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Abstract

We consider a parametric class Tγ of expanding maps of [0, 1] with a neutral fixed
point at 0 for which there exists an unique invariant absolutely continuous probability
measure νγ on [0, 1]. On the probability space ([0, 1], νγ), we prove the weak invariance
principle for the partial sums of f ◦ T i

γ in some special cases involving non-standard
normalization. We also prove new moment inequalities and exponential bounds for the
partial sums of f ◦ T i

γ when f is some Hölder function such that f(0) = νγ(f).
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1 Introduction

For γ in ]0, 1[, we consider the following intermittent map Tγ from [0, 1] to [0, 1], introduced

in Liverani, Saussol and Vaienti (1999):

Tγ(x) =





x(1 + 2γxγ) if x ∈ [0, 1/2]

2x− 1 if x ∈ (1/2, 1]

We denote by νγ the unique Tγ-invariant probability measure on [0, 1] which is absolutely

continuous with respect to the Lebesgue measure.

In 1999, Young showed that such systems (among many others) may be described by a

Young tower with polynomial decay of the return time. From this construction, she was able
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to control the covariances νγ(g ◦ T n · (f − νγ(f))) for any bounded function g and any Hölder

function f , and then to prove that, on the probability space ([0, 1], νγ),

Sn(f)√
n

=
1√
n

n∑
i=1

(f ◦ T i
γ − νγ(f))

converges in distribution to a normal law as soon as γ < 1/2. Note that, in that case, one

can easily prove that the weak invariance principle holds, which means that the normalized

partial sum process converges in distribution to a Wiener process in the Skorohod topology.

In his (2004a) paper, Gouëzel has given a complete picture of the limit behaviour of the

distribution of Sn(f) when f is any Hölder function. If γ = 1/2 and f(0) 6= ν1/2(f), he

proved that the central limit theorem remains true with the normalization
√

n ln(n). When

1/2 < γ < 1 and f(0) 6= νγ(f), he proved that n−γSn(f) converges in distribution to a stable

law. If f(0) = νγ(f) and |f(x) − f(0)| ≤ Cxa, he proved that the central limit theorem

holds with the normalization
√

n provided that γ < a + 1/2. Gouëzel studied also the case

where f(x) = x(2γ−1)/2 for γ < 1/2, and proved that the central limit theorem holds for the

normalization
√

n ln(n).

In this note, we shall prove that in every situation described by Gouëzel for which the

central limit theorem holds, the weak invariance principle also holds (with the appropriate

normalization). Moreover, we shall give some new moment inequalities and exponential bounds

for Sn(f) in the special case where f(0) = νγ(f).

To prove our results, we shall first introduce an appropriate Markov chain as follows. Let

Kγ be the Perron-Frobenius operator of Tγ with respect to νγ: for any bounded measurable

functions f, g,

νγ(f · g ◦ Tγ) = νγ(Kγ(f)g) . (1.1)

Let (Yi)i≥0 be a stationary Markov chain with invariant measure νγ and transition Kernel Kγ.

It is well known (see for instance Lemma XI.3 in Hennion and Hervé (2001)) that on the proba-

bility space ([0, 1], νγ), the random variable (Tγ, T
2
γ , . . . , T n

γ ) is distributed as (Yn, Yn−1, . . . , Y1).

To prove the weak invariance principle, we shall apply the sharp results given in Merlevède

and Peligrad (2006) to the normalized partial sum process of the sequence (f(Yi)− νγ(f))i≥0.

To prove the moment (resp. exponential) inequalities, the main point is to control the quantity

‖Kn
γ (f) − νγ(f)‖p,νγ (resp. ‖Kn

γ (f) − νγ(f)‖∞,νγ ) when f(0) = νγ(f), and next to apply the

Burkholder inequality (resp. Hoeffding inequality) given in Peligrad et al. (2007) to the sums∑n
i=1(f(Yi)− νγ(f)).
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2 Weak invariance principle when γ = 1/2.

