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LIMIT THEOREMS AND INEQUALITIES VIA MARTINGALE METHODS

Jean-René Chazottes1, Christophe Cuny2, Jérôme Dedecker3, Xiequan Fan4

and Sarah Lemler5

Abstract. In this notes, we first give a brief overwiew of martingales methods, from Paul Lévy (1935)
untill now, to explain why these methods have become a central tool in probability, statistic and
ergodic theory. Next, we present some recent results for/or based on martingales: exponential bounds
for super-martingale, concentration inequalities for Lipschitz functionals of dynamical systems, oracle
inequalities for the Cox model in a high dimensional setting, and invariance principles for stationary
sequences.

Résumé. Dans ces notes, nous faisons d’abord un rapide survol des méthodes de martingales, depuis
Paul Lévy (1935) jusqu’à nos nos jours, afin d’expliquer pourquoi ces métodes sont devenues centrales
en probabilité, statistique et théorie ergodique. Ensuite, nous présentons des résultats récents sur/ou
fondés sur les martingales: des inégalités exponentielles pour les sur-martingales, des inégatés de con-
centration pour les fonctionnelles lipschitziennes de systèmes dynamiques, des inégalités oracle pour le
modèle de Cox en grande dimension, et des principes d’invariances pour les suites stationnaires.

1. Introduction

In this introduction, our goal is twofold. We shall first recall the first developments of the theory of martingales
in the field of limit theorems and inequalities. Next we shall briefly explain how these results can be extended
to more general sequences. Of course, we shall not give all the references on the subject, this would be a too
long exercise, but we shall try to give some essential references from the beginning until now, to explain how
martingale methods have become a central tool in probability, statistic and ergodic theory.

In order to write the main results without giving too many notations, we shall consider in this introduction
the simple case of stationary sequences. Let (Ω,A,P) be a probability space, let T be a bijective bi-measurable
transformation preserving the probability P, and let I be the σ-algebra of T -invariant sets. Let X0 be a centered
and square integrable random variable with variance σ2, and define the stationary sequence Xi by Xi = X0 ◦T i.
Given a σ-algebra F0 such that F0 ⊆ T−1(F0), we introduce the non-decreasing filtration Fi = T−i(F0), and
the tail σ-algebras F−∞ =

⋂
k∈Z Fk and F∞ =

∨
k∈Z Fk. Let Sn denote the partial sum Sn = X1 + · · ·+Xn.
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1.1. The martingale case

Let us first recall some important results when (Xi)i∈Z is a sequence of martingale differences adapted to the
filtration Fi, that is when X0 is F0-measurable and E(X0|F−1) = 0 almost surely.

Lévy (1935) provided the first generalization of the central limit theorem (CLT) for sequence of independent
and identically distributed (iid) random variables to the martingale case. His result writes as follows: if
E(X2

0 |F−1) = σ2 almost surely, then n−1/2Sn converges in distribution to N (0, σ2).
The strong assumption E(X2

0 |F−1) = σ2 almost surely has been removed independently by Billingsley (1961)
and Ibragimov (1963), who proved that

Sn√
n

converges in distribution to
√
ηN , (1.1)

where η = E(X2
0 |I) and N is a standard Gaussian random variable independent of I. Actually, both proofs

were done in the case where I is P-trivial (the ergodic case) but they remain unchanged in the general situation.
As we shall see later on, this result is not only a slight generalization of the iid situation: in many interesting
cases, the partial sum of a stationary sequence can be approximated by a martingale with stationary differences,
to which the result of Billingsley-Ibramov applies. The CLT for martingales has been next extended to the non
stationary case by Brown (1971), who also proved the weak invariance principle for the process {S[nt], t ∈ [0, 1]}.
A version of Billingsley-Ibragimov’s CLT for random variables with values in 2-smooth Banach spaces is given
in Woyczinsky (1975).

At the same time, different authors have obtained moments and exponential bounds for martingales. For
instance Burkholder (1966, 1973) have proved that, if E(|X0|p) < ∞ for some p ∈]1,∞[, then there exist two
positive constants cp and Cp depending on p such that

cp

∥∥∥( n∑
k=1

X2
k

)1/2∥∥∥
p
≤
∥∥∥ max

1≤k≤n
|Sk|

∥∥∥
p
≤ Cp

∥∥∥( n∑
k=1

X2
k

)1/2∥∥∥
p
. (1.2)

The extension of this famous inequality to the case of continuous martingale is known as the Burkholder-Davis-
Gundy inequality (Burkholder Davis and Gundy (1972)). Burkholder’s inequality (1.2) is also true in separable
Hilbert spaces (using the square of the norm of Xi instead of X2

i ), and the upper bound remains valid in
2-smooth Banach spaces (see Pinelis (1994)).

In the sixties, Hoeffding (1963) and Azuma (1967) proved an exponential bound for the deviation of Sn. In
the stationary case, a version of this result writes as follows: if X0 ∈ [Y0, Y0 + `] almost surely, where Y0 is a
F−1-measurable random variable and ` is some positive constant, then, for any positive x,

P
(

max
1≤k≤n

|Sk| > x
)
≤ 2 exp

(
− 2x2

n`2

)
. (1.3)

This inequality implies in particular that, if ‖X0‖∞ <∞, then, for any positive x,

P
(

max
1≤k≤n

|Sk| > x
)
≤ 2 exp

(
− x2

2n‖X0‖2∞

)
. (1.4)

An extension of Inequality (1.4) to 2-smooth Banach spaces is given in Pinelis (1992). Other moments or
exponential bounds may be found in the papers by Burkholder (1973), Freedman (1975), Pinelis (1994) or Liu
and Watbled (2009).

McDiarmid (1989) has given an interesting application of (1.3) to Lipshitz functions of independent sequences.
In the iid case, his inequality writes as follows: let (ξi)1≤i≤n be a sequence of iid random variables with values
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in X , and let d be some distance on X . Let f be a function from Xn to R such that

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ K
n∑
i=1

d(xi, yi) .

Let M = ‖d(ξ1, ξ2)‖∞. Then, for any positive x,

P(f(ξ1, . . . , ξn)− E(f(ξ1, . . . , ξn)) ≥ x) ≤ exp
(
− 2x2

nM2K2

)
. (1.5)

McDiarmid (1998) has pointed out a number of applications of Inequality (1.5). This inequality is also an
important tool in classification problems (see for instance Freund, Mansour and Shapire (2004)).

Rio (2000) has extended McDiarmid’s inequality to a large class of dependent sequences. Collet, Martinez
and Schmitt (2002) have proved that McDiarmid’s inequality holds when ξi = T i is the i-th iterates of an
uniformly expanding map T of [0, 1], and d(x, y) = |x− y|.

