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Abstract

In this paper, we give necessary and sufficient conditions for a stationary se-
quence of random variables with values in a separable Hilbert space to satisfy the
conditional central limit theorem introduced in Dedecker and Merlevède (2002). As
a consequence, this theorem implies stable convergence of the normalized partial
sums to a mixture of normal distributions. We also establish the functional ver-
sion of this theorem. Next, we show that these conditions are satisfied for a large
class of weakly dependent sequences, including strongly mixing sequences as well
as mixingales. Finally, we present an application to linear processes generated by
some stationary sequences of H-valued random variables.

Mathematics Subject Classifications (1991): 60 F 05, 60 F 17.
Key words: Hilbert space, central limit theorem, weak invariance principle, strictly
stationary process, stable convergence, strong mixing, mixingale, linear processes.

1 Introduction

Since Hoffman-Jorgensen and Pisier (1976) and Jain (1977), we know that separable

Hilbert spaces are the only infinite dimensional Banach spaces for which the classical

central limit property for i.i.d sequences is equivalent to the square integrability of the

norm of the variables. From a probabilistic point of view, it is therefore natural to extend

central limit theorems for dependent random vectors to separable Hilbert spaces.

Although the theory of empirical processes mainly deals with the (generally non sepa-

rable) Banach space `∞(F) of bounded functionals from F to R, separable Hilbert spaces
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are sometimes rich enough for statistical applications. For instance, if we are interested

in Cramér-von Mises statistics, it is natural to consider that the empirical distribution

function is a random variable with values in L2(µ) for an appropriate finite measure µ

on the real line (see Example 2, Section 2.2). Other examples are given by Bosq (2000)

and Merlevède (1995), who study linear processes taking their values in separable Hilbert

spaces. These authors focus on forecasting and estimation problems for several classes of

continuous time processes.

For Hilbert-valued martingale differences, a functional version of the central limit the-

orem is given by Walk (1977) and a triangular version by Jakubowski (1980). For strongly

mixing sequences we mention the works of Delhing (1983) and Merlevède, Peligrad and

Utev (1997). The latter extends to Hilbert spaces a well known result of Doukhan, Mas-

sart and Rio (1994), whose optimality is discussed in Bradley (1997). However, none of

these dependence conditions is adapted to describe the behaviour of nonexplosive time

series. Starting from this remark, Chen and White (1998) obtained new central limit the-

orems (and their functional versions) for Hilbert-valued mixingales, and gave significant

applications. The concept of mixingale introduced by McLeish (1975) is particularly well

adapted to time series, and contains both mixing and martingale difference processes as

special cases. To get an idea of the wide range of applications of mixingales (including

functions of infinite histories of mixing processes), we refer to McLeish (1975) and Hall

and Heyde (1980) Section (2.3).

In this paper we obtain, as a consequence of a more general result, sufficient conditions

for the normalized partial sums of a stationary Hilbert-valued sequence to converge stably

to a mixture of normal distributions. These conditions are expressed in terms of condi-

tional expectations and are similar to those given by Gordin (1969, 1973) and McLeish

(1975, 1977) for real-valued sequences. To describe our results in more details, we need

some preliminary notations.

Notation 1. Let (Ω,A,P) be a probability space, and T : Ω 7→ Ω be a bijective bimeasur-

able transformation preserving the probability P. An element A ofA is said to be invariant

if T (A) = A. We denote by I the σ-algebra of all invariant sets. The probability P is

ergodic if each element of I has measure 0 or 1. Let M0 be a σ-algebra of A satisfying

M0 ⊆ T−1(M0), and define the nondecreasing filtration (Mi)i∈Z by Mi = T−i(M0).

Notation 2. Let H be a separable Hilbert space with norm ‖ · ‖H generated by an inner

product, < ·, · >H and (e`)`≥1 be an orthonormal basis in H. For any real p ≥ 1, denote

by Lp
H the space of H-valued random variables X such that ‖X‖p

Lp
H

= E(‖X‖p
H) is finite.
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For any random variable X0 in L2
H, set Xi = X0 ◦ T i and Sn = X1 + · · ·+ Xn. When

the random variable X0 is M0-measurable, we give in Theorem 1 necessary and sufficient

conditions for the sequence n−1/2Sn to satisfy the conditional central limit theorem intro-

duced in Dedecker and Merlevède (2002). As a byproduct, we obtain stable convergence

in the sense of Rényi (1963) to a mixture of normal distributions in H. Further, assuming

that the partial sum process can be well approximated by finite dimensional projections,

we obtain in Theorem 2 the functional version of this result (cf. Theorem 2, Property

s1∗). From these two general results, we derive sufficient conditions which are easier to

satisfy and may be compared to other criteria in the literature. In particular, we show in

Corollary 2 that the functional conditional central limit theorem holds as soon as

the sequence ‖X0‖HE (Sn|M0) converges in L1
H . (1.1)

Alternatively, we prove in Corollary 3 that the same property holds under the mixingale-

type condition: there exists a sequence (Lk)k>0 of positive numbers such that

∞∑
i=1

( i∑

k=1

Lk

)−1

< ∞ and
∑

k≥1

Lk‖E(Xk|M0)‖2
L2
H

< ∞ . (1.2)

The two preceding conditions extend Criteria (1.3) and (1.4) of Dedecker and Merlevède

(2002) to separable Hilbert spaces (for real-valued random variables Condition (1.1) first

appears in Dedecker and Rio (2000)). When X0 is bounded, Criterion (1.1) yields the

weak invariance principle for stationary H-valued sequences under the Hilbert analogue of

Gordin’s criterion (1973). Now, if we control the norm of the conditional expectation in

(1.1) with the help of strong mixing coefficients, we obtain the conditional and nonergodic

version of the central limit theorem of Merlevède, Peligrad and Utev (1997). On the other

hand, extending in a natural way the definition of mixingales to Hilbert spaces, we see that

Criterion (1.2) is satisfied if either Condition (2.5) in McLeish (1977) holds or (Xn,Mn) is

a mixingale of size -1/2 (cf. McLeish (1975) Definitions (2.1) and (2.4)). The optimality

of Condition (1.2) is discussed in Remark 6, Section 2.2.

If X0 is no longer M0-measurable we approximate Xi by Y k
i = E(Xi|Mi+k) and we

assume that the sequence (Y k
i )i∈Z satisfies Condition (1.1) for the σ-algebra N0 = Mk. In

order to get back to the initial sequence (Xi)i∈Z, we need to impose additional conditions

on some series of residual random variables. More precisely, we obtain in Theorem 3 a

conditional central limit theorem under the Lq-criterion

X0 belongs to Lp
H,

∞∑
n=0

E (Xn|M0) and
∞∑

n=0

(X−n − E(X−n|M0)) converge in Lq
H (1.3)
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where p and q are two conjugate exponents and p belongs to [2,∞]. For real-valued

random variables, Condition (1.3) with p = 2 is due to Gordin (1969) and has been

extended to any p in [2,∞] by Dedecker and Rio (2000).

To be complete, we present some applications of Corollary 2 and 3 to linear processes

generated by a stationary sequence of H-valued random variables. In Theorem 4 we

obtain sufficient conditions for non-causal processes to satisfy the conditional central limit

theorem. For causal processes, a functional version of this result is given in Theorem 5.

2 Conditional central limit theorems

2.1 The adapted case

Before stating our main result, we need more notations.

Definition 1. A nonnegative self-adjoint operator Γ onH will be called an S(H)-operator,

if it has finite trace; i.e., for some (and therefore every) orthonormal basis (e`)`≥1 of H,∑
`≥1 < Γe`, e` >H< ∞. A random linear operator Λ from H to H is B-measurable if for

each i, j in N∗, the random variable < Λei, ej >H is B-measurable

Notation 3. For Γ ∈ S(H), we denote by P ε
Γ the law of a centered gaussian random

variable with covariance operator Γ.

Notation 4. Denote by H be the space of continuous functions ϕ from H to R such that

x → |(1 + ‖x‖2
H)−1ϕ(x)| is bounded.

Theorem 1. Let M0 be a σ-algebra of A satisfying M0 ⊆ T−1(M0) and define the

nondecreasing filtration (Mi)i∈Z byMi = T−i(M0). Let X0 be aM0-measurable, centered

random variable with values in H such that E‖X0‖2
H < ∞. Define the sequence (Xi)i∈Z

by Xi = X0 ◦ T i. The following statements are equivalent:

s1 There exists a M0-measurable random nonnegative self-adjoint linear operator Λ

satisfying E(Λ) ∈ S(H) and such that for any ϕ in H and any positive integer k,

s1(ϕ) : lim
n→∞

∥∥∥E
(
ϕ(n−1/2Sn)−

∫
ϕ(x)P ε

Λ(dx)
∣∣∣Mk

)∥∥∥
1

= 0 .

s2 (a) for all i in N∗, the sequence < E(n−1/2Sn|M0), ei >H tends to 0 in L1 as n

tends to infinity.
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(b) for all i, j in N∗, there exists a M0-measurable random variable ηi,j such that

the sequence E(< n−1/2Sn, ei >H< n−1/2Sn, ej >H |M0) tends to ηi,j in L1 as

n tends to infinity.

(c) for all i in N∗, the sequence n−1 < Sn, ei >2
H is uniformly integrable.

(d)
∑∞

i=1 E(ηi,i) < ∞ and E‖n−1/2Sn‖2
H converges to

∑∞
i=1 E(ηi,i).

Moreover < Λei, ej >H= ηi,j and ηi,j ◦ T = ηi,j almost surely.

Remark 1. If P is ergodic then Λ is constant and n−1/2Sn converges in distribution to a

H-valued Gaussian random variable with covariance operator Λ.

A stationary sequence (X ◦ T i)i∈Z of H-valued random variables is said to satisfy the

conditional central limit theorem (CCLT for short) if it verifies s1. The following result

is an important consequence of Theorem 1.

Corollary 1. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 1. If Condition s2 is satisfied

then, for any ϕ in H, the sequence (ϕ(n−1/2Sn)) converges weakly in L1 to
∫

ϕ(x)P ε
Λ(dx).