Let γ = 1/2. According to Item 2 of the comments following Theorem 1.3 in Gouëzel (2004a),

we know that, for any Hölder function f ,

1√
n ln(n)

Sn(f) converges in distribution to
√

h(1/2)(f(0)− ν1/2(f))N, (2.1)

where N is a standard Gaussian. Moreover, if f(0) = ν1/2(f), n−1/2Sn(f) converges in distri-

bution to a normal law.

In the next theorem, we show that the weak invariance principle also holds. Moreover, we

show that if f(0) = ν1/2(f), the limiting variance is the usual covariance series.

Theorem 2.1. Let γ = 1/2 and let f be any Hölder function. Let W be a standard Brownian

motion.

1. On the probability space ([0, 1], ν1/2), the process

{ 1√
n ln(n)

S[nt](f), t ∈ [0, 1]
}

converges in distribution to
√

h(1/2)(f(0)− ν1/2(f))W , in the Skorohod topology.

2. If f(0) = ν1/2(f), then the series

σ2(f) = ν1/2((f − ν1/2(f))2) + 2
∑

k>0

ν1/2((f − ν1/2(f))f ◦ T k)

converge absolutely to some nonnegative number. In addition, on the probability space

([0, 1], ν1/2), the process { 1√
n

S[nt](f), t ∈ [0, 1]
}

converges in distribution to σ(f)W , in the Skorohod topology.

3 Weak invariance principle for f (x) = x(2γ−1)/2.

Let γ < 1/2, and let f be the function from ]0, 1] to R+ defined by f(x) = x(2γ−1)/2. From the

comment 3 page 88-89 in Gouëzel (2004a), we know that

1√
n ln(n)

Sn(f) converges in distribution to
√

h(1/2)2(1−2γ)/2N, (3.1)

where N is a standard Gaussian (the limiting variance was communicated to us by S. Gouëzel

and can be obtained by following the arguments given in the proof of his Theorem 1.3).

In the next theorem, we show that the weak invariance principle also holds.
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Theorem 3.1. Let γ < 1/2 and f(x) = x(2γ−1)/2. Let W be a standard Brownian motion.

On the probability space ([0, 1], νγ), the process

{ 1√
n ln(n)

S[nt](f), t ∈ [0, 1]
}

converges in distribution to
√

h(1/2)2(1−2γ)/2W , in the Skorohod topology.

4 On the functions such that f (0) = νγ(f ).

As in Gouëzel (2004a), our results will depend on the behaviour of f around 0. Therefore, we

first introduce the following class:

Definition 4.1. For any γ ∈]0, 1[ and any a > 0, let H0,γ,a be the class of Hölder functions f

on [0, 1] such that f(0) = νγ(f) and |f(x)− f(0)| ≤ Cxa.

In his Theorem 2.4.14, Gouëzel (2004c) proved that: for any γ ∈]0, 1[ any a > 0 and any

f in H0,γ,a, there exists a positive constant C1 such that

‖Kn
γ (f)− νγ(f)‖1,νγ ≤ C1 max

( 1

n1/γ
,

1

n(1+a−γ)/γ

)
. (4.1)

In the next proposition, we shall give an upper bound for the L∞(νγ)-norm.

Proposition 4.2. For any γ ∈]0, 1[ any a > 0 and any f in H0,γ,a, there exists a positive

constant C∞ such that

‖Kn
γ (f)− νγ(f)‖∞,νγ ≤ C∞ max

( 1

na/γ
,
1

n

)
.

Remark 4.3. Combining (4.1) and Proposition 4.2, we obtain that, for any p ∈ [1,∞], there

exists a positive constant Cp such that

‖Kn
γ (f)− νγ(f)‖p,νγ ≤

Cp

n(1−γ)/(pγ)
max

( 1

na/γ
,
1

n

)
.

Starting from Remark 4.3 and applying the moment inequality given in Peligrad et al.