1.2. The general case

In this section, we shall no longer assume that E(X0|F−1) = 0 almost surely, and see how the results of the
preceding section can be extended to more general sequences. The main step in this direction is due to Gordin
(1969). Gordin noticed that, if

∞∑
k=1

‖E(Xk|F0)‖2 <∞ and
0∑

k=−∞

‖Xk − E(Xk|F0)‖2 <∞ (1.6)

then X0 = D0 + Z − Z ◦ T , where

D0 =
∑
k∈Z

(E(Xk|F0)− E(Xk|F−1)) and Z =
0∑

k=−∞

(Xk − E(Xk|F0))−
∞∑
k=1

E(Xk|F0) .

Notice that both D0 and Z are square integrable, that D0 is F0-measurable and such that E(D0|F−1) = 0.
Moreover, setting Di = D0◦T i, and Mn = D1+· · ·+Dn, one has Sn = Mn+Z◦T−Z◦Tn+1 . Since n−1/2Z◦Tn+1

converges in probability (and even almost surely) to zero, it follows from Billingsley-Ibragimov’s CLT that (1.1)
holds with η = E(D2

0|I). Gordin’s CLT is a major result, which can be applied to many dependent sequences,
including mixing sequences, stationary Markov chains (see Gordin and Lifsiz (1978)), and certain dynamical
systems (see the paper by Liverani (1996)). As a strinking application, let us mention the paper by Le Borgne
(2002) who applied Gordin’s CLT to the iterates of ergodic automorphisms of the d-dimensional torus.

Heyde (1975) noticed that Gordin’s proof remains valid by assuming only that

the sequences E(Sn|F0) and Sn − E(Sn|Fn) converge in L2 (1.7)

and that, under this condition, the process {S[nt], t ∈ [0, 1]} satisfies both the weak and the strong invariance
principle.

Alternatively, it follows from the papers by Hannan (1973) and Heyde (1974), that if

E(X0|F∞) = X0 a. s., E(X0|F−∞) = 0 a. s. and
∑
k∈Z
‖E(Xk|F0)− E(Xk|F−1)‖2 <∞ (1.8)

then Gordin’s martingale difference D0 is well defined and square integrable, and ‖Sn −Mn‖2 = o(
√
n), so

that the CLT (1.1) holds with η = E(D2
0|I). Clearly, this condition is weaker than (1.6). Moreover one can
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prove that if (1.8) holds then {S[nt], t ∈ [0, 1]} satisfies the weak invariance principle (see Hannan (1979) for the
adapted case, i.e. when X0 is F0-measurable, and Dedecker, Merlevède and Volný (2007) for the non-adapted
case and extensions). In a recent paper, Cuny (2012a) has proved that the strong invariance principle also holds
as well under (1.8) for random variables with values in a 2-smooth Banach space.

Another major improvment of Gordin’s CLT is due to Maxwell and Woodrofe (2000). These authors have
proved that, if the condition (1.7) is weakened to

∞∑
k=1

‖E(Sk|F0)‖2
k3/2

<∞ and
∞∑
k=1

‖Sk − E(Sk|Fn)‖2
k3/2

<∞ (1.9)

then there exists a square integrable martingale difference D0 such that ‖Sn −Mn‖2 = o(
√
n), so that that

the CLT (1.1) holds with η = E(D2
0|I) (in fact Maxwell and Woodroofe have proved the result in the adapted

case and the non adapted case (1.9) is due to Volný (2007)). Peligrad and Utev (2005) proved that if (1.9)
holds, then {S[nt], t ∈ [0, 1]} satisfies the weak invariance principle (again, the non adapted case is due to Volný
(2007)).

Note that necessary and sufficient conditions for the martingale approximation ‖Sn−Mn‖2 = o(
√
n) are given

in the papers by Dedecker, Merlevède and Volný (2007) and Zhao and Woodroofe (2008). Further refinements
can be found in the paper by Gordin and Peligrad (2011). Finally, Wu (2007) and Dedecker, Doukhan and
Merlevède (2012) have obtained rates of convergence in the strong invariance principle, by reinforcing the
condition (1.8).

Concerning moments and exponential bounds, let us mention the paper by Peligrad, Utev and Wu (2007).
These authors have proved that, for p ∈ [2,∞[, there exists a positive constant Kp depending on p and a positive
constant C such that

‖max1≤k≤n |Sk|‖p√
n

≤ Kp

(
‖X0‖p + C

n∑
k=1

‖E(Sk|F0)‖p
k3/2

+ C

n∑
k=1

‖Sk − E(Sn|Fk)‖p
k3/2

)
(the non adapted case is due to Volný (2007)), and that

P
(

max
1≤k≤n

|Sk| > x
)
≤ 4
√
e exp

(
− x2

2n(‖X0‖∞ + Cn)2
)
,

where

Cn = D
( n∑
k=1

‖E(Sk|F0)‖∞
k3/2

+
n∑
k=1

‖Sk − E(Sn|Fk)‖∞
k3/2

)
for some positive constant D (the non adapted case is due to Dede (2009)). Rosenthal type inequalities can be
found in the paper by Merlevède and Peligrad (2012).

1.3. Organization of the paper

In Section 2, X. Fan presents an extension of Hoeffding’s inequality to the case of supermartingales with
a new method (see Fan, Grama and Liu (2012) for more details). The approach is based on the technic of
conjugate distribution and is different from Hoeffding’s method (1963). The results improve on several known
inequalities of Bennett (1962), Freedman (1975), Nagaev (1979), Haeusler (1984) and Courbot (1999).

In Section 3, J.-R. Chazottes presents some recent concentration inequalities for a large class of nonuniformly
hyperbolic dynamical systems modeled by Young towers (see Chazottes and Gouëzel (2013) for more details).
In this context, he shows how to make use of some classical martingale inequalities, namely Azuma-Hoeffding
and Rosenthal-Burkholder inequalities.

In Section 4, S. Lemler shows how an appropriate exponential bound for martingale with jumps enables to
choose the weights in a Lasso procedure, for the Cox model in a high dimensional setting. As a consequence,
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she obtains non asymptotic oracle inequalities for the conditional hazard rate function (see Lemler (2012) for
more details).

In Section 5, C. Cuny presents the recent developments of the method of approximation by a martingale
initiated by Gordin (1969), which has reached a fairly precise form thanks to the characterizations obtained
recently by Zhao and Woodroofe (2008) and Gordin and Peligrad (2011). He also shows how the introduction
of the operator QZ = E(Z ◦ T |F0) enables to make use of classical tools from ergodic theory. Following this
approach, C. Cuny has recently proved (see Cuny (2012a) and Cuny (2012b)) that the almost sure invariance
principle holds under the condition (1.8) or under the condition (1.9).