Corollary 1 implies that the sequence (n−1/2Sn) converges stably to a mixture of normal

distributions inH. We refer to Aldous and Eagleson (1978) for a complete exposition of the

concept of stability for real-valued random variables (introduced by Rényi (1963)) and its

connection to weak L1-convergence. This concept has been later used by Bingham (2000)

for H-valued random variables. If the covariance operator Λ is constant, the convergence

is said to be mixing. If P is ergodic, this result is a consequence of Theorem 4 in Eagleson

(1976) (see Application 4.2 therein).

To see the importance of stable convergence, we give the following example.

Example 1. If Condition s2 holds then for any y in H, we have

< y, n−1/2Sn >H converges stably to < y, Λy >
1/2
H N ,

where N is a standard real gaussian random variable independent of Λ. As a consequence

of stable convergence, we derive that if Zn converges in probability to < y, Λy >H and

P(< y, Λy >H= 0) = 0, then

< y, n−1/2Sn >H√
Zn ∨ n−1

D−→ N, as n tends to infinity .

Note that such a Zn can be built as soon as Condition (γ) of Corollary 2 is satisfied.
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Next proposition provides sufficient conditions for Property s2 to hold.

Proposition 1. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 1.

(i) If for any positive integers `,m the sequence < X0, e` >H E(< Sn, em >H |M0)

converges in L1 then

(
E (< X0, e` >H< X0, em >H |I) + E (< X0, e` >H< Sn, em >H |I) (2.1)

+ E (< X0, em >H< Sn, e` >H |I)
)

n≥1

converges in L1 to η`,m and s2(a), (b), (c) hold.

(ii) If lim
N→∞

sup
M≥N

∞∑
i=1

|E (< X0, ei >H< SM − SN , ei >H) | = 0 then s2(d) holds.

We turn now to the functional version of Theorem 1. Let CH[0, 1] be the set of all

continuous H-valued functions on [0, 1]. This is a separable Banach space under the

sup-norm ‖x‖∞ = sup{‖x(t)‖H : t ∈ [0, 1]}. Define the process {Wn(t) : t ∈ [0, 1]} by

Wn(t) = S[nt] + (nt− [nt])X[nt]+1 ,

[·] denoting the integer part. Note that for each ω, Wn( . ) is an element of CH[0, 1].

Definition 2. Let πt be the projection from CH[0, 1] to H such that πt(x) = x(t). For

Γ ∈ S(H), denote by WΓ the unique measure on CH[0, 1] such that :

(a) π0 = 0,

(b) for all 0 ≤ s < t ≤ 1, πt − πs is independent of πs,

(c) for all 0 ≤ t < t + s ≤ 1, the increment πt+s − πt has a Gaussian distribution on

H with mean zero and covariance operator sΓ, where Γ does not depend on t, s.

Notation 5. Denote by H∗ the space of continuous functions ϕ from (CH([0, 1]), ‖ · ‖∞)

to R such that x → |(1 + ‖x‖2
∞)−1ϕ(x)| is bounded.

Notation 6. Let Hm be the subspace generated by the first m components of the ortho-

normal basis (e`)`≥1 of H and Pm be the projection operator from H to Hm.

Theorem 2. Under the notations of Theorem 1, the following statements are equivalent:
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s1∗ There exists a M0-measurable random nonnegative self-adjoint linear operator Λ

satisfying E(Λ) ∈ S(H) and such that for any ϕ in H∗ and any positive integer k,

s1∗(ϕ) : lim
n→∞

∥∥∥E
(
ϕ(n−1/2Wn)−

∫
ϕ(x)WΛ(dx)

∣∣∣Mk

)∥∥∥
1

= 0 .

s2∗ (a) and (b) of s2 hold, and (c) and (d) are respectively replaced by :

(c∗) for all i ≥ 1, n−1 (max1≤k≤n | < Sk, ei >H |)2 is uniformly integrable.

(d∗) lim
m→∞

lim sup
n→∞

E
(

max
1≤i≤n

(‖Si‖2
H

n
− ‖PmSi‖2

H
n

))
= 0 .

A stationary sequence (X ◦ T i)i∈Z of H-valued random variables is said to satisfy the

functional conditional central limit theorem if it verifies s1∗.

2.2 Application to weakly dependent sequences

In view of applications, next corollaries give sufficient conditions for Property s1∗ to hold

when the sequence satisfies several types of weak dependence. In order to develop our

results, we need further definitions.

Definition 3. For two σ-algebras U and V of A, the strong mixing coefficient of Rosen-

blatt (1956) is defined by α(U ,V) = sup{|P(U ∩ V ) − P(U)P(V )| : U ∈ U , V ∈ V}.
For any nonnegative and integrable random variable Y , define the “upper tail” quantile

function QY by QY (u) = inf {t ≥ 0 : P (Y > t) ≤ u}. Note that, on the set [0,P(Y > 0)],

the function HY : x → ∫ x

0
QY (u)du is an absolutely continuous and increasing function

with values in [0,E(Y )]. Denote by GY the inverse of HY .

Corollary 2. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 1. Set αk = α(M0, σ(Xk)) and

θk = ‖E(Xk|M0)‖L1
H
. Consider the conditions

(α)
∑

k≥1

∫ αk

0

Q2
‖X0‖H(u)du < ∞.

(β)
∑

k≥1

∫ θk

0

Q‖X0‖H ◦G‖X0‖H(u)du < ∞.

(δ)
∑

k≥1

E
(
‖X0‖H‖E(Xk|M0)‖H

)
< ∞.
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(γ) ‖X0‖HE (Sn|M0) converges in L1
H.

We have the implications (α) ⇒ (β) ⇒ (δ) ⇒ (γ) ⇒ s1∗. In particular, if ‖X0‖H is

bounded, s1∗ holds as soon as E(Sn|M0) converges in L1
H.

Remark 2. Item (α) of Corollary 2 improves on Theorem 4 of Merlevède, Peligrad

and Utev (1997) in two ways: Firstly it gives its nonergodic version, since the mixing

coefficients we consider here allow to deal with nonergodic sequences. Secondly it gives

its functional and conditional form. Note that, if we consider the slightly more restrictive

coefficient α′k = supi>0 α(M0, σ(Xk, Xk+i)), Merlevède (2001) shows that a central limit

theorem still holds under the condition:

the sequence n

∫ α′n

0

Q2
‖X0‖H(u)du tends to zero as n tends to infinity .

This result extends and slightly improves on the sharp CLT for real valued random vari-

ables given in Merlevède and Peligrad (2000).

Remark 3. Item (γ) extends Condition (1.4) of Dedecker and Merlevède (2002) to sep-

arable Hilbert spaces. This condition first appears in Dedecker and Rio (2000).

Remark 4. Condition (β) is new to our knowledge. It relies on a result of Dedecker and

Doukhan (2002) (see Section 3.2.4). To see the interest of such a condition, let us give

the following application: If there exist r > 2 and c > 0 such that P(‖X0‖H > x) ≤ (c/x)r

then (β) (and hence s1∗) holds as soon as
∑

k≥1(‖E(Xk|M0)‖L1
H
)(r−2)/(r−1) < ∞.

Example 2. Asymptotic distribution of Cramér-von Mises statistics.

Let Y = (Yi)i∈Z be a strictly stationary sequence of Rd-valued random variables and set

MY
0 = σ(Yi, i ≤ 0). Let F be the distribution function of Y0: for any t = (t(1), · · · , t(d)),

F(t) = P(Y
(1)
0 ≤ t(1), · · · , Y

(d)
0 ≤ t(d)) = P(Y0 ≤ t) and set Xi(t) = 1IYi≤t. Note that for

any finite measure µ on Rd, the random variable Xi is L2(Rd, µ)-valued. Moreover for any

integer i, we have E(Xi) ≡ F. Denote by Fn the empirical distribution function of Y :

for any t in Rd, Fn(t) =
1

n

n∑
i=1

Xi(t) .

If we consider
√

n(Fn−F) as a random variable with values in the separable Hilbert space

H := L2(Rd, µ), we may apply the results of Corollary 2 to the sequence (Xi)i∈Z.
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If the sequence (Yi)i∈Z is strongly mixing with mixing coefficients αY
k = α(MY

0 , σ(Yk)),

then so is (Xi)i∈Z. Applying Item (α) of Corollary 2, we get that if

∑

k≥1

αY
k < ∞ , (2.2)

then the H-valued random variable
√

n(Fn − F) converges stably to a random variable G
whose conditional distribution with respect to I is that of a zero mean H-valued Gaussian

random variable with covariance function

for (f, g) in H×H, E(< f,G >H< g,G >H) =

∫

R2d

f(s)g(t)CI(s, t)µ(dt)µ(ds) , (2.3)

where CI(s, t) = F(t ∧ s)− F(t)F(s) + 2
∑

k≥1(P(Y0 ≤ t, Yk ≤ s|I)− F(t)F(s)).

Assume now that Y = (Yi)i∈Z is a strictly stationary Rd-valued Markov chain. Denote

by K its transition kernel and by π its invariant measure. For any integer i, E(Xi|MY
0 )

is a H-valued random variable such that E(Xi|MY
0 )(t) = E(1IYi≤t|Y0) . Moreover for t and

x in Rd, E(1IYi≤t|Y0 = x) = Ki(x, 1I]−∞,t]) =: F i(x)(t). Applying Item (γ) of Corollary 2,

we obtain the same limit as in (2.3) provided that

the sequence
n∑

i=1

(F i(·)− F) converges in L1
H(π) . (2.4)

We now give three sufficient conditions for Criterion (2.4) to hold:

(a)
∞∑
i=1

∫

R
‖F i(x)− F‖H π(dx) < ∞.

(b)
∞∑
i=1

∫

R
‖F i(x)− F‖∞ π(dx) < ∞.

(c)
∞∑
i=1

∫

R
‖K i(x, ·)− π(·)‖v π(dx) < ∞, where ‖ · ‖v is the variation norm.

More precisely, we have the implications (c) ⇒ (b) ⇒ (a) ⇒ (2.4). Note that Condition

(c) means exactly that the β-mixing coefficients of the chain are summable (see Davydov

(1973)). Consequently, we also have the implication (c) ⇒ (2.2).