(2007), we obtain the following results:

Theorem 4.4. For any a > 0, any f in H0,γ,a and any p ∈ [2,∞[, we have

1. If 0 < γ < 2(ap + 1)/(p + 2), then there exists some positive constant C such that

∥∥∥ max
1≤k≤n

|Sk(f)|
∥∥∥

p,νγ

≤ C
√

n .
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2. If γ = 2(ap + 1)/(p + 2), then there exists some positive constant C such that

∥∥∥ max
1≤k≤n

|Sk(f)|
∥∥∥

p,νγ

≤ C
√

n ln(n) .

3. If 2(ap + 1)/(p + 2) < γ < 1, then there exists some positive constant C such that

∥∥∥ max
1≤k≤n

|Sk(f)|
∥∥∥

p,νγ

≤ Cn(γ(p+1)−ap−1)/pγ .

Of course, this result is no longer true if p = ∞. Instead, we have the following exponential

bounds:

Theorem 4.5. For any a > 0 and any f in H0,γ,a, we have

1. If 0 < γ < 2a, then there exists two positive constants C1 and C2 such that, for any

x > 0,

νγ

(
max
1≤k≤n

|Sk(f)| ≥ x
√

n

)
≤ C1 exp(−C2x

2) .

2. If γ = 2a, then there exists two positive constants C1 and C2 such that, for any x > 0,

νγ

(
max
1≤k≤n

|Sk(f)| ≥ x
√

n ln(n)

)
≤ C1 exp(−C2x

2) .

3. If 2a < γ < 1, then there exists two positive constants C1 and C2 such that, for any

x > 0,

νγ

(
max
1≤k≤n

|Sk(f)| ≥ xn(γ−a)/γ

)
≤ C1 exp(−C2x

2) .

Remark 4.6. As a straightforward consequence of Theorem 4.5, we obtain that

1. If 0 < γ < 2a, then there exists a positive constant C such that

lim sup
n→∞

|Sn(f)|√
n ln(ln(n))

≤ C almost everywhere.

2. If γ = 2a, then there exists a positive constant C such that

lim sup
n→∞

|Sn(f)|
ln(n)

√
n ln(ln(n))

≤ C almost everywhere.

3. If 2a < γ < 1, then there exists a positive constant C such that

lim sup
n→∞

|Sn(f)|
n(γ−a)/γ

√
ln(ln(n))

≤ C almost everywhere.
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As recalled in the introduction, Gouëzel (2004a) has proved that if f belongs to H0,γ,a for

0 < γ < a + 1/2 then n−1/2Sn(f) converges to a normal distribution. In the next theorem, we

show that the weak invariance principle also holds, and that the limiting variance is the usual

covariance series. Note that this result is more precise than Item 1 of Theorem 4.4 in the case

where p = 2.

Theorem 4.7. Let W be a standard Brownian motion. For any a > 0, any 0 < γ < a + 1/2

and any f in H0,γ,a, the series

σ2(f) = νγ((f − νγ(f))2) + 2
∑

k>0

νγ((f − νγ(f))f ◦ T k) (4.2)

converges absolutely. Moreover, on the probability space ([0, 1], νγ), the process

{ 1√
n

S[nt](f), t ∈ [0, 1]
}

converges in distribution to σ(f)W , in the Skorohod topology.

5 Proofs

From now, C and D are positive constants which may vary from line to line.

5.1 Proof of Theorem 2.1

We first note that Item 2 of Theorem 2.1 is a consequence of Theorem 4.7 (if γ = 1/2, the

constraint γ < a + 1/2 is clearly satisfied), which will be proved in Section 5.5. Now, if

f(0) = ν1/2(f), then Item 1 is a straightforward consequence of Item 2. Consequently, it

remains to prove Item 1 in the case where f(0) 6= ν1/2(f).

Let Xi = f(Yi) − ν1/2(f), where (Yi)i∈Z is the Markov chain with transition Kernel K1/2

and invariant measure ν1/2. Recall that (T1/2, T
2
1/2, . . . , T

n
1/2) is distributed as (Yn, Yn−1, . . . , Y1).