2. Exponential inequalities for martingales

Let (ξi)i=1,...,n be a sequence of centered random variables such that σ2
i = E(ξ2i ) < ∞. Write Sn =

∑n
i=1 ξi

and σ2 =
∑n
i=1 σ

2
i . Assume that (ξi)i=1,...,n are independent and satisfy |ξi| ≤ 1 for all i. Bennett (1962) proved

that, for all x > 0,

P(Sn ≥ x) ≤ B(x, σ2) =:
(

σ2

x+ σ2

)x+σ2

ex. (2.1)

Bennett’s inequality can be improved by a bound depending on n. In fact, Hoeffding (1963) improved Bennett’s
inequality and showed that if (ξi)i=1,...,n are independent and satisfy ξi ≤ 1 for all i, then, for all x > 0,

P(Sn ≥ x) ≤ Hn(x, σ2) =:

{(
σ2

x+ σ2

)x+σ2 (
n

n− x

)n−x} n
n+σ2

1{x≤n} (2.2)

and Hn(x, σ2) ≤ B(x, σ2), (2.3)

where by convention ∞0 = 1 when x = n. Hoeffding’s bound Hn(x, σ2) is the best that can be obtained from
the classical Bernstein inequality P(Sn ≥ x) ≤ infλ≥0 Eeλ(Sn−x).

Freedman (1975) extended the inequality of Bennett to the case of supermartingales. Let (ξi,Fi)i=1,...,n be
a sequence of supermartingale differences, i.e. E(ξi|Fi−1) ≤ 0. Denote by 〈S〉k =

∑k
i=1 E(ξ2i |Fi−1). Assume

that supermartingale differences (ξi,Fi)i=1,...,n satisfy ξi ≤ 1 for all i. Freedman’s inequality states that, for all
x, v > 0,

P(Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]) ≤ B(x, v2). (2.4)

However, one can not obtain the Hoeffding inequality by Freedman’s method. In this note, we give the
Hoeffding inequality for supermartingales with a new method. The main result of this section is the following
theorem.

Theorem 2.1. Assume that (ξi,Fi)i=1,...,n be a sequence of supermartingale differences satisfy ξi ≤ 1 for all i.
Then, for all x, v > 0,

P(Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]) ≤ Hn(x, v2) (2.5)
≤ B(x, v2). (2.6)

It is obvious that if (ξi)i=1,...,n are independent then our inequality (2.5) implies Hoeffding’s inequality (2.2)
with v2 = σ2. Hence, we extend the Hoeffding inequality to the case of supermartingales. Note that (2.6) is
the Freedman inequality. Thus we improve on Freedman’s inequality.
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Sketch of the proof of Theorem 2.1. For 0 ≤ x ≤ n, v > 0, we define the stopping time T (x) = min{k ∈ [1, n] :
Sk ≥ x and 〈S〉k ≤ v2}. For λ ≥ 0, we introduce the martingale (ZT∧k,Fk)k=0,...,n, where

ZT∧k(λ) =
T∧k∏
i=1

eλξi

E(eλξi |Fi−1)
, Z0(λ) = 1, (2.7)

and the conjugate measure

dPλ = ZT∧n(λ)dP. (2.8)

Then 1{Sk≥x and 〈S〉k≤v2 for some k∈[1,n]} =
∑n
k=1 1{T (x)=k}. Using the conjugate measure (2.8), we have

P
(
Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)
= EλZT∧n(λ)−11{Sk≥x and 〈S〉k≤v2 for some k∈[1,n]}

=
n∑
k=1

Eλ exp {−λSk + Ψk(λ)}1{T (x)=k}, (2.9)

where Ψk(λ) =
∑k
i=1 log E(eλξi |Fi−1). For T = k, we can prove that

Ψk(λ) ≤ k f
(
λ,
〈S〉k
k

)
≤ k f

(
λ,
v2

k

)
≤ n f

(
λ,
v2

n

)
,

where f(λ, t) = log
(

1
1+te

−λt + t
1+te

λ
)

is increasing and concave for all t ≥ 0. Hence we get

P
(
Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)
≤ exp

{
−λx+ n f

(
λ,
v2

n

)}
. (2.10)

Optimizing inequality (2.10) in λ > 0, we obtain the desired inequality (2.5). Inequality (2.6) follows from (2.3).

By a truncation argument, Theorem 2.1 implies the following result for non bounded supermartingale differ-
ences.

Corollary 2.2. Assume that (ξi,Fi)i=1,...,n be a sequence of supermartingale differences. For y > 0, define

V 2
k (y) =

k∑
i=1

E(ξ2i 1{ξi≤y}|Fi−1), k = 1, ..., n.

Then, for all x ≥ 0, y > 0 and v > 0,

P(Sk ≥ x and V 2
k (y) ≤ v2 for some k ∈ [1, n]) ≤ Hn

(
x

y
,
v2

y2

)
+ P

(
max

1≤i≤n
ξi > y

)
. (2.11)

Since P(V 2
n (y) > v2) ≤ P(〈S〉n > v2), inequality (2.11) improves the corresponding inequalities of Nagaev

(1979), Haeusler (1984) and Courbot (1999) in the sense that B
(
x
y ,

v2

y2

)
is replaced by Hn

(
x
y ,

v2

y2

)
.
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3. Martingale and concentration inequalities for dynamical systems

3.1. Generalities

3.1.1. Concentration inequalities

Let Ω be a metric space. A function K on Ωn is separately Lipschitz if, for all i, there exists a constant
Lipi(K) with

|K(x0, . . . , xi−1, xi, xi+1, . . . , xn−1)−K(x0, . . . , xi−1, x
′
i, xi+1, . . . , xn−1)| ≤ Lipi(K)d(xi, x′i),

for all points x1, . . . , xn, x
′
i in Ω. Consider a stationary process (Z0, Z1, . . . ) taking values in Ω. We say that this

process satisfies an exponential concentration inequality if there exists a constant C such that, for any separately
Lipschitz function K(x0, . . . , xn−1), one has

E
[
eK(Z0,...,Zn−1)−E(K(Z0,...,Zn−1))

]
≤ eC

Pn−1
j=0 Lipj(K)2 . (3.1)

Let us stress that this inequality is valid for all n, i.e. the constant C does not depend on the number of variables
one is considering. An important consequence of such an inequality is a control on the deviation probabilities:
for all t > 0,

P
(
|K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1))| > t

)
≤ 2e

−t2

4C
Pn−1
j=0 Lipj(K)2 . (3.2)

This inequality follows from the inequality P(Y > t) ≤ e−λtE(eλY ) (λ > 0) with Y = K(Z0, . . . , Zn−1) −
E(K(Z0, . . . , Zn−1)), then we use inequality (3.1) and optimize over λ by taking λ = t/(2C

∑n−1
j=0 Lipj(K)2).

