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There are two problems in the paper “An empirical central limit theorem for intermittent

maps” published in Probability Theory and Related Fields (2010) 148:177-195.

First, the definition of the coefficient β2(n) is in fact too restrictive. Secondly, there is a

wrong argument in the proof of the main result, Theorem 2.1.

In this erratum, we give the correct definition of the coefficient β2(n), as it was introduced

in Dedecker and Prieur (2007), and we explain how to fix the proof of Theorem 2.1.

The first paragraph is devoted to the definition of the coefficients. In the second paragraph,

we give a slightly more general Rosenthal-type inequality than that given in Proposition 3.1,

which will be used to fix the proof of Theorem 2.1. In the third paragraph, we explain the

changes in the proof of Theorem 2.1.

1. Definition of the coefficients. Keeping the same notations as in Definition 2.1 page 180,

the term b2(Ml, k) should be

b2(Ml, i, j) = sup
(s,t)∈R2

|P(Xi,Xj)|Ml
(f

(0)
t ⊗ f (0)

s )− P(Xi,Xj)(f
(0)
t ⊗ f (0)

s )| .

and the correct definition of β2(k) should be

β2(k) = max
{
β1(k), sup

i>j≥k
E((b2(M0, i, j)))

}
,

which is exactly the definition given by Dedecker and Prieur (2007).

2. The Rosenthal inequality. The inequality given in Proposition 3.1 is correct, but we shall

use a slightly more general version. We use the convention
∑k

i=j ai = 0 if j > k, and we use the

notation (k)+ = k1k>0.

Here is the new version of Proposition 3.1 (note that the previous version can be obtained

by taking d1 = d2 = · · · = dn = 0 in this new version).

Proposition 3.1 Let X1, . . . , Xn be n real-valued random variables in Lp for some p ∈ [2, 3], with

zero expectation, and let d1, . . . , dn be n real numbers. Let Sn = X1 + · · · + Xn. For 1 ≤ i ≤ n,

let Fi = σ(X1, . . . , Xi). For any 1 ≤ N ≤ n, the following inequality holds

‖Sn‖p ≤
(

2(p− 1)
n∑

i=1

γi

)1/2

+
( n∑

i=1

E(|Xi|p) + p(p− 1)
n∑

i=1

(
δi,1 + δi,2 + δi,3

))1/p

,
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where

γi =
1

2
E(X2

i ) +
i−1∑

j=(i−N)++1

|E(XiXj)|+
i−N∑
j=1

‖XjE(Xi|Fj)‖p/2 ,

δi,1 =
i−1∑

j=(i−N)++1

j∑
l=(2j−i)++1

‖|Xl|p−2|Xj|E(Xi|Fj)‖1 ,

δi,2 =
i−1∑

j=(i−N)++1

(2j−i)+∑
l=1

‖|Xl − dl|p−2E(XiXj − E(XiXj)|Fl)‖1 ,

δi,3 =
1

2

i−1∑
j=1

‖|Xj − dj|p−2E(X2
i − E(X2

i )|Fj)‖1 .

Now, the remark 3.1 following Proposition 3.1 should be written as follows (note that the

indices in the definition of the term δ2 of the previous version of Remark 3.1 were wrong, and

have been replaced by the correct indices).

Remark 3.1 Assume that the Xi’s of Proposition 3.1 are taken from a stationary sequence (Xi)i∈Z,

and letMi = σ(Xk, k ≤ i). Let also d1 = d2 = · · · = dn = d in Proposition 3.1. One has γi ≤ γ̃,

δi,1 ≤ δ1, δi,2 ≤ δ2 and δi,3 ≤ δ3, with

γ̃ =
1

2
E(X2

0 ) +
N−1∑
k=1

|E(X0Xk)|+
n−1∑
k=N

‖X0E(Xk|M0)‖p/2 ,

δ1 =
N−1∑
l=1

l∑
k=0

‖|X0|p−2|Xk|E(Xk+l|Mk)‖1 ,

δ2 =
N−1∑
l=1

n∑
k=l

‖|X0 − d|p−2E(XkXk+l − E(XkXk+l)|M0)‖1 ,

δ3 =
1

2

n−1∑
k=1

‖|X0 − d|p−2E(X2
k − E(X2

k)|M0)‖1 .

The proof of this new Proposition 3.1 is almost identical to the proof of the previous version.

The only changes concern the terms E(I1) and E(K2). Recall that I1 = (X2
n −E(X2

n))|Sn−1|p−2,

and let Dk = d1 + d2 + · · ·+ dk. Since E((X2
n − E(X2

n))|Dn−1|p−2) = 0, we have

E(I1) = E((X2
n − E(X2

n))(|Sn−1|p−2 − |Dn−1|p−2)).

Let Zk,j = Dj +
∑k

i=1(Xi − di), with the convention Z0,j = Dj. Then

E(I1) = E
( n−1∑

k=1

(X2
n − E(X2

n))(|Zk,n−1|p−2 − |Zk−1,n−1|p−2)
)
.
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Taking the conditional expectation with respect to Fk and using that ||x|p−2−|y|p−2| ≤ |x−y|p−2,

we obtain that

|E(I1)| ≤
n−1∑
k=1

‖E(X2
n − E(X2

n)|Fk)|Xk − dk|p−2‖1 . (0.1)

This inequality (0.1) must be used instead of the inequality (3.2) of the previous proof.