Let Sn =
∑n

i=1 Xi, and let c(f) =
√

h(1/2)(f(0) − ν1/2(f)). To prove Item 1, we shall prove

that { 1√
n ln(n)

S[nt], t ∈ [0, 1]
}

(5.1)

converges in distribution to c(f)W , in the Skorohod topology. To see that this result implies

Item 1 of Theorem 2.1, it suffices to notice that the process Wn(f) = {Wn(f, t), t ∈ [0, 1]}
defined by

Wn(f, t) =
1√

n ln(n)

[nt]∑

k=1

(f ◦ T n−k+1 − ν1/2(f)) +
nt− [nt]√

n ln(n)
(f ◦ T n−[nt] − ν1/2(f)),

converges in distribution in C([0, 1], ‖ · ‖∞) to c(f)W , so that Wn(f, 1)−Wn(f) converges in
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distribution in C([0, 1], ‖ · ‖∞) to c(f)(W (1)−W ). Hence {Wn(f, 1)−Wn(f, 1− t), t ∈ [0, 1]}
converges in distribution in C([0, 1], ‖ · ‖∞) to {c(f)(W (1) − W (1 − t)), t ∈ [0, 1]} which is

distributed as c(f)W . Now {Wn(f, 1)−Wn(f, 1− t), t ∈ [0, 1]} is equal to the process

{ 1√
n ln(n)

S[nt](f) +
nt− [nt]√

n ln(n)
(f ◦ T [nt]+1 − ν1/2(f)), t ∈ [0, 1]

}
,

which consequently converges in distribution in C([0, 1], ‖ · ‖∞) to c(f)W . Theorem 2.1 easily

follows.

To prove the weak convergence of the process (5.1), we use Corollary 3 in Merlevède and

Peligrad (2006). Let Bn =
√

π/2E(|Sn|). Applying this corollary to the bounded random

variables Xi, we infer that if

σ2
n = E(S2

n) →∞ , (5.2)

n∑
i=1

i‖E(Xi|Y0)‖1 = o(σ2
n) , (5.3)

and

lim
n→∞

σ−2
n E(S2

n|Y−n) = 1 in L1 , (5.4)

are satisfied, then the process {B−1
n S[nt], t ∈ [0, 1]} converges in distribution to W , in the

Skorohod topology. We shall see in the rest of the proof that necessarily,

Bn ∼
√

h(1/2)|f(0)− ν1/2(f)|
√

n ln(n) . (5.5)

It remains to prove (5.2), (5.3) and (5.4). We first recall that from Young (1999), if f is

δ-Hölder for some δ in ]0, 1],

|ν1/2(g ·Kn
1/2(f − ν1/2(f)))| ≤ C

n
‖g‖∞Lδ(f) , (5.6)

where

Lδ(f) = sup
x,y∈[0,1]

|f(x)− f(y)|
|x− y|δ .

Clearly, Inequality (5.6) is equivalent to

‖E(Xn|Y0)‖1 = ‖Kn
1/2(f)− ν1/2(f)‖1 ≤ C

n
Lδ(f) . (5.7)

Since σ2
n ≤ n‖f‖∞(‖X0‖1 + 2

∑n
i=1 ‖E(Xn|Y0)‖1), we obtain from (5.7) that

σ2
n ≤ C‖f‖∞n ln(n) . (5.8)

Clearly, (5.8) implies that {Sn/
√

n ln(n)} is uniformly integrable. Consequently, using (2.1)

and the fact that {|Sn|/
√

n ln(n)} is uniformly integrable, we derive that (5.5) holds. Since
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f(0) 6= ν1/2(f), it follows that for n large enough,

σ2
n ≥ (E(|Sn|))2 ≥ Cn ln(n) , (5.9)

for some C > 0, so that (5.2) is satisfied.

Now, combining (5.7) and (5.9), we infer that (5.3) holds. It remains to prove (5.4).

According to Inequality (4.92) in Merlevède and Peligrad (2006), we get that

σ−2
n ‖E(S2

n|Y−n)− E(S2
n)‖1 ≤ 2σ−2

n

2n∑
i=n+1

2n∑
j=i

‖E(XiXj|Y0)− E(XiXj)‖1 . (5.10)

Let f (0) = f − ν1/2(f). For j ≥ i,

‖E(XiXj|Y0)− E(XiXj)‖1 = ν1/2

(∣∣Ki(f (0)Kj−if (0))− ν1/2

(
K i(f (0)Kj−if (0))

)∣∣
)

.