If (Z0, Z1, . . . ) is a sequence of bounded i.i.d. random variables, then (3.1) holds (see e.g. McDiarmid (1989)).
One can check that, if K(Z0, . . . , Zn−1) = Z0 + · · ·+Zn−1, then (3.2) gives the right scales with respect to the
central limit theorem and large deviations.

In some cases, it is not reasonable to hope for such an exponential inequality. One says that (Z0, Z1, . . . )
satisfies a polynomial concentration inequality with moment Q ≥ 2 if there exists a constant C such that, for
any separately Lipschitz function K(x0, . . . , xn−1), one has

E|K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1))|Q ≤ C

n−1∑
j=0

Lipj(K)2

Q/2

. (3.3)

An important consequence of such an inequality is a control on the deviation probabilities: for all t > 0,

P(|K(Z0, . . . , Zn−1)− E(K(Z0, . . . , Zn−1))| > t) ≤ Ct−Q
n−1∑
j=0

Lipj(K)2

Q/2

. (3.4)

The inequality (3.4) readily follows from (3.3) and the Markov inequality.
Notice that if (Z0, Z1, . . . ) is a sequence of i.i.d. random variables with Zi ∈ LQ, then (3.3) holds (see Boucheron
et al. (2005)).

Concentration inequalities are a tool to study in a unified and systematic way the fluctuations of a wide
class of functions of random variables K(Z0, . . . , Zn−1), since the only required condition is that K is separately
Lipschitz.
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3.1.2. Dynamical systems as stochastic processes

We are interested in processes coming from dynamical systems: we consider a map T on a metric space
Ω (the “phase space”), and a probability measure µ 1 left invariant by T , i.e. µ ◦ T−1 = µ 2. The process
(x, Tx, T 2x, . . . ), where x is distributed following µ, has finite-dimensional marginals given by the measures µn
on Ωn given by

dµn(x0, . . . , xn−1) = dµ(x0)δx1=Tx0 · · · δxn−1=Txn−2 .

This is not a product measure but, if the map T is ‘sufficiently mixing’, one may expect that T kx is more or less
independent of x if k is large, making the process (x, Tx, . . . ) look like an independent process to some extent 3.
A natural way of studying the probabilistic properties of such dynamical systems is to look at Birkhoff sums of
an observable f : Ω→ R, namely f(x) +f(Tx) + · · ·+f(Tnx), that is, partial sums of the process (f(T kx))k≥0.
For a class of nice observables, typically Lipschitz functions, one can prove convergence in law after appropriate
scaling, large deviations, etc. We refer the interesting reader to the recent survey by Chazottes (2013).
A general observable based on the observation up to time n is of the form K(x, Tx, . . . , Tn−1x). The basic
example is of course the Birkhoff sum of some observable f . But many interesting observables do not have such
a simple (additive) structure. It is precisely the scope of concentration inequalities to deal with very general
observables in a systematic way by using only the fact that they are separately Lipschitz.

3.2. Concentration inequalities for a class of nonuniformly hyperbolic systems

In Chazottes and Gouëzel (2013) we obtained concentration inequalities for dynamical systems modeled by
the so-called Young towers. We also derived fluctuation bounds for various observables that we shall not present
here due to the lack of space.

3.2.1. Set-up

In a nutshell, the set up is the following. We consider a map T : Ω 	 which is a nonuniformly hyperbolic
system in the sense of L.-S. Young (1998, 1999) : The map is modeled by a Young tower constructed over a
hyperbolic base Y ⊂ Ω. The degree of nonuniformity is measured by the return-time function R : Y → Z+ to
the base that decays either exponentially or polynomially. Such systems are known to have an SRB measure µ
absolutely continuous with respect to the Lebesgue measure mu.

3.2.2. Exponential concentration inequality

Theorem 3.1 (Chazottes and Gouëzel (2013)). Let (Ω, T, µ) be a dynamical system modeled by a Young tower
with exponential tails, i.e.,

∫
exp(c0R) dmu <∞ for some c0 > 0. Then it satisfies an exponential concentration

inequality: there exists a constant C > 0 such that, for any n ∈ N, for any separately Lipschitz function
K(x0, . . . , xn−1), ∫

eK(x,Tx,...,Tn−1x)−
R
K(y,Ty,...,Tn−1y) dµ(y) dµ(x) ≤ eC

Pn−1
`=0 Lip`(K)2 . (3.5)

Basic examples to which this theorem applies are subshifts of finite type equipped with a Gibbs measure for
a Hölder continuous potential, and Axiom A attractors. These are canonical examples of uniformly hyperbolic
dynamical systems. More sophisticated systems encompasses by this theorem are for instance the unimodal
map on Ω = [−1, 1] defined as x 7→ 1 − ax2, where a ∈ [1, 2], or Hénon-like attractors. These are examples
of nonuniformly hyperbolic dynamical systems. The Hénon attractor results from the iterations of the map
(x, y) 7→ (1− ax2 + y, bx), defined on Ω = R2, where a, b are positive parameters. For each b sufficiently small,
there exists a subset Pb ⊂ (2− ε, 2) with positive Lebesgue measure such that for every a ∈ Pb, the map admits
a unique SRB measure (see Benedicks and Young (2000)).

1This probability measure is of course defined on a σ-algebra. Think of the Borel σ-algebra for concreteness.
2i.e., µ(A) = µ(T−1A) for any measurable set A (T need not be invertible).
3Let us stress that the usual mixing coefficients for stochastic processes are generally not suited for our purposes.
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3.2.3. Polynomial concentration inequality

Theorem 3.2 (Chazottes and Gouëzel (2013)). Let (Ω, T, µ) be a dynamical system modeled by a Young
tower with a polynomial tail, meaning that, for some q ≥ 2,

∫
Rqdmu < ∞. Then it satisfies a polynomial

concentration inequality with moment 2q − 2, i.e., there exists a constant C > 0 such that, for any n ∈ N, for
any separately Lipschitz function K(x0, . . . , xn−1),

∫ ∣∣∣∣K(x, Tx, . . . , Tn−1x)−
∫
K(y, Ty, . . . , Tn−1y)dµ(y)

∣∣∣∣2q−2

dµ(x) ≤ C

(
n−1∑
`=0

Lip`(K)2
)q−1

. (3.6)

The most important example is certainly the so-called Manneville-Pomeau map, a canonical example of a
map on Ω = [0, 1] which is expanding except at x = 0. More precisely, let

T (x) =

{
x(1 + 2αxα) if x ∈ [0, 1/2)
2x− 1 if x ∈ (1/2, 1]

where α ∈ (0, 1). In this case, the base of the Young tower is Y = (1/2, 1], m(R = n) ∼ c/n 1
α+1 and dµ = hdm

where the density h(x) ∼ x−α as x → 0. One checks easily that (3.6) holds for all q < 1
α provided that

α ∈ (0, 1/2).
These results are so far the culminating point in the study of concentration inequalities for dynamical systems.