Result of type (2.3) yields the asymptotic distribution of f(
√

n(Fn − F)) for any con-

tinuous functional f from H to R. In particular for Cramér-von Mises statistics, we have

n

∫

Rd

(Fn(x)− F(x))2µ(dx) converges stably to ‖G‖2
H .
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Cramér-von Mises statistics are useful for the testing of goodness-of-fit. In the i.i.d. case,

the choice µ = dF implies that the distribution of ‖G‖2
H is the same for every continuous

distribution function F. This is no longer true for dependent variables. However we can

always write ‖G‖2
H =

∑
i≥1 λi(εi)

2 where (εi) is a sequence of i.i.d. standard normal

independent of I, and the λi’s are the eigenvalues of the random operator CI . Since

under criteria (2.2) or (2.4), we can always find a positive estimator Zn of E(‖G‖2
H|I), it

follows from the stability of the convergence that

n

Zn

∫

Rd

(Fn(x)− F(x))2µ(dx) converges in distribution to U =

∑
k≥1 λk(εk)

2

∑
k≥1 λk

.

Using the convexity of the exponential function, it is easy to show that the Laplace

transform of U is bounded by the Laplace transform of ε2
1. Consequently for any z ≥ 1,

P(U ≥ z) ≤ √
z exp

(−z − 1

2

)
.

This upper bound is all the less precise as the variance of U is far from 2. However this

bound provides always a critical region at a level α included in the one obtained if all

the λi’s were known. To get more precise critical regions, we need to estimate some of

the eigenvalues (see for instance Theorem 4.4 in Bosq (2000) in the particular case of

autoregressive processes).

As in Heyde (1974), an alternative approach to Corollary 2 is to consider the projection

operator Pi: for any f in L2
H, Pi(f) = E(f |Mi) − E(f |Mi−1). With this notation, we

obtain the following extension of Proposition 2 of Dedecker and Merlevède (2002).

Corollary 3. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 1. Define the tail σ-algebra by

M−∞ =
⋂

i∈ZMi and consider the condition

E(X0|M−∞) = 0 a.s. and
∑
i≥1

‖P0(Xi)‖L2
H

< ∞ . (2.5)

If (2.5) is satisfied then s1∗ holds.

Remark 5. In the two preceding corollaries, the variable η`,m =< Λe`, em >H is the limit

in L1 of the sequence of I-measurable random variables defined in (2.1).

Remark 6. The mixingale-type condition (1.2) implies (2.5). Consequently (2.5) is sat-

isfied if for some positive ε,
∑

k≥1 ln(k)1+ε‖E(Xk|M0)‖2
L2
H

< ∞ . According to Proposition

7 of Dedecker and Merlevède (2002), Condition (1.2) is sharp in the sense that the choice

Lk ≡ 1 is not strong enough to imply weak convergence of n−1/2Sn.
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2.3 The general case

As a consequence of Corollary 2, we obtain that s1 holds if for two conjugate exponents

p and q with p in [2, +∞[

X0 is M0-measurable, X0 belongs to Lp
H and

∞∑
n=0

E (Xn|M0) converges in Lq
H.

Next theorem shows that this result remains valid for non-adapted sequences if in addition

we impose the same condition on the series
∑

n≥0(X−n − E (X−n|M0)).

Theorem 3. Let (Mi)i∈Z be as in Theorem 1. Let X0 be a centered random variable with

values in H such that E‖X0‖p
H < ∞ for some p in [2, +∞], and Xi = X0◦T i. If Condition

(1.3) holds for the conjugate exponent q of p, then there exists an I-measurable random

operator Λ satisfying E(Λ) ∈ S(H) and such that for any ϕ in H and any positive integer

k, Property s1(ϕ) holds.

Remark 7. Under Condition (1.3) with p = 2 the usual central limit theorem for real-

valued random variables is due to Gordin (1969). For this particular value of p we can

prove a functional central limit theorem by using martingale approximations.

2.4 Application to H-valued linear processes

Denote by L(H) the class of bounded linear operators from H to H and by ‖ · ‖L(H) its

usual norm. Let {ξk}k∈Z be a strictly stationary sequence of H−valued random variables,

and let {ak}k∈ZZ be a sequence of operators, ak ∈ L(H). We define the causal H-valued

linear process by

Xk =
∞∑

j=0

aj (ξk−j) (2.6)

and the non-causal H-valued linear process by

Xk =
∞∑

j=−∞
aj (ξk−j) , (2.7)

provided the series are convergent in some sense (in the following, we suppress the brackets

to soothe the notations). Note that if
∑

j∈Z ‖aj‖2
L(H) < ∞ and {ξk}k∈Z are i.i.d. centered

in L2
H, then it is well known that the series in (2.7) is convergent in L2

H and almost surely

(Araujo and Giné (1980), Chapter 3.2). The sequence {Xk}k≥1 is a natural extension

11



of multivariate linear processes (Brockwell and Davis (1987), Chapter 11). These types

of processes with values in functional spaces also facilitate the study of estimation and

forecasting problems for several classes of continuous time processes. For more details we

mention Bosq (2000) and Merlevède (1995). From now, we use the notations:

Mξ
0 = σ (ξi, i ≤ 0) , Mξ

k = T−k(Mξ
0) and Mξ

−∞ =
⋂

i∈Z
Mξ

i

and for any function f in L2
H(P), Pi(f) = E(f |Mξ

i ) − E(f |Mξ
i−1). Moreover, we assume

that the stationary sequence of H-valued random variables {ξk}k∈Z, satisfies either

E(ξ0|Mξ
−∞) = 0 and

∑
i≥1

‖P0(ξi)‖L2
H

< ∞ , (2.8)

or
∑

k≥1

E
(
‖ξ0‖H‖E(ξk|Mξ

0)‖H
)

< ∞ . (2.9)

Moreover we assume that the sequence ak ∈ L(H) is summable:

∞∑
j=−∞

‖aj‖L(H) < ∞ . (2.10)

If (2.10) is satisfied, set A :=
∑∞

j=−∞ aj and denote by A∗ the adjoint operator of A.

According to Remark 5, if the strictly stationary sequence of H-valued random variables

{ξk}k∈Z, satisfies either (2.8) or (2.9), we can define a linear random operator Λξ such

that E(Λξ) ∈ S(H), by setting

ηξ
`,m =< Λξe`, em >H (2.11)

where ηξ
`,m is the limit in L1 of n−1E(<

∑n
i=1 ξi, e` >H<

∑n
j=1 ξj, em >H |I) .

Theorem 4. Let {ξk}k∈Z be a strictly stationary sequence of H-valued random variables

such that E‖ξ0‖2
H < ∞, and {ak}k∈Z be a sequence of operators satisfying (2.10). Let

(Xk)k∈Z be the linear process defined by (2.7) and Sn :=
∑n

k=1 Xk. In addition assume

that either (2.8) or (2.9) holds. Then for any ϕ in H and any positive integer k,

lim
n→∞

∥∥∥E
(
ϕ(n−1/2Sn)− E

∫
ϕ(x)P ε

Λξ
A

(dx)
∣∣∣Mξ

k

)∥∥∥
1

= 0 , (2.12)

where Λξ
A = A ◦ Λξ ◦ A∗ and Λξ is defined by (2.11).
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According to the definition of Λξ, Λξ
A is an Mξ

0-measurable random linear operator such

that E(Λξ
A) ∈ S(H).

Remark 8. Condition (2.10) is essentially sharp according to the counterexample of

Merlevède, Peligrad and Utev (1997) (see Theorem 3 therein). When {ξk}k∈Z is a sequence

of i.i.d. H-valued random variables, they shown that if (2.10) is violated, without any

additional assumptions on the behaviour of either {ak}k∈Z or on the covariance operator of

ξ0, the tightness of both (n−1/2Sn)n≥1 and (Sn/
√
E‖Sn‖2

H)n≥1 may fail. Hence no analogue

of Theorem 18.6.5 of Ibragimov and Linnik (1971) is possible.

The following theorem shows that if the linear process is causal, then we can derive

the functional version of Theorem 4 under Condition (2.8).

Theorem 5. Let (ξk)k∈Z be a strictly stationary sequence of H-valued random variables

such that E‖ξ0‖2
H < ∞, and (ak)k≥0 be a sequence of operators satisfying (2.10). Let

(Xk)k∈Z be the linear process defined by (2.6) and set Wn(t) :=
∑[nt]

k=1 Xk+(nt−[nt])X[nt]+1.

In addition assume that (2.8) holds. Then for any ϕ in H∗ and any positive integer k,

lim
n→∞

∥∥∥E
(
ϕ(n−1/2Wn)− E

∫
ϕ(x)WΛξ

A
(dx)

∣∣∣Mξ
k

)∥∥∥
1

= 0 (2.13)

where Λξ
A = A ◦ Λξ ◦ A∗ and Λξ is defined by (2.11).

3 Proofs

3.1 Preparatory material

We first introduce the set R(Mk) of Mk-measurable Rademacher random variables:

R(Mk) = {21IA − 1 : A ∈ Mk}. For any random operator Λ such that E(Λ) ∈ S(H) and

any bounded random variable Z, let

1. νn[Z] be the image measure of Z.P by the variable n−1/2Sn; that is the signed

measure defined on H by: for any continuous bounded function h from H to R,

νn[Z](h) =

∫
h

(
n−1/2Sn(ω)

)
Z(ω)P(dω) .
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2. ν∗n[Z] be the image measure of Z.P by the process n−1/2Wn; that is the signed

measure defined on CH([0, 1]) by: for any continuous bounded function h from

CH([0, 1]) to R,

ν∗n[Z](h) =

∫
h

(
n−1/2Wn(ω)

)
Z(ω)P(dω) .

3. ν[Z] be the signed measure on H defined by: for any continuous bounded function

h from H to R,

ν[Z](h) =

∫ (∫
h(x)P ε

Λ(ω)(dx)

)
Z(ω)P(dω) .

4. ν∗[Z] be the signed measure on CH([0, 1]) defined by: for any continuous bounded

function h from CH([0, 1]) to R,

ν∗[Z](h) =

∫ (∫
h(x)WΛ(ω)(dx)

)
Z(ω)P(dω) .