According to Lemmas 2.1 and 2.2 in Dedecker and Prieur (2008), we have that

ν1/2

(∣∣Ki(f (0)Kj−if (0))− ν1/2

(
K i(f (0)Kj−if (0))

)∣∣
)
≤ C

n
Lδ(f) .

These considerations together with (5.9) end the proof of (5.4).

5.2 Proof of Proposition 3.1

We use the same notations as in the proof of Theorem 2.1: (Yi)i∈Z is the Markov chain with

transition operator Kγ and invariant measure νγ, and Xi = f(Yi) − νγ(f). We use again

Corollary 3 in Merlevède and Peligrad (2006). We still have to prove (5.2) and (5.4). Since

the variables are not bounded, instead of (5.3) we have to prove that

n∑
i=1

i

∫ ‖E(Xi|Y0)‖1

0

Qf ◦Gf (u)du = o(σ2
n) , (5.11)

where Qf (u) = inf{t ≥ 0, νγ(f > t) ≤ u} and Gf is the inverse function of x 7→ ∫ x

0
Qf (u)du.

Note that Qf (u) = (F−1
γ (u))(2γ−1)/2 where Fγ(t) = νγ([0, t]). Since the density h of νγ is such

that ax−γ ≤ h(x) ≤ bx−γ (see Section 5.3), we derive that C1u
2γ−1

2(1−γ) ≤ Qf (u) ≤ C2u
2γ−1

2(1−γ) , so

that Gf (u) ≥ Cu2(1−γ). Hence Qf ◦ Gf (u) ≤ Cu2γ−1 and to prove (5.11), it remains to show

that
n∑

i=1

i‖E(Xi|Y0)‖2γ
1 = o(σ2

n) . (5.12)

Here, we need the following definition:

Definition 5.1. For any integrable real-valued random variable X, let X(0) = X−E(X). For

8



any random variable Y = (Y1, · · · , Yk) with values in Rk and any σ-algebra F , let

α(F , Y ) = sup
(x1,...,xk)∈Rk

∥∥∥∥∥
(
E

( k∏
j=1

(1Yj≤xj
)(0)

∣∣∣F
))(0)

∥∥∥∥∥
1

.

For the Markov chain Y = (Yi)i∈Z, we then define

αk,Y(n) = max
1≤l≤k

sup
il>...>i1≥n

α(σ(Y0), (Yi1 , . . . , Yil)). (5.13)

In Proposition 1.12 of Dedecker et al. (2008), it is proved that αk,Y(n) ≤ C(k, γ)n(γ−1)/γ.

Since f is monotonic, the coefficients of the sequence (f(Yi))i∈Z are smaller than that of

(Yi)i∈Z. Hence, applying Theorem 1.1 in Rio (2000), one has

‖E(Xn|Y0)‖1 ≤ 2

∫ α1,Y(n)

0

Qf (u)du ≤ C

n1/(2γ)
.

Hence to prove (5.12), it suffices to show that (5.9) holds. We proceed as in the proof of

Theorem 2.1. First, applying again Theorem 1.1 in Rio (2000), one has

|Cov(X0, Xn)| ≤ 2

∫ α1,Y(n)

0

Q2
f (u)du ≤ Cn−1 ,

so that σ2
n ≤ Cn ln(n). Consequently {|Sn|/

√
n ln(n)} is uniformly integrable. Using (3.1),

we derive that Bn ∼
√

h(1/2)2(1−2γ)/2
√

n ln(n). Hence (5.9) holds, so that (5.2) and (5.11)

are satisfied.