They extend and improve all previous results obtained in Collet, Martinez and Schmitt (2000), Chazottes, Collet
and Schmitt (2005a), Chazottes, Collet and Schmitt (2005b) and Chazottes et al. (2009). There is still a lot of
work to be done (see Chazottes (2013), Section 6).

3.2.4. Examples of observables

Let us barely mention some obervables to which we can apply the previous inequalities sucessfully. More
details can be found in Collet, Martinez and Schmitt (2000), Chazottes, Collet and Schmitt (2005b) and
Chazottes and Gouëzel (2013). For instance, we can study the speed at which the distance between the
empirical measure and the SRB measure µ goes to 0. We can also look at the kernel density estimator for maps
having absolutely continuous invariant measures. Among other observables we can deal with, let us mention the
empirical covariance and the integrated periodogram. Lastly, concentration inequalities can be used to obtain
an almost sure central limit theorem from the usual central limit theorem (see Chazottes, Collet and Schmitt
(2005b)). This illustrates that even if concentration inequalities are mainly intended to obtain fluctuation
bounds, they can also be used to get some limit theorems.

3.3. Strategy of proofs

Full details can be found in Chazottes and Gouëzel (2013). Our aim here is to give a rough sketch of proofs
and highlight the use of martingale inequalities.
The starting point is that one can work in an auxiliary system, the Young tower, instead of the original system
(and pull back later the obtained results). For the sake of notational simplicity, we still denote by (Ω, T, µ)
this auxiliary dynamical system. If we start with an invertible map (e.g. the Hénon map), we can reduce to a
non-invertible Young tower for which one can define the so-called transfer operator (see more details below).
Notice that one has to put an appropriate metric on the Young tower with respect to which Lipschitz functions
are defined. The projection map going from the Young tower to the original dynamical system is contracting
and project Lipschitz functions on the tower to Lipschitz functions on the original phase space.

3.3.1. Martingale differences

Fix a separately Lipschitz function K(x0, . . . , xn−1). We consider it as a function on ΩN depending only on
the first n coordinates (therefore, we set Lipi(K) = 0 for i ≥ n). We endow ΩN with the measure µ∞ limit of
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the µN (see Chazottes and Gouëzel (2013)) when N →∞. On ΩN, let Fp be the σ-algebra of events depending
only on the coordinates (xj)j≥p (this is a decreasing sequence of σ-fields).
The very first step is classical: we want to write the function K as a sum of reverse martingale differences with
respect to this sequence. Therefore, let Kp = E(K|Fp). More precisely,

Kp(xp, xp+1, . . .) = E(K|Fp)(xp, xp+1, . . .) =
∑

Tp(y)=xp

g(p)(y)K(y, . . . , T p−1y, xp, . . .)

where g(p) is the inverse of the jacobian of T p.
Now let Dp = Kp −Kp+1. The function Dp is Fp-measurable and E(Dp|Fp+1) = 0. Moreover,

K − E(K) =
∑
p≥0

Dp. (3.7)

The basic strategy is to look for good estimates on Dp, then to apply a suitable martingale inequality. The
hard part done in Chazottes and Gouëzel (2013) is to obtain good estimates on Dp.

3.3.2. Exponential case

The key estimate is the following: there exists C > 0 and 0 < ρ < 1 such that, for any p, one has

|Dp| ≤ C
p∑
j=0

ρp−j Lipj(K). (3.8)

Next, Hoeffding-Azuma inequality (see e.g. Milman and Schechtman (1986), page 33, or Ledoux (2001)) yields

E
(
e

PP−1
p=0 Dp

)
≤ e

PP−1
p=0 sup |Dp|2 .

Using Cauchy-Schwarz inequality one easily gets
∑P−1
p=0 sup |Dp|2 ≤ C

∑
j Lipj(K)2. In view of (3.7), we obtain

inequality (3.5).
Let us say a few words about (3.8). This estimate is a consequence of the existence of a spectral gap for the
transfer operator L when it acts on a suitable Banach space. More precisely, one has Lu(x) =

∑
Ty=x g(y)u(y)

where g denotes the inverse of the jacobian of T . Let C be the space of Lipschitz functions on Ω with its
canonical norm ‖f‖C = sup |f | + Lip(f). One can prove that for a Young tower with exponential tails there
exist C > 0 and 0 < ρ < 1 such that ‖Lkf −

∫
f dµ‖C ≤ Cρk‖f‖C . The point is to write Kp(xp, xp+1, . . .) as

a sum of functions of one variable, by an appropriate telescoping procedure, and then to use the contraction
properties of the transfer operator.

3.3.3. Polynomial case

For Young towers with polynomial tails, there is no spectral gap for the transfer operator, hence life becomes
much more complicated. To control Lnf one has to rely on Banach algebra techniques to study some renewal
sequences of operators entering the decomposition of Ln.
We do not give further details and content ourselves by pointing that the useful martingale inequality to use is
the following Rosenthal-Burkholder martingale inequality (see Burkholder (1973) Theorem 21.1 and Inequality
(21.5)): for all Q ≥ 2, ∥∥∥∥∥∑

p

Dp

∥∥∥∥∥
Q

LQ

≤ CE

[∑
p

E(D2
p|Fp+1)

]Q/2+ C
∑
p

E(|Dp|Q).
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4. Empirical Bernstein’s inequality and applications to high-dimensional
survival analysis

4.1. Framework and estimation procedure

In this section, we use an empirical Bernstein’s inequality for martingales with jumps, to obtain non-
asymptotic oracle inequalities for the conditional hazard rate function. These results should be used to ob-
tain a prognostic on the survival time adjusted on the covariates in a high-dimensional setting. We consider
a conditional hazard rate function that rely on a Cox’s proportional hazard model. In this particular case,
λ0(t,Zi) = α0(t) exp(f0(Zi)), where Zi = (Zi,1, ..., Zi,p)T is the vector of covariates of individual i (i = 1, ..., n),
f0 is the unknown regression function that we are going to estimate, and α0 is the baseline hazard function
(which is assumed to be known for the sake of simplicity, the general case being treated in Lemler (2012)).
We aim at estimating this conditional hazard rate function by the best approximating Cox’s model. Since we
are in high-dimension, we estimate the unknown parameter f0 using a weighted Lasso procedure that consists
in minimizing the `1-penalized empirical likelihood. The key argument to prove our results is an empirical
Bernstein’s inequality for martingales with jumps, where the predictable variation, which is not observable, is
replaced by the observable optional variation. This empirical Bernstein’s inequality allows us to define a fully
data-driven weighted `1-penalization for the Lasso procedure.