Firstly we present the extension to H-valued random variables of Lemma 2 of Dedecker

and Merlevède (2002). The proof is unchanged.

Lemma 1. Let µn[Zn] := νn[Zn]− ν[Zn] and µ∗n[Zn] := ν∗n[Zn]− ν∗[Zn]. For any ϕ in H
(resp. H∗), the statement s1(ϕ) (resp. s1∗(ϕ)) is equivalent to s3(ϕ) (resp. s3∗(ϕ)) : for

any Zn in R(Mk), the sequence µn[Zn](ϕ) (resp. µ∗n[Zn](ϕ)) tends to zero as n tends to

infinity.

3.2 The adapted case

3.2.1 Proof of Theorem 1

We first show that s1 implies s2. Property s1 applied with ϕ(.) =< . , ei >H (respectively

ϕ(.) =< . , ei >H< . , ej >H) entails s2(a) (respectively s2(b)). On the other hand observe

that s1 yields the usual central limit theorem which combined with s2(b) leads to s2(c)

(see Theorem 5.4 in Billingsley (1968)). Moreover s1 applied with ϕ(.) = ‖ . ‖2
H implies

that

lim
n→∞

E
∥∥∥ Sn√

n

∥∥∥
2

H
= E

(∫
‖x‖2

HP ε
Λ(dx)

)
, (3.1)

which by definition is equal to
∑∞

i=1 E < Λei, ei >H=
∑∞

i=1 E(ηi,i). This together with

(3.1) entails s2(d).
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We turn now to the main part of the proof: s2 implies s1. Note first that if the

sequence (‖n−1/2Sn‖2
H)n≥1 is uniformly integrable then it suffices to prove s1(ϕ) for any

continuous bounded functions ϕ from H to R. Now s2(d) implies that

lim
m→∞

lim sup
n→∞

∥∥∥ Sn√
n
− Pm

( Sn√
n

)∥∥∥
2

H
= 0

which together with s2(c) yield the uniform integrability of (‖n−1/2Sn‖2
H)n≥1.

Consequently it remains to prove s1(ϕ) for any continuous bounded function ϕ. Recall

that µn[Zn] = νn[Zn] − ν[Zn], where Zn ∈ R(Mk) and denote by µn(Pm)−1 the image

measure of µn by Pm. With this notation, to prove s3(ϕ) (and hence s1(ϕ)) for any

continuous bounded function ϕ, it is enough to show the two following points:

µn[Zn](Pm)−1 converges weakly to 0 as n →∞ (3.2)

µn[Zn] is relatively compact in H . (3.3)

We first prove (3.2). Let f be the one to one map from Hm to Rm defined by f(x) =

(< x, e1 >H, . . . , < x, em >H). Clearly, (3.2) is equivalent to: for any positive integer

m and any Zn in R(Mk), the sequence µn[Zn](f ◦ Pm)−1 converges weakly to the null

measure as n tends to infinity. Since the measure µn[Zn](f ◦Pm)−1 is a signed measure on

(Rm,B(Rm)), we can apply Lemma 1 in Dedecker and Merlevède (2002). The main point is

to prove that for any v in Rm, µ̂n[Zn](f ◦Pm)−1(v) = µn[Zn](f ◦Pm)−1(exp(i < v, . >Rm))

converges to zero as n tends to infinity. Setting gv(x) =< v, x >Rm , it suffices to prove

that for any v in Rm, the sequence µn[Zn](gv ◦ f ◦ Pm)−1 converges weakly to the null

measure. Setting Vm(x) = v1 < x, e1 >H + · · · + vm < x, em >H and applying Lemma 1,

this is equivalent to: for any v in Rm and any continuous bounded function ϕ,

lim
n→∞

∥∥∥E
(
ϕ(n−1/2Vm(Sn))−

∫
ϕ(Vm(x))P ε

Λ(dx)
∣∣∣Mk

)∥∥∥
1

= 0 . (3.4)

Since (Vm(Xk))k∈Z is a strictly stationary sequence of square integrable and centered real

random variables and Vm(X0) is M0-measurable, we may apply Theorem 1 in Dedecker

and Merlevède (2002). Firstly s2(a) and s2(b) entail both

lim
n→∞

E
∣∣∣E(n−1/2Vm(Sn)|M0)

∣∣∣ = 0 and (3.5)

lim
n→∞

∥∥∥E
(
n−1(Vm(Sn))2 −

m∑
p=1

m∑
q=1

vpvqηp,q

∣∣∣M0

)∥∥∥
1

= 0 . (3.6)
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Moreover s2(c) implies that

the sequence (n−1(Vm(Sn))2)n≥1 is uniformly integrable. (3.7)

Gathering (3.5), (3.6) and (3.7) and applying Theorem 1 in Dedecker and Merlevède

(2002), Property (3.4) is proved and consequently µ̂n[Zn](f ◦ Pm)−1(v) tends to zero as

n tends to infinity. According to Lemma 1 in Dedecker and Merlevède (2002), to prove

that µn[Zn](f ◦ Pm)−1 converges weakly to the null measure it remains to see that the

total variation measure |µn[Zn](f ◦ Pm)−1| of µn[Zn](f ◦ Pm)−1 is tight. By definition of

µn[Zn](f ◦ Pm)−1, we have |µn[Zn](f ◦ Pm)−1| ≤ νn[1](f ◦ Pm)−1 + ν[1](f ◦ Pm)−1. From

(3.4) and Lemma 1, we infer that νn[1](f◦Pm)−1 converges weakly to ν[1](f◦Pm)−1. Since

νn[1](f◦Pm)−1 is a sequence of probability measures, it is tight and so is |µn[Zn](f◦Pm)−1|.
This completes the proof of (3.2).

It remains to prove (3.3), namely that the sequence (µn[Zn])n>0 is relatively compact

with respect to the topology of weak convergence on H. That is, for any increasing

function f from N to N, there exists an increasing function g with values in f(N) and a

signed measure µ on H such that
(
µg(n)[Zg(n)]

)
n>0

converges weakly to µ.

Let Z+
n (resp. Z−

n ) be the positive (resp. negative) part of Zn, and write

µn[Zn] = µn[Z+
n ]− µn[Z−

n ] = νn[Z+
n ]− νn[Z−

n ]− ν[Z+
n ] + ν[Z−

n ] .

Obviously, it is enough to prove that each sequence of finite positive measures (νn[Z+
n ])n>0,

(νn[Z−
n ])n>0, (ν[Z+

n ])n>0 and (ν[Z−
n ])n>0 is relatively compact. We prove the result for the

sequence (νn[Z+
n ])n>0, the other cases being similar.

Let f be any increasing function from N to N. Choose an increasing function l with

values in f(N) such that

lim
n→∞

E(Z+
l(n)) = lim inf

n→∞
E(Z+

f(n)) .

We must sort out two cases:

1. If E(Z+
l(n)) converges to zero as n tends to infinity, then, taking g = l, the sequence

(νg(n)[Z
+
g(n)])n>0 converges weakly to the null measure.

2. If E(Z+
l(n)) converges to a positive real number as n tends to infinity, we introduce, for

n large enough, the probability measure pn defined by pn = (E(Z+
l(n)))

−1νl(n)[Z
+
l(n)]. Obvi-

ously if (pn)n>0 is relatively compact with respect to the topology of weak convergence,

then there exists an increasing function g with values in l(N) (and hence in f(N)) and
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a measure ν such that (νg(n)[Z
+
g(n)])n>0 converges weakly to ν. According to Prohorov’s

Theorem, since (pn)n>0 is a family of probability measures, relative compactness is equiv-

alent to tightness. From (3.2), we know that n−1/2Pm(Sn) is tight. According for instance

to Lemma 1.8.1 in van der Waart and Wellner (1996), to derive the tightness in H of the

sequence (pn)n>0 it is enough to show that for each positive ε,

lim
m→∞

lim sup
n→∞

pn (‖x− Pmx‖H > ε) = 0 . (3.8)

According to the definition of pn, we have

pn (‖x− Pmx‖H > ε) =
1

E(Z+
l(n))

νl(n)[Z
+
l(n)] (‖x− Pmx‖H > ε)

=
1

E(Z+
l(n))

Z+
l(n).P

(∥∥∥ Sl(n)√
l(n)

− PmSl(n)√
l(n)

∥∥∥
H

> ε
)

. (3.9)

Since both E(Z+
l(n)) converges to a positive number and Z+

l(n) is bounded by one, we infer

that (3.8) holds if for each positive ε

lim
m→∞

lim sup
n→∞

P
(∥∥∥ Sl(n)√

l(n)
− PmSl(n)√

l(n)

∥∥∥
H

> ε
)

= 0 . (3.10)

Markov’s inequality together with s2(b) and s2(d) imply that

lim sup
n→∞

P
(∥∥∥ Sl(n)√

l(n)
− PmSl(n)√

l(n)

∥∥∥
H

> ε
)

≤ 1

ε2
lim sup

n→∞

(
E‖Sl(n)‖2

H

l(n)
− E‖P

mSl(n)‖2
H

l(n)

)

≤ 1

ε2

∞∑
i=m+1

E(ηi,i) ,

which according to s2(d) converges to zero as m tends to infinity.

Conclusion. In both cases there exists an increasing function g with values in f(N)

and a measure ν such that (νg(n)[Z
+
g(n)])n>0 converges weakly to ν. Since this is true for

any increasing function f with values in N, we conclude that the sequence (νn[Z+
n ])n>0 is

relatively compact with respect to the topology of weak convergence in H. Of course, the

same arguments apply to the sequences (νn[Z−
n ])n>0, (ν[Z+

n ])n>0 and (ν[Z−
n ])n>0, which

implies the relative compactness of the sequence (µn[Zn])n>0.
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3.2.2 Proof of Proposition 1

Point (i) is a direct consequence of Proposition 3 in Dedecker and Merlevède (2002). It

remains to show (ii). By stationarity

E‖Sn‖2
H

n
= E‖X0‖2

H +
2

n

n−1∑

k=1

(n− k)E < X0, Xk >H .