To complete the proof, it remains to prove (5.4). Let us first prove that, for j > i > 0,

‖E(XiXj|Y0)− E(XiXj)‖1 ≤ 16

∫ α2,Y(i)/4

0

Q2
f (u)du. (5.14)

Setting A := sign{E(XiXj|Y0)− E(XiXj)}, we have that

‖E(XiXj|Y0) − E(XiXj)‖1 = E
{

A
(
E(XiXj|Y0) − E(XiXj)

)}
= E

(
(A − E(A))XiXj

)
.

From Proposition A.1 and Lemma A.1 in Dedecker and Rio (2008), noticing that QA(u) ≤ 1,

we have that

E((A− E(A))XiXj) ≤ 16

∫ ᾱ(A,Xi,Xj)/2

0

Q2
f (u)du ,

where for real valued random variables A,U, V ,

ᾱ(A,U, V ) = sup
(s,t,u)∈R3

∣∣E((1A≤s − P(A ≤ s))(1U≤t − P(U ≤ t))(1V≤u − P(V ≤ u)))
∣∣ .
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Since f is monotonic, we infer that, for all j > i > 0,

ᾱ(A,Xi, Xj) ≤ ᾱ(A, Yi, Yj) ≤ α2,Y(i)/2 .

and (5.14) follows. From the previous upper bounds for Qf and α2,Y(k), we obtain that, for

j > i > 0,

‖E(XiXj|Y0)− E(XiXj)‖1 ≤ C

i
,

and (5.4) follows easily from (5.9) and (5.10).

5.3 Proof of Proposition 4.2

Let v0 : [0, 1] → [0, 1/2] and v1 : (0, 1] → (1/2, 1] be the two inverse branches of Tγ. Let

x0 = 1, and xn = v0(xn−1). Let In = (xn+1, xn], so that T n
γ is bijective from In to I0 = (1/2, 1].

Let also h be the density of νγ with respect to the Lebesgue measure λ on [0, 1].

We use the decomposition given in Dedecker et al. (2008):

Kn
γ f =

∑

i+j+k=n

AiTjBkf + Cnf , (5.15)

where the operators An, Bn and Cn are defined as follows:

Anf(x) = 1[0,1/2](x)
(v1v

n−1
0 )′(x)h(v1v

n−1
0 x)

h(x)
f(v1v

n−1
0 x) , (5.16)

Bnf(x) = 1(1/2,1](x)
(vn

0 )′(x)h(vn
0 x)

h(x)
f(vn

0 x) , (5.17)

Cnf(x) = 1[0,1/2](x)
(vn

0 )′(x)h(vn
0 x)

h(x)
f(vn

0 x) . (5.18)

The operator Tn is less explicit, but it can handled as follows. Let Hδ([a, b]) be the space of

δ-Hölder functions on [a, b] equipped with the norm |f |δ,[a,b] = Lδ,[a,b](f) + ‖f‖∞, where

Lδ,[a,b](f) = sup
x,y∈[a,b]

|f(x)− f(y)|
|x− y|δ .

According to Section 3 in Gouëzel (2007) and to Section 6.3 in Gouëzel (2004b), we have that

Tn =
∞∑

`=1

∑

k1+···+k`=n

Rk1 . . . Rk`
,

where (Rn)n≥1 is a sequence of continuous linear operators on Hδ([1/2, 1]) such that

|Rn(f)|δ,[1/2,1] ≤ C
|f |δ,[1/2,1]

n1/γ+1
.
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Consequently, we can apply Theorem 2.4.10 and Remark 2.4.11 in Gouëzel (2004c) to derive

that

|(Tn − PTnP )(f)|δ,[1/2,1] ≤ C
|f |δ,[1/2,1]

n1/γ
, (5.19)

where

P (f) =
νγ(f1[1/2,1])

νγ([1/2, 1])
1[1/2,1] . (5.20)

We proceed now as in the proof of Theorem 2.4.13 in Gouëzel (2004c). Let Zj = PTjP and

Yj = Tj − Zj, so that

|Yj(f)|δ,[1/2,1] ≤ C
|f |δ,[1/2,1]

j1/γ
. (5.21)

Notice that

Zj(f) = zjνγ(f1]1/2,1])1]1/2,1], where zj =
νγ(Tj(1]1/2,1])1]1/2,1]

ν2
γ(]1/2, 1])

.