Let us first introduce the notations and the framework. For i = 1, ..., n, let Ni be a marked counting
process and Yi a predictable random process in [0, 1]. Let (Ft)t≥0 be the natural filtration defined by Ft =
σ{Ni(s), Yi(s), 0 ≤ s ≤ t, Zi, i = 1, ..., n}, and let Λi(t) be the compensator of the process Ni(t) with respect to
(Ft)t≥t, so that Mi(t) = Ni(t)− Λi(t) is a martingale adapted to (Ft)t≥0.

Assumption 4.1. Ni satisfies the Aalen multiplicative intensity model : Λi(t) =
∫ t
0
λ0(s,Zi)Yi(s)ds, for all

t ≥ 0.

Let FM = {f1, ..., fM} where fj : Rp → R for j = 1, ...,M , be a finite set of functions, called a dictionary,
where M is large (typically M >> n). For any function f : Rp → R, let ||f ||n,∞ = max1≤i≤n |f(Zi)|. We
assume that, for all 1 ≤ j ≤M , ||fj ||n,∞ is finite almost surely.

We assume that the unknown λ0 can be well approximated by a function defined for all β in RM by λβ(t,Zi) =
α0(t)efβ(Zi) where fβ =

∑M
j=1 βjfj . To estimate the unknown parameter, we consider the log-likelihood defined

by

Cn(λβ) = − 1
n

n∑
i=1

{∫ τ

0

log(λβ(t,Zi))dNi(t)−
∫ τ

0

λβ(t,Zi)Yi(t)dt
}
. (4.1)

We associate to this estimation criterion, the empirical Kullback divergence defined for all β in RM by

K̃n(λ0, λβ) =
1
n

n∑
i=1

∫ τ

0

(log (λ0(t,Zi))− log (λβ(t,Zi)))λ0(t,Zi)Yi(t)dt

− 1
n

n∑
i=1

∫ τ

0

(λ0(t,Zi)− λβ(t,Zi))Yi(t)dt. (4.2)

We consider a weighted Lasso procedure for estimating β. The Lasso estimator of β which minimizes the
`1-penalized empirical likelihood is defined by

β̂L = arg min
β∈RM

{Cn(λβ) + pen(β)}, with pen(β) =
M∑
j=1

ωj |βj |. (4.3)

The weights ωj are positive data-driven weights suitably chosen thanks to the empirical Bernstein’s inequality
(4.7) (see Theorem 4.3).
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4.2. Empirical Bernstein’s inequality for martingales with jumps

By definition of the weighted Lasso estimator, we have for all β ∈ RM

Cn(λβ̂L) + pen(β̂L) ≤ Cn(λβ) + pen(β). (4.4)

Using the Doob-Meier decomposition Ni = Mi + Λi, we can easily show that for all β ∈ RM

Cn(λβ̂L)− Cn(λβ) = K̃n(λ0, λβ̂L)− K̃n(λ0, λβ) +
M∑
j=1

(β̂L − β)jηn,τ (fj), (4.5)

where ηn,τ (fj) =
1
n

n∑
i=1

∫ τ

0

fj(Zi)dMi(t).

To obtain non-asymptotic oracle inequalities, we have to control the centered empirical process ηn,τ (fj).
Towards that end, we define the predictable variation of ηn,t(fj) by

Vn,t(fj) = n < ηn(fj) >t=
1
n

n∑
i=1

∫ t

0

(fj(Zi))2λ0(t,Zi)Yi(s)ds.

To control such a process, we usually consider a standard Bernstein’s inequality for martingales of the form
of (4.6).

Theorem 4.2 (Shorack and Wellner (1986)). Let {Mt}t≥0 be a locally square integrable martingale with respect
to {Ft}, Vt =< M >t and ∆Mt = Mt −Mt− . Suppose that |∆Mt| ≤ K for all t > 0 and some 0 ≤ K < ∞.
Then for each a > 0, b > 0,

P(Mt ≥ a and Vt ≤ b2 for some t) ≤ exp
[
− a2

2(aK + b2)

]
. (4.6)

In our case, the predictable variation Vn,t(fj) is not observable (λ0 is unknown). To override this problem,
we replace in the standard Bernstein’s inequality, the predictable variation by the observable optional variation
of ηn,t(fj) defined by

V̂n,t(fj) = n[ηn(fj)]t =
1
n

n∑
i=1

∫ t

0

(fj(Zi))2dNi(s),

and which can be seen as an estimator of Vn,t(fj). This procedure has already been considered by Gäıffas and
Guilloux (2012). See also Hansen, Reynaud-Bouret and Rivoirard (2012).

Theorem 4.3. For any x > 0 and c1, c2, c3 some positive constants, we have

P
[
|ηn,t(fj)| ≥

(
c1

√
x+ ˆ̀

n,x(fj)
n

V̂n,t(fj) + c2
x+ 1 + ˆ̀

n,x(fj)
n

)
||fj ||n,∞

]
≤ c3e−x, (4.7)

where ˆ̀
n,x(fj) = 2 log log

(
6enV̂n,t(fj) + 56ex||fj ||2n,∞

24||fj ||2n,∞
∨ e

)
.

Choice of the weights : We choose the data-driven weights for j = 1, ...,M as

ωj =
(
c1

√
x+ logM + ˆ̀

n,x(fj)
n

V̂n,τ (fj) + c2
x+ 1 + logM + ˆ̀

n,x(fj)
n

)
||fj ||n,∞. (4.8)
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4.3. Oracle inequalities for the Lasso for the conditional hazard rate

For this choice of weights, we introduce the following set A =
M⋂
j=1

{
|ηn,τ (fj)| ≤ ωj

}
. On A,

∣∣∣ M∑
j=1

(β̂L − β)jηn,τ (fj)
∣∣∣ ≤ M∑

j=1

ωj |(β̂L − β)j | and P(Ac) ≤
M∑
j=1

P(|ηn,τ (fj)| > ωj) ≤ c3e−x.

From (4.4) and (4.5), we deduce that

K̃n(λ0, λβ̂L) ≤ K̃n(λ0, λβ) +
M∑
j=1

(β̂L − β)jηn,τ (fj) +
M∑
j=1

ωj |β|j −
M∑
j=1

ωj |β̂L|j . (4.9)

We finally obtain the following non-asymptotic oracle inequality with a slow rate of convergence of order√
logM/n.