In the same way,

E(K2) = (p− 1)E
( n−1∑

k=n−N+1

(2k−n)+∑
i=1

(XnXk − E(XnXk))(|Zi,(2k−n)+|p−2 − |Zi−1,(2k−n)+|p−2)
)
.

Taking the conditional expectation with respect to Fi and using that ||x|p−2−|y|p−2| ≤ |x−y|p−2,

we obtain that

|E(K2)| ≤ (p− 1)
n−1∑

k=n−N+1

(2k−n)+∑
i=1

‖E(XnXk − E(XnXk)|Fi)|Xi − di|p−2‖1 . (0.2)

This inequality (0.2) must be used instead of the inequality (3.5) of the previous proof.

Once we have replaced (3.2) by (0.1) and (3.5) by (0.2), the proof of the new version of

Proposition 3.1 is exactly the same as the proof of the old version of Proposition 3.1.

3. Correction of the proof of Theorem 2.1. We use the same notations as in the previous

proof. Everything is exactly identical up to Inequality (2.14) of the previous proof. After (2.14),

we proceed as follows.

We now control the term E(|Zn(](i − 1)2−L, i2−L])|p) with the help of the new proposition

3.1. Let Ti,k = 1(i−1)2−L<Yk≤i2−L and T
(0)
i,k = Ti,k − E(Ti,k). We apply the new remark 3.1 to the

stationary sequence (T
(0)
i,k )k∈Z, by taking d = −E(Ti,k) (hence |T (0)

i,0 − d| = |Ti,0|). We obtain that

E(|Zn(](i−1)2−L, i2−L])|p) =
1

np/2
E
(∣∣∣ n∑

k=1

T
(0)
i,k

∣∣∣p) ≤ C
(
a

p/2
i +n(2−p)/2

(
‖T (0)

i,0 ‖pp+ci,1+ci,2+ci,3

))
,

where, for any 1 ≤ N ≤ n,

ai =
1

2
Var(Ti,0) +

N−1∑
k=1

|Cov(Ti,0, Ti,k)|+
n−1∑
k=N

‖T (0)
i,0 E(T

(0)
i,k |M0)‖p/2 ,

ci,1 =
N−1∑
l=1

l∑
k=0

‖|T (0)
i,0 |p−2|T (0)

i,k |E(T
(0)
i,k+l|Mk)‖1 ,

ci,2 =
N−1∑
l=1

n∑
k=l

‖|Ti,0|p−2E(T
(0)
i,k T

(0)
i,k+l − E(T

(0)
i,k T

(0)
i,k+l)|M0)‖1 ,

ci,3 =
1

2

n−1∑
k=1

‖|Ti,0|p−2E((T
(0)
i,k )2 − E((T

(0)
i,k )2)|M0)‖1 .
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The term ai is the same as in the previous version, and can be handled in the same way. Hence,

the inequalities (2.15) and (2.16) of the previous version hold true. After (2.16), we proceed as

follows (using the correct definition of b2(Ml, i, j), as recalled in Paragraph 1 of this erratum,

for the control of the term ci,2).

For the term ci,1, since |T (0)
i,0 |p−2 ≤ 1 and

∑2L

i=1 |T
(0)
i,k | ≤ 2, one gets

n(2−p)/2

2L∑
i=1

ci,1 ≤ 2n(2−p)/2

N∑
l=1

l∑
k=0

2L∑
i=1

E(|T (0)
i,k |b1(Mk, l)) ≤ 4n(2−p)/2

N∑
l=1

(l + 1)β1(l) . (0.3)

For the term ci,2, since |Ti,0|p−2 = Ti,0 and
∑2L

i=1 Ti,0 = 1, one gets

n(2−p)/2

2L∑
i=1

ci,2 ≤ 4n(2−p)/2

N−1∑
l=1

n∑
k=1

2L∑
i=1

E(Ti,0b2(M0, k, k + l)) ≤ 4n(2−p)/2N

n∑
k=1

β2(k) . (0.4)

For the term ci,3, note first that (T
(0)
i,k )2−E((T

(0)
i,k )2) = (1−2E(Ti,k))T

(0)
i,k . Since |1−2E(Ti,k)| ≤

1, it follows that

|E((T
(0)
i,k )2 − E((T

(0)
i,k )2)|M0)| ≤ |E(T

(0)
i,k |M0)| ≤ 2b1(M0, k) .

Hence, since |Ti,0|p−2 = Ti,0 and
∑2L

i=1 Ti,0 = 1, one gets

n(2−p)/2

2L∑
i=1

ci,3 ≤ 2n(2−p)/2

n∑
k=1

2L∑
i=1

E(Ti,0b1(M0, k)) ≤ 2n(2−p)/2

n∑
k=1

β1(k) . (0.5)

Note that the last bounds on the right hand side of (0.3), (0.4) and (0.5) are exactly the

same as the upper bounds (2.17), (2.18) and (2.19) of the previous version, and so the proof of

Theorem 2.1 can be completed as previously.

Acknowledgments. I wish to thank Florence Merlevède who pointed out both the problem in

the definition of β2(n), and the wrong argument in the proof of Theorem 2.1.
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