Setting λk(f) = νγ(Bk(f)), we have the following decomposition

Kn
γ (f) = Cn(f) +

∑

i+j+k=n

zjλk(f)Ai(1]1/2,1]) +
∑

i+j+k=n

AiYjBk(f) . (5.22)

We shall prove successively that

‖Cn(f)‖∞ ≤ C(f)/(n + 1)a/γ for all f in H0,γ,a with νγ(f) = 0 , (5.23)

‖An(u)‖∞ ≤ K‖u‖∞/(n + 1) for all bounded function u , (5.24)

|Bn(u)|δ,[1/2,1] ≤ C|u|δ,[0,1]/(n + 1)1/γ for all u in Hδ([0, 1]) , (5.25)

λn(f) ≤ C(f)/(n + 1)(a+1)/γ for all f in H0,γ,a with νγ(f) = 0 . (5.26)

Let us complete the proof of Proposition 4.2 with the help of these upper bounds. Clearly, it

suffices to prove the result for functions f in H0,γ,a such that νγ(f) = 0. Using (5.24), (5.21)

and (5.25), we get that

∑

i+j+k=n

‖AiYjBk(f)‖∞ ≤ C|f |δ,[0,1]

∑

i+j+k=n

1

(i + 1)(j + 1)1/γ(k + 1)1/γ
≤ D|f |δ,[0,1]

1

n
.

We follow the computations of the proof of theorem 2.4.13 in Gouëzel (2004c), with the

difference that here αi = ‖Ai(1]1/2,1])‖∞ = O(i−1) by using (5.24). Consequently,

∑

i+j+k=n

zjλk(f)‖Ai(1]1/2,1])‖∞ ≤ C
( ln n

n(1+a−γ)/γ
+

1

n

)

The two latter upper bounds together with (5.23) end the proof of Proposition 4.2.

We turn now to the proof of (5.23), (5.24), (5.25) and (5.26). We will use the following
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facts, which can be found in Liverani et al. (1999):

1. The density h of νγ is non increasing with h(1) > 0, and h(x) ∼ Cx−γ for some C > 0.

Moreover if x, y ∈ [A, 1] for A > 0, then |h(x)−h(y)| ≤ DA−γ−1|x− y|, for some D > 0.

2. One has xn ∼ C/n1/γ for some C > 0. Moreover, λ(In) = xn − xn+1 ∼ C/n(1+γ)/γ for

some C > 0. One has

h(xn) ∼ Cx−γ
n ∼ Dn . (5.27)

3. There exists a constant C > 0 such that, for all n ≥ 0 and k ≥ 0, and for all x, y ∈ In+k,

∣∣∣∣1−
(T n

γ )′(x)

(T n
γ )′(y)

∣∣∣∣ ≤ C|T n
γ x− T n

γ y| . (5.28)

Integrating the above inequality, we obtain that

C−1 λ(Ik)

λ(In+k)
≤ (T n

γ )′(x) ≤ C
λ(Ik)

λ(In+k)
. (5.29)

To prove (5.23), we use the fact that

sup
x∈[0,1]

|f(vn
0 x)| = sup

x∈[0,xn]

|f(x)| ≤ Cxa
n ≤ Dn−a/γ

and Lemma 3.3 in Dedecker et al. (2008) which gives that

sup
x∈[0,1/2]

∣∣∣(v
n
0 )′(x)h(vn

0 x)

h(x)

∣∣∣ ≤ C .

To prove (5.24), we use Lemma 3.4 in Dedecker et al. (2008) which gives that

sup
x∈[0,1/2]

∣∣∣(v1v
n−1
0 )′(x)h(v1v

n−1
0 x)

h(x)

∣∣∣ ≤ C

n + 1
.