From Cesaro’s mean convergence theorem, we infer that n−1E‖Sn‖2
H converges to

E‖X0‖2
H + 2

∞∑

k=1

E < X0, Xk >H , (3.11)

provided that (
∑n

k=1 E < X0, Xk >H)
n≥1

converges. Now assumption (ii) implies that

(
∑n

k=1 E < X0, Xk >H)
n≥1

is a Cauchy sequence.

In the same way (ii) implies that for all i ≥ 1, (
∑n

k=1 E < X0, ei >H< Xk, ei >H)
n≥1

is a Cauchy sequence, whence

E(ηi,i) = E < X0, ei >2
H +2

∞∑

k=1

E < X0, ei >H< Xk, ei >H . (3.12)

Now we show that
∑∞

i=1 E(ηi,i) < ∞. According to (ii), for each positive ε, there

exists N(ε) such that

sup
M≥N(ε)

∞∑
i=1

∣∣∣E
(
< X0, ei >H< SM − SN(ε), ei >H

) ∣∣∣ ≤ ε . (3.13)

On the other hand we obtain from (3.12) that

∞∑
i=1

E(ηi,i) = E‖X0‖2
H + 2

N(ε)∑

k=1

∞∑
i=1

E < X0, ei >H< Xk, ei >H

+ 2
∞∑
i=1

∞∑

k=N(ε)+1

E < X0, ei >H< Xk, ei >H . (3.14)

From (3.13), we easily infer that

∣∣∣
∞∑
i=1

∞∑

k=N(ε)+1

E < X0, ei >H< Xk, ei >H

∣∣∣ ≤ ε , (3.15)
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which together with (3.14) and Cauchy-Schwarz’s inequality yield

∞∑
i=1

E(ηi,i) ≤ (1 + 2N(ε))E‖X0‖2
H + 2ε .

This implies that
∑∞

i=1 E(ηi,i) < ∞. Combining (3.11) with (3.14) and (3.15), we infer

that ‖n−1/2Sn‖2
H tends to

∑∞
i=1 E(ηi,i) as n tends to infinity. This ends the proof of (ii).

3.2.3 Proof of Theorem 2

We first show that s1∗ yields s2∗. The fact that s1∗ implies both s2∗(a) and s2∗(b) is

obvious. Here we shall prove that s1∗ entails s2∗(d∗) (the fact that s1∗ implies s2∗(c∗)

can be proved in the same way).

Fix m ≥ 1 and let f(.) =
∑∞

`=m+1 < . , e` >2
H and g(x) = supt∈[0,1](x(t)). Property

s1∗ applied with ϕ = g ◦ f , ensures that

lim
n→∞

E
(

sup
t∈[0,1]

‖(IH − Pm)
∑[nt]

i=1 Xi‖2
H

n

)
= E

( ∫
sup

t∈[0,1]

‖(IH − Pm)(x(t))‖2
HWΛ(dx)

)
.

(3.16)

It follows that s2∗(d∗) holds as soon as

lim
m→∞

E
( ∫

sup
t∈[0,1]

‖(IH − Pm)(x(t))‖2
HWΛ(dx)

)
= 0 . (3.17)

For the sake of simplicity, denote by EWΛ
the expectation with respect to the probability

measure WΛ, and write

∫
sup

t∈[0,1]

‖(IH − Pm)(x(t))‖2
HWΛ(dx) = EWΛ

(
sup

t∈[0,1]

‖(IH − Pm)πt‖2
H

)
.

Now since {(IH − Pm)πt}t is a continuous martingale in H with respect to the filtration

σ (πs, s ≤ t), we infer from Doob’s maximal inequality that

E

(
EWΛ

(
sup

t∈[0,1]

‖(IH − Pm)πt‖2
H

))
≤ 4 · E (

EWΛ
‖(IH − Pm)π1‖2

H
) ≤ 4

∞∑
i=m+1

E(ηi,i) ,

(3.18)

which tends to zero as m tends to infinity. This ends the proof of (3.17) and s2∗(d∗) is

proved.
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We turn now to the main part of the proof, namely : s2∗ implies s1∗. According to

Lemma 1 we shall prove that s3∗ holds. For m in N and 0 ≤ t1 < . . . < td ≤ 1, define

the function πm
t1...td

from CH([0, 1]) to Hd
m by: πm

t1...td
(x) = (Pm(x(t1)), . . . , P

m(x(td))).

Recall that if µ and ν are two signed measures on (CH([0, 1]),B(CH([0, 1])) such that

µ(πm
t1...td

)−1 = ν(πm
t1...td

)−1 for any positive integer m, any positive integer d and any d-

tuple 0 ≤ t1 < . . . < td ≤ 1, then µ = ν. Consequently, s3∗ is a consequence of the two

following items:

(i) finite dimensional convergence: for any positive integer m, any positive integer d, any

d-tuple 0 ≤ t1 < . . . < td ≤ 1 and any Zn in R(Mk) the sequence µ∗n[Zn](πm
t1...td

)−1

converges weakly to the null measure as n tends to infinity.

(ii) relative compactness: for any Zn in R(Mk), the family (µ∗n[Zn])n>0 is relatively

compact with respect to the topology of weak convergence on CH([0, 1]).

The first item follows straightforwardly from the Rm analogue of Lemma 4 in Dedecker and

Merlevède (2002). It remains to prove that the family (µ∗n[Zn])n>0 is relatively compact

in CH([0, 1]). More precisely we want to show that, for any increasing function f from N
to N, there exists an increasing function g with values in f(N) and a signed measure µ on

(CH([0, 1]),B(CH([0, 1]))) such that (µg(n)[Zg(n)])n>0 converges weakly to µ.

Let Z+
n (resp. Z−

n ) be the positive (resp. negative) part of Zn, and write

µ∗n[Zn] = µ∗n[Z+
n ]− µ∗n[Z−

n ] = ν∗n[Z+
n ]− ν∗n[Z−

n ]− ν∗[Z+
n ] + ν∗[Z−

n ] .

Obviously, it is enough to prove that each sequence of finite positive measures (ν∗n[Z+
n ])n>0,

(ν∗n[Z−
n ])n>0, (ν∗[Z+

n ])n>0 and (ν∗[Z−
n ])n>0 is relatively compact in CH([0, 1]) . We prove

the result for the sequences (ν∗n[Z+
n ])n>0 and (ν∗[Z+

n ])n>0, the other cases being similar.

Let f be any increasing function from N to N. Choose an increasing function l with

values in f(N) such that

lim
n→∞

E(Z+
l(n)) = lim inf

n→∞
E(Z+

f(n)) .

We must sort out two cases:

1. If E(Z+
l(n)) converges to zero as n tends to infinity, then, taking g = l, the sequence

(ν∗g(n)[Z
+
g(n)])n>0 converges weakly to the null measure.

2. If E(Z+
l(n)) converges to a positive real number as n tends to infinity, we introduce, for

n large enough, the probability measure pn defined by pn = (E(Z+
l(n)))

−1ν∗l(n)[Z
+
l(n)]. Ob-

viously if (pn)n>0 is relatively compact with respect to the topology of weak convergence
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on CH([0, 1]), then there exists an increasing function g with values in l(N) (and hence in

f(N)) and a measure ν such that (ν∗g(n)[Z
+
g(n)])n>0 converges weakly to ν. According to

Prohorov’s Theorem, since (pn)n>0 is a family of probability measures, relative compact-

ness is equivalent to tightness. According to Relation (3.6) in Kuelbs (1973), to derive

tightness in CH([0, 1]) of the sequence (pn)n>0 it is enough to show that, for each positive

ε,

lim
δ→0

lim sup
n→∞

pn (x : wH(x, δ) ≥ ε) = 0 , (3.19)

where wH(x, δ) is the modulus of continuity of an element x of CH([0, 1]), that is

wH(x, δ) = sup
|s−t|<δ

‖x(s)− x(t)‖H , 0 < δ ≤ 1 .

According to the definition of pn and since both E(Z+
l(n)) converges to a positive number

and Z+
l(n) is bounded by one, we infer that (3.19) holds if for any positive ε

lim
δ→0

lim sup
n→∞

P
(
wH

(PmWn√
n

, δ
)
≥ ε

)
= 0 and (3.20)

lim
m→∞

lim sup
n→∞

P
(

sup
t∈[0,1]

∥∥∥S[nt]√
n
− PmS[nt]√

n

∥∥∥
H
≥ ε

)
= 0 . (3.21)

Using Markov’s inequality, (3.21) follows directly from s2∗(d∗).

It remains to show (3.20). Observe that

P
(
wH

(PmWn√
n

, δ
)
≥ ε

)
≤

m∑

`=1

P
(

sup
|t−s|<δ

| < Wn(s), e` >H − < Wn(t), e` >H |√
n

≥ ε

m

)
.

From this inequality together with Theorem 8.3 and Inequality (8.16) in Billingsley (1968),

it suffices to prove that, for any 1 ≤ ` ≤ m and any positive ε,

lim
δ→0

lim sup
n→∞

1

δ
P
(

max
1≤i≤nδ

| < Si, e` >H |√
nδ

≥ ε

m
√

δ

)
= 0 ,

which follows straightforwardly from s2∗(c∗) and Markov’s inequality. This together with

Item 1 complete the proof of the fact that the sequence (ν∗n[Z+
n ])n>0 is relatively compact

in CH([0, 1]).

To show that the sequence (ν∗[Z+
n ])n>0 is relatively compact in CH([0, 1]), we may

proceed in the same way. The only differences are the following : for n large enough,
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the probability measure pn defined in the Item 2 becomes: p∗n = (E(Z+
l(n)))

−1ν∗[Z+
l(n)]. By

definition of the measure ν∗[Z+
l(n)], we have

ν∗[Z+
l(n)](x : wH(x, δ) ≥ ε) =

∫ (∫
1I{x : wH(x, δ) ≥ ε}WΛ(ω)(dx)

)
Z+

l(n)(ω)P(dω)

≤
∫
PWΛ(ω)

(
sup
|s−t|<δ

‖πt − πs‖H ≥ ε
)
P(dω) . (3.22)

Since for any ω, WΛ(ω) is a probability measure on CH([0, 1]), we have

for all ω in Ω : lim
δ→0

PWΛ(ω)

(
sup
|s−t|<δ

‖πt − πs‖H ≥ ε
)

= 0 .