Theorem 4.4. Let A > 0 be some numerical positive constant and x > 0 be fixed. Then, with probability larger
than 1−Ae−x

K̃n(λ0, λβ̂L) ≤ inf
β∈RM

{K̃n(λ0, λβ) + 2 pen(β)}, (4.10)

with pen(β) defined by (4.3) and (4.8).

Under the classical restricted eigenvalue condition RE and other assumptions, we can also obtain some
non-asymptotic oracle inequalities with a fast rate of convergence of order logM/n and some results in variable
selection (see Lemler (2012) for more details).

Sketch of the proof of Theorem 4.3. We only detail the steps to prove Equation (4.7). Let us denote by Un,t
and Hi(fj) the quantities

Un,t(fj) =
1
n

n∑
i=1

∫ t

0

Hi(fj)dMi(s) and Hi(fj) :=
fj(Zi)

max
1≤i≤n

|fj(Zi)|
.

Since Hi(fj) is a bounded predictable process with respect to Ft, Un,t(fj) is a square integrable martingale. Its
predictable variation and its optional variation are respectively given by

ϑn,t(fj) = n < Un,(fj) >t=
1
n

n∑
i=1

∫ t

0

(fj(Zi))2dΛi(s) and ϑ̂n,t(fj) = n[Un(fj)]t =
1
n

n∑
i=1

∫ t

0

(fj(Zi))2dNi(s).

The proof relies on the three following steps :
Step1 : We prove first that

P
[
Un,t(fj) ≥

√
2ωϑn,t(fj)x

vn
+

x

3n
, v < ϑn,t(fj) ≤ ω

]
≤ e−x.

Step 2 : Step 2 consists in replacing ϑn,t(fj) by the observable ϑ̂n,t(fj) in Step 1. It follows that

P
[
Un,t(fj) ≥ 2

√
ωx

vn
ϑ̂n,t(fj) +

(
2

√
ω

v

(ω
v

+
1
3

)
+

1
3

)x
n
, v ≤ ϑn,t(fj) < ω

]
≤ 3e−x. (4.11)

Step 3 : Finally, Step 3 is devoting to remove the event {v ≤ ϑn,t(fj) < ω} from Inequality (4.11). �
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5. Approximation by a martingale

Since its introduction by Gordin (1969), the martingale method has attracted number of probabilists. It was
originally designed for the Central Limit Theorem (CLT) but it has been successfully used for almost any limit
theorem (the Weak Invariance Principle (WIP) and its quenched version, the Law of the Iterated Logarithm
and its functional versions, the Marcinkiewicz-Zygmund strong law of large numbers...)

When applied to the CLT or WIP problem, the martingale method has reached a fairly precise form thanks
to the characterizations obtained recently by Zhao and Woodroofe (2008) (CLT case) and Gordin and Peligrad
(2011) (CLT and WIP cases). Their characterization, of theoretical interest, proved to be useful in applications
as well, especially concerning the characterization by Gordin and Peligrad (2011).

The martingale method applies to “different” situations : stationary processes (adapted or not), non-invertible
dynamical systems, functionals of Markov chain. In this note, for the sake of clarity, we shall only be concerned
with adapted stationary processes. As we recall below, this case is actually equivalent to considering functionals
of Markov chains. The case of non-adapted processes may be treated similarly (see for instance Volný (2007)
or Cuny (2012a)). The adaptation of the results mentioned below to the setting of non-invertible dynamical
systems needs more care since what we really obtain in that case is a“reverse” martingale approximation. We
shall consider only real-valued processes, but some results extend to Hilbert space-valued processes.

We use the same notations as in the introduction. We want to study the process (Xn = X0 ◦ Tn)n∈Z, which
is adapted to the non-decreasing filtration (Fn = T−n(F0))n∈Z, i.e. X0 is F0-measurable. We assume that
X0 ∈ Lp(Ω,F0,P), for some p ≥ 1. For simplicity, we assume T to be ergodic.

Let us define an operator Q on L1(Ω,F0,P) by QZ = E(Z ◦ T |F0). The operator Q is a positive contraction
of every Lr(Ω,F0,P), r ≥ 1, hence it is a Markov operator. It turns out that this operator allows to see our
process (Xn)n∈Z as a functional of a Markov chain, see Cuny and Volný (2012).

Another advantage of this operator is that it allows to translate projective conditions in terms of Q, hence
to make use of classical facts from ergodic theory of operators. For instance, the martingale-coboundary
decomposition of Gordin is easily characterized as follows, which has been observed by Volný (1993) (the
non-adapted case is also considered there). Volný worked under the regularity condition E(X0|F−∞) = 0 a.s.
but it is actually not needed.

Proposition 5.1. Let p ≥ 1 and let X0 ∈ Lp(Ω,F0,P). The following are equivalent

(i) X0 = D0 + Z − Z ◦ T−1 with D0, Z ∈ Lp(Ω,F0,P) and E(D0|F−1) = 0 almost surely ;
(ii) supn≥1 ‖E(Sn|F0)‖p <∞.

Proof. (i) ⇒ (ii) is obvious. Now, (ii) reads: supn≥1 ‖QX0 + · · · + QnX0‖p < ∞. Hence, by a result of
Browder (1958, Lemma 5) when 1 < p <∞, and by Theorem 7 of Lin and Sine (1983) when p = 1, there exists
Y ∈ Lp(Ω,F0,P) such that X0 = (I −Q)Y , and (i) follows by taking D0 = Y − E(Y |F−1) = Y − (QY ) ◦ T−1

and Z = −QY . �

Our goal now will be to explain that, in several situations, to prove a limit theorem by mean of a martingale
approximation it is enough to prove it when we have the martingale-coboundary decomposition above, provided
that we have a maximal inequality of a certain type (adapted to the limit theorem under consideration). This
approach has been used explicitly in Cuny (2012a) and Cuny (2012b) and implicitly, for instance, in Jiang and
Wu (2003), Cuny and Volný (2012) or Cuny and Merlevède (2012).

Assume from now on that X0 ∈ L2(Ω,F0,P). We say that X0 or (Xn)n∈Z admits a martingale approximation
of type (CLT), (WIP) or (ASIP) if there exists D0 ∈ L2(Ω,F0,P) with E(D0|F−1) = 0 a.s. such that, writing
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Mn = D0 ◦ T + · · ·+D0 ◦ Tn,

E((Sn −Mn)2) = o(n) (CLT)

E( max
1≤k≤n

(Sk −Mk)2) = o(n) (WIP)

|Sn −Mn| = o(
√
n log log n) P-a.s. (ASIP) .