To prove (5.25), it suffices to notice that on [1/2, 1] the function 1/h is Lipschitz, the

function h(vn
0 (x)) is bounded by h(xn) ≤ Cn, and the function (vn

0 )′ is bounded by C/n(1+γ)/γ

by applying (5.29). Moreover for x, y in [1/2, 1],

|h(vn
0 (x))− h(vn

0 (y))| ≤ Cn(γ+1)/γ|vn
0 (x)− vn

0 (y)| ≤ D|x− y| ,

and, applying (5.28),

|(vn
0 )′(x)− (vn

0 )′(y)| ≤ Cn−(γ+1)/γ|x− y| .
Gathering all these upper bounds, we obtain (5.25).
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To prove (5.26), write

λn(f) = νγ(Bn(f)) =

∫ 1

1/2

f(vn
0 (x))(vn

0 )′(x)h(vn
0 (x))dx =

∫ xn

xn+1

f(y)h(y)dy .

Using the fact that on [xn+1, xn], |f(y)| ≤ Cn−a/γ and |h(y)| ≤ Cn, (5.26) follows.

5.4 Proof of Theorems 4.4 and 4.5

Recall that (Tγ, T
2
γ , . . . , T n

γ ) is distributed as (Yn, Yn−1, . . . , Y1) where (Yi)i∈Z is a stationary

Markov chain with invariant measure νγ and transition kernel Kγ. Let Xn = f(Yn) − νγ(f)

and Sn = X1 + · · ·+ Xn. Then, for any ε > 0,

νγ

(
max
1≤k≤n

∣∣∣
k∑

i=1

(f ◦ T i
γ − νγ(f))

∣∣∣ ≥ ε
)
≤ νγ

(
2 max

1≤k≤n
|Sk| ≥ ε

)
. (5.30)

Hence it remains to prove the result for the sequence (Sk)k≥1. To prove Theorem 4.4, we apply

Corollary 1 in Peligrad et al. (2007). We obtain that

∥∥∥ max
1≤k≤n

|Sk|
∥∥∥

p
≤ Cp

√
n
(
‖X0‖p +

n∑

k=1

k−1/2‖E(Xk|Y0)‖p

)
.

Since ‖E(Xk|Y0)‖p = ‖Kn
γ (f) − νγ(f)‖p,νγ the result follows from Remark 4.3. In the same

way Theorem 4.5 follows from Proposition 2 in Peligrad et al. (2007), and the control of

‖Kn
γ (f)− νγ(f)‖∞,νγ given in Proposition 4.2.

5.5 Proof of Theorem 4.7

We proceed as in the proof of Theorem 3.1 keeping the same notations. From Proposition 2

in Dedecker and Merlevède (2002), the process

{ 1√
n

S[nt], t ∈ [0, 1]
}

converges in distribution to σW , in the Skorohod topology, as soon as

∑

k≥1

(ln(k))2‖E(Xk|Y0)‖2
2 < ∞ , (5.31)

with σ2 = limn→∞ n−1E(S2
n). Since ‖E(Xk|Y0)‖2 = ‖Kn

γ (f)−νγ(f)‖2,νγ , it follows from Remark

4.3 that (5.31) holds as soon as 0 < γ < a + 1/2.

It remains to see that σ2 = σ2(f) defined in (4.2), which is true provided that the series∑∞
k=0 |E(X0Xk)| converges. In Section 6.2 of Dedecker and Merlevède (2002), it is proved that
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(5.31) implies that

∞∑
i=0

‖P0(Xi)‖2 < ∞ where Pk(Xi) = E(Xi|Yk)− E(Xi|Yk−1).

Since Xk =
∑k

i=−∞ Pi(Xk), and since E(Pi(X0)Pj(Xk)) = 0 if i 6= j, it follows that, for k ≥ 0,

|E(X0Xk)| =
∣∣∣

0∑
i=−∞

E(Pi(X0)Pi(Xk))
∣∣∣ ≤

∞∑
i=0

‖P0(Xi)‖2‖P0(Xk+i)‖2 ,

so that ∞∑

k=0

|E(X0Xk)| ≤
( ∞∑

i=0

‖P0(Xi)‖2

)2

< ∞ ,

and the result follows.
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