This together with the dominated convergence theorem imply that

lim
δ→0

ν∗[Z+
l(n)](x : wH(x, δ) ≥ ε) = 0 . (3.23)

According to the definition of p∗n and since E(Z+
l(n)) converges to a positive number, (3.23)

implies that the sequence (ν∗[Z+
n ])n>0 is relatively compact in CH([0, 1]). This ends the

proof of Item (ii).

3.2.4 Proof of Corollary 2

The fact that (δ) ⇒ (γ) is obvious. Besides, using Proposition 3 in Dedecker and Mer-

levède (2002), we easily derive that (γ) entails at once s2∗(a), s2∗(b) and s2∗(c∗). It

remains to show that (γ) yields s2∗(d∗). To this aim, note that for all m in N∗,

E
(

max
1≤i≤n

‖Si − PmSi‖2
H

n

)
= E

(
max
1≤i≤n

( ∞∑

`=m+1

< Si, e` >2
H

n

))

≤
∞∑

`=m+1

E
(

max
1≤i≤n

< Si, e` >2
H

n

)
. (3.24)

Now observe that

max
1≤i≤n

< Si, e` >2
H ≤ (max{0, < S1, e` >H, . . . , < Sn, e` >H})2

+ (max{0, < −S1, e` >H, . . . , < −Sn, e` >H})2 .
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Using this inequality, for each ` ≥ m + 1, we apply Proposition 1 in Dedecker and Rio

(2000):

E
(

max
1≤i≤n

< Si, e` >2
H

n

)
≤ 8

n

n∑

k=1

E < Xk, e` >2
H (3.25)

+
16

n

n−1∑

k=1

E
∣∣ < Xk, e` >H< E(Sn − Sk|Mk), e` >H

∣∣ .

Combining (3.24) with (3.25) and applying Hölder’s inequality in `2, we infer that the

quantity n−1E(max1≤i≤n ‖Si − PmSi‖2
H) is bounded by

8E‖(IH − Pm)X0‖2
H +

16

n

n−1∑

k=1

E
(
‖(IH − Pm)Xk‖H‖E ((IH − Pm)(Sn − Sk)|Mk) ‖H

)
,

which by stationarity is equal to

8E‖(IH − Pm)X0‖2
H +

16

n

n−1∑

k=1

E
(
‖(IH − Pm)X0‖H

∥∥∥E
( n−k∑

j=1

(IH − Pm)Xj

∣∣∣M0

)∥∥∥
H

)
. (3.26)

The first term in the right-hand side of the above quantity tends to zero as m tends to

infinity. To control the second term we proceed as follows : fix N ≥ 1 and write

1

n

n−1∑

k=1

E
(
‖(IH − Pm)X0‖H

∥∥∥E
( n−k∑

j=1

(IH − Pm)Xj

∣∣∣M0

)∥∥∥
H

)

≤ 1

n

n−1∑

k=1

E
(
‖(IH − Pm)X0‖H

∥∥∥E
( N∧(n−k)∑

j=1

(IH − Pm)Xj

∣∣∣M0

)∥∥∥
H

)
(3.27)

+
1

n

n−1∑

k=1

E
(
‖(IH − Pm)X0‖H

∥∥∥E
( n−k∑

j=N∧(n−k)+1

(IH − Pm)Xj

∣∣∣M0

)∥∥∥
H

)
.

Cauchy-Schwarz’s inequality entails that the first term on right-hand is bounded by

NE‖(IH − Pm)X0‖2
H, which converges to zero as m tends to infinity. On the other hand,

the second term on right-hand is bounded by

sup
M>N

E
(
‖X0‖H‖E (SM − SN |M0) ‖H

)
.

From Condition (γ), we can choose N large enough so that the right-hand term of (3.27)

is less than ε. Gathering all these considerations, we infer that (γ) entails s2∗(d∗).
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To prove that (β) implies (δ), we proceed as in Dedecker and Doukhan (2002). Note

first that

E(‖X0‖H‖E(Xk|M0)‖H) =

∫ ∞

0

E(‖E(Xk|M0)‖H1I‖X0‖H>t)dt .

Clearly, we have E(‖E(Xk|M0)‖H1I‖X0‖H>t) ≤ θk ∧ E(‖Xk‖H1I‖X0‖H>t). Consequently, set-

ting Rk(t) = E(‖Xk‖H1I‖X0‖H>t), we have the inequality

E(‖X0‖H‖E(Xk|M0)‖H) ≤
∫ ∞

0

(∫ θk

0

1Iu<Rk(t)du
)
dt . (3.28)

Now, applying Fréchet’s inequality (1957) we obtain, with the notations of Definition 3:

Rk(t) ≤
∫ P(‖X0‖H>t)

0

Q‖Xk‖H(u)du,

Since the random variable X0 has the same distribution as Xk, this means exactly that

Rk(t) ≤ H‖X0‖H(P(‖X0‖H > t)). Now by definition of the functions Q‖X0‖H and G‖X0‖H ,

{u > 0 : u < H‖X0‖H(P(‖X0‖H > t))} = {u > 0 : t < Q‖X0‖H ◦ G‖X0‖H(u)}, and (3.28)

implies that

E(‖X0‖H‖E(Xk|M0)‖H) ≤
∫ θk

0

Q‖X0‖H ◦G‖X0‖H(u)du . (3.29)

The last point is to prove that (α) implies (β). Since Q‖X0‖H ◦G‖X0‖H is nonincreasing,

we infer from (3.29) that
∫ θk

0

Q‖X0‖H ◦G‖X0‖H(u)du ≤ 18

∫ θk/18

0

Q‖X0‖H ◦G‖X0‖H(u)du .

Since H‖X0‖H is absolutely continuous and monotonic, we can make the change-of-variables

u = H‖X0‖H(z) (see Theorem 7.26 in Rudin (1987) and the example given page 156). Then

we get ∫ θk

0

Q‖X0‖H ◦G‖X0‖H(u)du ≤ 18

∫ G‖X0‖H (θk/18)

0

Q2
‖X0‖H(u)du .

Consequently, the result will be proved if we show that G‖X0‖H(θk/18) ≤ αk. Define the

M0-measurable variable Y = E(Xk|M0)/‖E(Xk|M0)‖H (Interpret 0/0 = 0.). Clearly

θk = E(< Y, Xk >H). Since ‖Y ‖H ≤ 1, we have Q‖Y ‖H ≤ 1. We now use an extension

of Rio’s covariance inequality (1993) to separable Hilbert spaces. This inequality, due to

Merlevède, Peligrad and Utev (1997), implies that

θk = E(< Y, Xk >H) ≤ 18

∫ αk

0

Q‖X0‖H(u)du .

This means exactly that G‖X0‖H(θk/18) ≤ αk, and the result follows.
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3.2.5 Proof of Corollary 3

For any positive integer i, let Yk,i =< Xk, ei >H. Since P0(Yk,i) =< P0(Xk), ei >H, from

(2.5), we infer that for any i ≥ 1

E(Y0,i|M−∞) = 0 a.s. and
∑

k≥1

‖P0(Yk,i)‖2 < ∞ . (3.30)

Proof of s2(a). It suffices to prove that, for any positive integer i,

lim
N→∞

lim sup
n→∞

1

n

∥∥∥
n∑

k=N

E(Yk,i|M0)
∥∥∥

2

2
= 0 . (3.31)

Using the operator Pm and the fact that E(Y0,i|M−∞) = 0 a.s., we have the equalities

∥∥∥
n∑

k=N

E(Yk,i|M0)
∥∥∥

2

2
=

n∑

k=N

n∑

`=N

E(E(Yk,i|M0)E(Y`,i|M0))

=
n∑

k=N

n∑

`=N

E
( ∞∑

m=0

P−m(Yk,i)P−m(Y`,i)
)

.

Using Hölder’s inequality and the stationarity of (Xk)k∈Z, we infer that

1

n

∥∥∥
n∑

k=N

E(Yk,i|M0)
∥∥∥

2

2
≤ 1

n

∞∑
m=0

n+m∑

k=N+m

n+m∑

`=N+m

‖P0(Yk,i)‖2‖P0(Y`,i)‖2 ≤
( ∞∑

k=N

‖P0(Yk,i)‖2

)2

,

and (3.31) follows from (3.30).

Proof of s2(b). For any positive integer i, let Sn,i = Y1,i + · · ·+ Yn,i. Clearly

E(Sn,iSn,j|M0) = E
(
(Sn,i−E(Sn,i|M0))(Sn,j−E(Sn,j|M0))|M0

)
+E(Sn,i|M0)E(Sn,j|M0) ,

and we know from (3.31) that n−1‖E(Sn,i|M0)E(Sn,j|M0)‖1 tends to zero as n tends to

infinity. Setting Zk,i = Yk,i − E(Yk,i|M0), we infer that s2(b) is equivalent to: for any

positive integers i, j,

lim
n→∞

∥∥∥ηi,j − E
( 1

n

n∑

k=1

n∑

`=1

Zk,iZ`,j

∣∣∣M0

)∥∥∥
1

= 0 , (3.32)

for some integrable and M0-measurable random variable ηi,j.

Define the variable ηi,j(N) = E(Y0,iY0,j|I) + E(Y0,iSN−1,j|I) + E(Y0,jSN−1,i|I) for any

positive integer N . We shall prove that

lim
N→∞

lim sup
n→∞

∥∥∥ηi,j(N)− E
( 1

n

n∑

k=1

n∑

`=1

Zk,iZ`,j

∣∣∣M0

)∥∥∥
1

= 0 . (3.33)
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From (3.33) we easily deduce that both n−1E(
∑n

k=1

∑n
`=1 Zk,iZ`,j|M0) and ηi,j(N) are

Cauchy sequences in L1. Consequently n−1E(
∑n

k=1

∑n
`=1 Zk,iZ`,j|M0) converges in L1 to

a M0-measurable variable ηi,j (so that (3.32) holds), and ηi,j(N) converges in L1 to ηi,j.