The notation (ASIP) stands for the almost sure invariance principle. The above martingale approximations
are unique. If X0 admits a martingale approximation of one of the above types then it satisfies the corresponding
limit theorem.

An important fact is that the set of X0 ∈ L2(Ω,F0,P) admitting a martingale approximation (of any of the
above type) is a vector space, containing (I −Q)L2(Ω,F0,P), hence stable by Q.

We would like to study the validity of some limit theorems under the Hannan condition (1.8) and/or the
Maxwell-Woodroofe condition (1.9) mentioned in the introduction. In terms of the operator Q those conditions
read

‖X0‖H2 :=
∑
n≥0

‖QnX0 − (Qn+1X0) ◦ T−1‖2 <∞ ; (5.1)

‖X0‖MW2 := ‖X0‖2 +
∑
n≥1

‖QX0 + · · ·+QnX0‖2
n3/2

<∞ . (5.2)

Let us consider the spaces H2 := {X0 ∈ L2(Ω,F0,P) : E−∞(X0) = 0 and ‖X0‖H2 < ∞} and MW2 :=
{X0 ∈ L2(Ω,F0,P) : ‖X0‖MW2 < ∞}. It is not hard to prove that those spaces are Banach spaces and that
Q induces a contraction of H2 and of MW2.

Moreover, for every X0 ∈ H2, ‖QnX0‖H2 −→
n→+∞

0. With little effort one can also prove that, for every

X0 ∈MW2, ‖QX0 + · · ·+QnX0‖MW2/n −→
n→+∞

0.

By the mean ergodic theorem (see e.g. Theorems 1.2 and 1.3 p. 73 of Krengel (1985)), we have, noticing
that Q has no fixed points neither on H2 nor on MW2,

H2 = (I −Q)H2
H2 and MW2 = (I −Q)MW2

MW2 (5.3)

5.1. The approximating martingale.

We first have to find D0. According to Gordin and Peligrad (2001), if there exists a martingale approximation
of type (CLT ), necessarily

D0 = lim
n→+∞

1
n

n∑
k=1

k−1∑
`=0

(QkX0 − (Qk+1X0) ◦ T−1) , (5.4)

where the limit holds in L2(Ω,P). Set D(X0) := D0, whenever the above limit exists. Then, D is an unbounded
operator on L2(Ω,P).

As one may expect (from the proof of Proposition 5.1), for every Y ∈ L2(Ω,F0,P), D((I − Q)Y ) = Y −
(QY ) ◦ T−1.
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The operator D is well-defined (i.e. bounded) on H2 (this is easily verified) and on MW2, by the results of
Gordin and Peligrad (2011). For some problems, it may be useful to have an other form of D, more adapted to
the conditions (5.1) or (5.2).

For every X0 ∈ H2 we have, with convergence in L2(Ω,P) (and P-a.s.),

DX0 =
∑
n≥0

(
QnX0 − (Qn+1X0) ◦ T−1

)
and ‖DX0‖2 ≤ ‖X0‖H2 . (5.5)

For every X0 ∈MW2, we have (see Cuny and Merlevède (2012)), with convergence in L2(Ω,P) (and P-a.s.)

DX0 =
∑
n≥0

∑
k≥n

QkX0 − (Qk+1X0) ◦ T−1

k + 1
and ‖DX0‖2 ≤ C‖X0‖MW2 , (5.6)

for a universal constant C > 0. It is not hard to see that the inner sum above converges as soon as X0 ∈ L2(Ω,P).
One can prove that if the representation (5.5) holds, then (5.6) holds as well, and that (5.6) implies (5.4).change

5.2. Some maximal inequalities.

Before proving the martingale approximation properties, we shall need the corresponding estimate with a
big “O” instead of a little “o”. For this we need some maximal inequalities. We start with the martingale case.
We have

Proposition 5.2. Let D0 ∈ L2(Ω,F0,P) with E(D0|F−1) = 0 P-a.s. Write Mn :=
∑n
k=1D0 ◦ T k. We have

sup
n≥1

‖max1≤k≤n |Mk|‖2√
n

≤ 2‖D0‖2 ;∥∥∥ sup
n≥1

|Mn|√
nL(L(n))

∥∥∥
1
≤ C‖D0‖2 , (5.7)

where L(n) = max(1, log n) and C > 0 is a universal constant.

The first estimate is nothing but Doob’s maximal inequality. The second one has been proven in Cuny (2012a)
(the maximal function actually lies in any Lp(Ω,P), 1 ≤ p < 2). Both inequalities hold without ergodicity. The
maximal inequality (5.7) seems to be new in the martingale setting. In the iid case, it may be found for instancechange
in the paper by Ledoux and Talagrand (1988). To emphasize the usefulness of such inequality we mention,
that thanks to (5.7), in order to prove the law of the iterated logarithm for martingales with stationary ergodic
increments in L2, it suffices to prove it for martingales with bounded increments (this follows from a Banach
principle argument).

In the next proposition, X stands either for H2 or for MW2. For X0 ∈ X , we denote D0 = DX0 and
Mn =

∑n
k=1D0 ◦ T k.

Proposition 5.3. Assume that X0 ∈ X . We have

sup
n≥1

‖max1≤k≤n |Sk −Mk| ‖2√
n

≤ C‖X0‖X ; (5.8)∥∥∥ sup
n≥1

|Sn −Mn|√
nL(L(n))

∥∥∥
1
≤ C‖X0‖X , (5.9)

where C > 0 is a universal constant.
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The estimate (5.9) is proved in Cuny (2012b), under the Maxwell-Woodroofe condition. For the other
estimates, at first, notice that to prove (5.8) or (5.9), it suffices to treat separately (Sn)n≥1 and (Mn)n≥1.
For the martingale part both estimates follow from Proposition 5.2 combined with (5.5) or (5.6). For (Sn)n≥1

itself, (5.8) follows from Theorem 1 (iii) of Wu (2007) under the Hannan condition and from Proposition 2.3 of
Peligrad and Utev (2005) under the Maxwell-Woodroofe condition. The estimate (5.9) for (Sn)n≥1 is proved in
Cuny (2012a) under the Hannan condition.

5.3. The conclusion.

It follows from (5.8) and a Banach principle argument, that the set of X0 ∈ X , for which (WIP) holds, is
closed in X . But (WIP) holds on (I −Q)X , hence, by (5.3), it holds on X too.

Similarly, by (5.9), the set of X0 ∈ X , for which (ASIP) holds, is closed in X and we conclude as above.
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[21] Cuny, C. and Merlevède, F. On martingale approximations and the quenched weak invariance principle, (2012) http://arxiv.

org/abs/1202.2964
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