 1]m)

))
,

where ∆ (A−1([0, 1]m)) is the diameter of A−1([0, 1]m).
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Proof. Let us recall some facts about tiling and Perron-Frobenius operators associated
with expanding matrices.

Let A be an expanding m ×m matrix. Let Γ ⊂ Zm be representatives of Zm/AZm.
Then, see e.g. [3], there exists a unique compact set K ⊂ Rm, such that

(32) K = ∪γ∈Γ(A−1K + A−1γ)

and an integer q ≥ 1 such that∑
n∈Zm

1K+n = q λ-almost everywhere.

Moreover, for every γ, γ′ ∈ Γ with γ 6= γ′, λ
(
(A−1K + A−1γ) ∩ (A−1K + A−1γ′)

)
= 0.

Using that, clearly,

1K =
∑
n∈Zd

1((K+n)∩[0,1]m)−n ,

we infer that for every locally integrable f ,

(33) q

∫
[0,1]m

fdλ =

∫
K

fdλ .

It follows then that the Perron-Frobenius operator U∗A is given by

(34) U∗Af(x) =
1

detA

∑
γ∈Γ

f
(
A−1x+ A−1γ

)
.

Let f ∈ L2(λ) with λ(f) = 0. Using that U∗A preserves λ and making the change of
variable y → y + x, we infer that

U∗Af(x) =
1

qdetA

∑
γ∈Γ

∫
K

(
f(A−1x+ A−1γ)− f(A−1(y + x) + A−1γ)

)
λ(dy) .

Hence, using Jensen’s inequality (recall that λ(K) = q),

(U∗Af)2 ≤ 1

qdetA

∑
γ∈Γ

∫
K

(
f(A−1x+ A−1γ)− f(A−1(y + x) + A−1γ)

)2
λ(dy) .

Making the change of variable x→ A−1x+ A−1γ, we infer that

‖U∗Af‖2
2 ≤

∑
γ∈Γ

(∫
K

λ(dy)

∫
K

(
f(A−1x+ A−1γ)− f(A−1(y + x) + A−1γ)

)2
λ(dx)

)1/2

≤ 1

q2

∑
γ∈Γ

∫
K

λ(dy)

∫
A−1K+A−1γ

(
f(x)− f(x+ A−1y)

)2
λ(dx)

=

∫
[0,1]m

∥∥f − f(·+ A−1y)
∥∥2

2
λ(dy) ,

where we have used (32) and (33). The announced result clearly follows. �
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[19] D. Volný, A central limit theorem for fields of martingale differences, arXiv:1504.02439, accepted
for publication in C. R. Math. Acad. Sci. Paris
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Avenue de l’Universit, BP.12 76801 Saint-Etienne du Rouvray, FRANCE

E-mail address: dalibor.volny@univ-rouen.fr