It remains to prove (3.33). Define the two sets

GN = [1, n]2 ∩ {(k, `) ∈ Z2 : |k − `| < N}, and GN = [1, n]2 −GN .

Write first

∥∥∥ηi,j(N)− E
( 1

n

n∑

k=1

n∑

`=1

Zk,iZ`,j

∣∣∣M0

)∥∥∥
1
≤

∥∥∥ηi,j(N)− E
( 1

n

∑
GN

Zk,iZ`,i

∣∣∣M0

)∥∥∥
1

+
1

n

∥∥∥
∑

GN

E(Zk,iZ`,j|M0)
∥∥∥

1
. (3.34)

From Claim 1(a) in Dedecker and Rio (2000), we know that ηi,j(N) = E(ηi,j(N)|M0)

almost surely. Using this result, we obtain that the first term on right hand in (3.34) is

less than

∥∥∥ηi,j(N)− 1

n

∑
GN

Yk,iY`,j

∥∥∥
1
+

1

n

N−1∑

l=−N+1

n∑

k=1

‖E(Yk,i|M0)E(Yk+`,j|M0)‖1 . (3.35)

Applying the L1-ergodic theorem, the first term in (3.35) tends to zero as n tends to

infinity. Since ‖E(Yk,i|M0)E(Yk+`,j|M0)‖1 ≤ ‖X0‖L2
H
‖E(Yk,i|M0)‖2, we infer that the

second term tends to zero as n tends to infinity provided that

lim
K→∞

lim sup
n→∞

1

n

n∑

k=K

‖E(Yk,i|M0)‖2 = 0 . (3.36)

Using the operators Pm, we have that

1

n

n∑

k=K

‖E(Yk,i|M0)‖2 ≤ 1

n

∞∑
m=0

n∑

k=K

‖P−m(Yk,i)‖2

≤ 1

n

∞∑
m=0

n+m∑

k=K+m

‖P0(Yk,i)‖2 ≤
∞∑

k=K

‖P0(Yk,i)‖2 ,

and (3.36) follows from (3.30). Consequently, the first term on right hand in (3.34) tends

to zero as n tends to infinity.
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It remains to control the second term on right hand in (3.34). Write first

1

n

∥∥∥
∑

GN

E(Zk,iZ`,j|M0)
∥∥∥

1
≤ 1

n

n∑

k=1

∞∑

`=N

‖E(Zk,iZk+`,j|M0)‖1+
1

n

n∑

`=1

∞∑

k=N

‖E(Z`+k,iZ`,j|M0)‖1

(3.37)

Using the fact that Zk,i =
∑k

m=1 Pm(Yk,i), we obtain

1

n

n∑

k=1

∞∑

`=N

‖E(Zk,iZk+`,j|M0)‖1 ≤ 1

n

n∑

k=1

∞∑

`=N

k∑
m=1

‖Pm(Yk,i)Pm(Yk+`,j)‖1

≤ 1

n

n∑

k=1

k∑
m=−∞

‖Pm(Yk,i)‖2

( ∞∑

`=N

‖Pm(Yk+`,j)‖2

)
,

and by stationarity, we conclude that

1

n

n∑

k=1

∞∑

`=N

‖E(Zk,iZk+`,j|M0)‖1 ≤
( ∞∑

k=0

‖P0(Yk,i)‖2

)( ∞∑

`=N

‖P0(Y`,j)‖2

)
.

Of course, the same arguments applies to the second term on right hand in (3.37), and

we infer from (3.30) that

lim
N→0

lim sup
n→∞

1

n

∥∥∥
∑

GN

E(Zk,iZ`,j|M0)
∥∥∥

1
= 0

This competes the proof of (3.33), and s2(b) follows.

Proof of s2∗(c∗). For any positive integer i define S∗n,i = max1≤k≤n{0, Sk,i}. According

to Proposition 6 of Dedecker and Merlevède (2002), for any two sequence of nonnegative

numbers (am)m≥0 and (bm)m≥0 such that K =
∑

m≥0 a−1
m is finite and

∑
m≥0 bm = 1, we

have

1

n
E

(
(S∗n,i −M

√
n)2

+

) ≤ 4K
∞∑

m=0

amE
( 1

n

n∑

k=1

P 2
k−m(Yk,i)1IΓ(m,n,bmM

√
n)

)
, (3.38)

where Γ(m,n, λ) = {max1≤k≤n{0,
∑k

`=1 P`−m(Y`,i)} > λ}. Here, we take bm = 2−m−1 and

am = (‖P0(Ym,i)‖2 + (m + 1)−2)−1. According to (3.30),
∑

a−1
m is finite. Since for all

m ≥ 0

amE
( 1

n

n∑

k=1

P 2
k−m(Yk,i)1IΓ(m,n,bmM

√
n)

)
≤ ‖P0(Ym,i)‖2

2

‖P0(Ym,i)‖2 + (m + 1)2
≤ ‖P0(Ym,i)‖2 ,
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we infer from (3.38) and (3.30) that for any ε > 0, there exists N(ε) such that

1

n
E

(
(S∗n,i −M

√
n)2

+

) ≤ ε + 4K

N(ε)∑
m=0

amE
( 1

n

n∑

k=1

P 2
k−m(Yk,i)1IΓ(m,n,bmM

√
n)

)
. (3.39)

Now by Doob’s maximal inequality

P(Γ(m, n, bmM
√

n) ≤ 4
∑n

k=1 ‖Pk−m(Yk,i)‖2
2

b2
mM2n

=
4‖P0(Ym,i)‖2

2

b2
mM2

,

and consequently

lim
M→∞

sup
n>0

P(Γ(m,n, bmM
√

n) = 0 . (3.40)

Since n−1
∑n

k=1 P 2
k−m(Yk,i) converges in L1 (apply the ergodic theorem), we infer from

(3.40) that

lim
M→∞

lim sup
n→∞

E
( 1

n

n∑

k=1

P 2
k−m(Yk,i)1IΓ(m,n,bmM

√
n)

)
= 0 . (3.41)

Combining (3.39) and (3.41), we conclude that

lim
M→∞

lim sup
n→∞

1

n
E

(
(S∗n,i −M

√
n)2

+

)
= 0 . (3.42)

Of course, the same arguments apply to the sequence (−Yk,i)k∈Z so that (3.41) holds for

max1≤k≤n |Sk,i| instead of S∗n,i. This completes the proof.

Proof of s2∗(d∗). We start from (3.24), and for each ` ≥ m + 1, we apply Lemma 1.5 in

McLeish (1975). For any sequence of nonnegative numbers (ai)i≥0 such that K =
∑

i≥0 a−1
i

is finite, we have

E
(

max
1≤i≤n

‖(IH − Pm)Si‖2
H

n

)
≤ 4

n
K

∞∑

`=m+1

∞∑
i=0

ai

( n∑

k=1

E(< Pk−i(Xk), e` >2
H)

)
.

Using first Fubini and next stationarity, we obtain

E
(

max
1≤i≤n

‖(IH − Pm)Si‖2
H

n

)
≤ 4

n
K

∞∑
i=0

ai

( n∑

k=1

E‖(IH − Pm)Pk−i(Xk)‖2
H

)

≤ 4K
∞∑
i=0

aiE‖(IH − Pm)P0(Xi)‖2
H .

Considering (2.5), we can choose ai = ((E‖P0(Xi)‖2
H)1/2 + (i + 1)−2)−1. Consequently,

using the fact that E‖(IH − Pm)P0(Xi)‖2
H ≤ E‖P0(Xi)‖2

H, we get

E
(

max
1≤i≤n

‖(IH − Pm)Si‖2
H

n

)
≤ 4K

∞∑
i=0

‖(IH − Pm)P0(Xi)‖L2
H
.

Now (2.5) together with the dominated convergence theorem imply s2∗(d∗).
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3.2.6 Proof of Remark 6

We start with the orthogonal decomposition

Xk = E(Xk|M−∞) +
∞∑
i=0

Pk−i(Xk) . (3.43)

Since (1.2) implies that E(Xk|M−∞) = 0, we infer from (3.43) and the stationarity of

(Xi)i∈Z that

∑

k>0

Lk‖E(Xk|M0)‖2
L2
H

=
∑

k>0

Lk

∑
i≤0

‖Pi(Xk)‖2
L2
H

=
∑
i>0

( i∑

k=1

Lk

)
‖P0(Xi)‖2

L2
H
.

Setting bi = L1 + · · ·+ Li, we infer that (1.2) is equivalent to

E(X0|M−∞) = 0 ,
∑
i≥1

bi‖P0(Xi)‖2
L2
H

< ∞ and
∑
i≥1

1

bi

< ∞ . (3.44)

Now, Hölder’s inequality in `2 gives

∑
i≥1

‖P0(Xi)‖L2
H
≤

(∑
i>0

1

bi

)1/2(∑
i≥1

bi‖P0(Xi)‖2
L2
H

)1/2

< ∞ ,

which shows that (1.2) implies (2.5).

3.3 The general case

In this section, we prove Theorem 3. For any ` in Z set X
(`)
0 = E (X0|M`) and let

S
(`)
n = X

(`)
0 ◦ T + · · ·+ X

(`)
0 ◦ T n. We start the proof with two preliminary lemmas.

Lemma 2. Assume that E‖X0‖p
H < ∞. Under Condition (1.3), we have

lim
`→∞

lim sup
n→∞

1

n
E‖Sn − S(`)

n ‖2
H = 0 .

Proof of Lemma 2. Set Y
(`)
0 := X0 −X

(`)
0 and Y

(`)
i := Y

(`)
0 ◦ T i. Since Y

(`)
0 is orthogonal

to L2(M`), we have for any positive i, E < Y
(`)
0 , Y

(`)
−i >H= E < X0, X−i−E(X−i|M`) >H.

Hence

1

n
E‖Sn − S(`)

n ‖2
H =

1

n

n−1∑
N=0

(
E‖X0 −X

(`)
0 ‖2

H + 2
N−1∑
i=1

E < X0, X−i − E(X−i|M`) >H

)
.
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Therefore Lemma 2 holds via Cesaro’s mean convergence theorem provided that

lim
`→∞

lim sup
n→∞

(
E‖X0 −X

(`)
0 ‖2

H + 2
n∑

i=1

E < X0, X−i − E(X−i|M`) >H

)
= 0 . (3.45)

Using first Hölder’s inequality and next stationarity, we obtain that

∣∣∣
n∑

i=1

E < X0, X−i − E(X−i|M`) >H

∣∣∣ ≤ E‖X0‖Lp
H

∥∥∥
n+∑̀

m=1+`

X−m − E(X−m|M0)
∥∥∥
Lq
H
.

Finally condition (1.3) implies (3.45) and Lemma 2 follows.

Lemma 3. Assume that E‖X0‖p
H < ∞. Under Condition (1.3), the sequence (X

(`)
i )i =

(X
(`)
0 ◦ T i)i adapted to the filtration (M`+i)i∈Z satisfies Condition (γ) of Corollary 2:

‖E (X0|M`) ‖HE (Sn|M`) converges in L1
H . (3.46)

Proof of Lemma 3 : Applying Hölder’s inequality we have

E
(
‖E (X0|M`) ‖H‖E(Sn−Sm|M`)‖H

)
≤

(
E‖E(X0|M`)‖p

H

)1/p(
E‖E(Sn−Sm|M`)‖q

H

)1/q

,

and by stationarity

lim
p→∞

sup
n>m

E
(
‖E (X0|M`) ‖H‖E(Sn−Sm|M`)‖H

)
≤ lim

m→∞
sup
n>m

‖X0‖Lp
H

∥∥∥
n−∑̀

j=m−`+1

E(Xj|M0)
∥∥∥
Lq
H

which equals zero by (1.3) and the fact that E‖X0‖p
H < ∞. Lemma 3 is proved.

Proof of Theorem 3. From Lemma 3 and Corollary 2 we derive that n−1/2S
(`)
n satisfies

s1. In particular the sequence n−1‖S(`)
n ‖2

H is uniformly integrable. Via Lemma 2, this

implies that n−1‖Sn‖2
H is also uniformly integrable. Hence we need only prove s1(ϕ) for

any continuous bounded function ϕ from H to R.

For any m ≥ 1 and any v ∈ Rm, set Vm(x) =
∑m

i=1 vi < x, ei >H. According to the

proof of Theorem 1, s1(ϕ) holds for any continuous bounded function ϕ as soon as : for

any m ≥ 1 and any v in Rm

lim
n→∞

∥∥∥E
(

exp(in−1/2Vm(Sn))−
∫

exp(iVm(x))P ε
Λ(dx)

)∣∣∣Mk

)∥∥∥
1

= 0 and (3.47)

µn[Zn] is relatively compact in H . (3.48)
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Since for any ` in Z the sequence n−1/2S
(`)
n satisfies Condition (γ) of Corollary 2, there

exists a M`-measurable random variable Λ(`) such that, for any ϕ in H and any positive

integer k

lim
n→∞

∥∥∥E
(
ϕ(n−1/2S(`)

n )− E( ∫
ϕ(x)P ε

Λ(`)dx
)∣∣∣Mk

)∥∥∥
1

= 0 (3.49)

where Λ(`) is the linear random operator from H to H defined by < Λ(`)ei, ej >H= η
(`)
i,j , η

(`)
i,j

being the limit in L1 of the sequence obtained from (2.1) by replacing Xi by X
(`)
i . From

(3.49) we obtain that: for any m ≥ 1, any v in Rm, any ` in Z and any positive integer k

lim
n→∞

∥∥∥E
(

exp(in−1/2Vm(S(`)
n ))−

∫
exp(iVm(x))P ε

Λ(`)(dx)
)∣∣∣Mk

)∥∥∥
1

= 0 . (3.50)

Consequently to show (3.47), it suffices to prove that

lim
`→∞

lim
n→∞

‖ exp(in−1/2Vm(Sn))− exp(in−1/2Vm(S(`)
n ))‖1 = 0 , (3.51)

and that there exits an I-measurable random linear random operator Λ with E(Λ) ∈ S(H)

such that

lim
`→∞

∥∥∥
∫

exp(iVm(x))P ε
Λ(`)dx−

∫
exp(iVm(x))P ε

Λdx
∥∥∥

1
= 0 . (3.52)

Note first that (3.51) follows straightforwardly from Lemma 2. To prove (3.52), we have

to define the linear random operator Λ we are going to consider. We shall prove that for

all i, j in N∗

(η
(`)
i,j )` converges in L1 to some I-measurable variable ηi,j and

∞∑

`=1

E(η`,`) < ∞ . (3.53)

From (3.53), we define the I-measurable linear random operator Λ by < Λei, ej >H= ηi,j,

so that E(Λ) ∈ S(H). To prove (3.53), we need the following elementary lemma:

Lemma 4. Let (B, ‖.‖B) be a Banach space. Assume that the sequences (un,`), (un) and

(v`) of elements of B satisfy

lim
`→+∞

lim sup
n→+∞

‖un,` − un‖B = 0 and lim
n→+∞

un,` = v`.

Then the sequence (v`) converges in B.
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Now apply Lemma 4 with B = L1(I), v` = η
(`)
i,j , un = n−1E (< Sn, ei >H< Sn, ej >H |I)

and un,` = n−1E(< S
(`)
n , ei >H< S

(`)
n , ej >H |I). From the decomposition

‖un − un,`‖B =
1

n
E

∣∣∣E (< Sn, ei >H< Sn, ej >H |I)− E (
< S(`)

n , ei >H< S(`)
n , ej >H |I

) ∣∣∣

=
1

n
E

∣∣∣E
(
< Sn − S(`)

n , ei >H< Sn, ej >H |I
)

+ E
(
< S(`)

n , ei >H< Sn − S(`)
n , ej >H |I

) ∣∣∣ .

we easily derive that

‖un − un,`‖B ≤
√

1

n
E‖Sn − S

(`)
n ‖2

H

(√
1

n
E‖Sn‖2

H +

√
1

n
E‖S(`)

n ‖2
H

)
. (3.54)

Applying Lemma 2, there exists `0 such that

for ` ≥ `0, lim sup
n→∞

∣∣∣E‖Sn‖2
H

n
− E‖S

(`)
n ‖2

H
n

∣∣∣ ≤ 1 , (3.55)

and hence n−1E‖Sn‖2
H is bounded. Applying again Lemma 2, Inequality (3.54) yields

lim
`→∞

lim sup
n→∞

‖un − un,`‖B = 0 . (3.56)

Moreover, Proposition 1(i) combined with Cesaro’s mean convergence theorem implies

that un,` converges to v` in L1. Applying Lemma 4 we obtain the first assertion of (3.53).

We now prove the second assertion. Applying Fatou’s lemma we obtain

∞∑
i=1

E(ηi,i) ≤ lim inf
`→∞

∞∑
i=1

E(η
(`)
i,i ) = lim inf

`→∞
lim

n→∞
E‖S(`)

n ‖2
H

n
,

which is finite via (3.55).

We now complete the proof of (3.52). Since P ε
Λ(`) and P ε

Λ are two Gaussian measures,

we have

∥∥∥
∫

exp(iVm(x))P ε
Λ(`)dx−

∫
exp(iVm(x))P ε

Λdx
∥∥∥

1
≤ 1

2

∥∥∥
n∑

i=1

n∑
j=1

vivj(η
(`)
i,j − ηi,j)

∥∥∥
1
.

This inequality combined with (3.53) yields (3.52). Collecting (3.50), (3.51) and (3.52)

we obtain (3.47).
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To complete the proof of Theorem 3, it remains to prove (3.48). Following the proof

of (3.3), (3.48) will hold as soon as

lim
m→∞

lim sup
n→∞

E‖(IH − Pm)Sn‖2
H

n
= 0 and (3.57)

lim
m→∞

E
(∫

‖(IH − Pm)x‖2
HP ε

Λ(dx)

)
= 0 . (3.58)

Since E(Λ) ∈ S(H), (3.58) follows from the fact that

E
(∫

‖(IH − Pm)x‖2
HP ε

Λ(dx)

)
=

∞∑
i=m+1

E < Λei, ei >H .

From Lemma 3 we know that (3.57) holds for S
(`)
n . This combined with Lemma 2 yields

(3.57) and the proof of Theorem 3 is complete.

3.4 Linear processes taking their values in H

3.4.1 Proof of Theorem 4

We first show that the series in (2.7) is convergent in L2
H. Note that for any sequence of

linear bounded operators (dk)k∈Z on H, and for any −∞ < p < q < ∞, we have

E
∥∥∥

q∑

k=p

dkξk

∥∥∥
2

H
= E

∥∥∥
q∑

k=p

dk

k∑
j=−∞

Pj(ξk)
∥∥∥

2

H
= E

∥∥∥
q∑

j=−∞
Pj

( q∑

k=p∨j

dkξk

)∥∥∥
2

H
.

For any functions f and g in L2
H(P) and i 6= j we have E < Pj(f), Pi(g) >H= 0. Conse-

quently

E
∥∥∥

q∑

k=p

dkξk

∥∥∥
2

H
=

q∑
j=−∞

E
∥∥∥

q∑

k=p∨j

Pj(dkξk)
∥∥∥

2

H
≤

q∑
j=−∞

(
q∑

k=p∨j

‖dk‖L(H)‖Pj(ξk)‖L2
H

)2

.

Applying Cauchy Schwarz’s inequality, we obtain

E
∥∥∥

q∑

k=p

dkξk

∥∥∥
2

H
≤

q∑
j=−∞

( q∑

k=p∨j

‖dk‖2
L(H)‖Pj(ξk)‖L2

H

)( q∑

k=p∨j

‖Pj(ξk)‖L2
H

)

≤
( ∞∑

k=0

‖P0(ξk)‖L2
H

)( q∑

k=p

‖dk‖2
L(H)

k∑
j=−∞

‖Pj(ξk)‖L2
H

)
.
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Hence, for any sequence of linear bounded operators (dk)k∈Z and −∞ < p < q < ∞,

E‖
q∑

k=p

dkξk‖2
H ≤

q∑

k=p

‖dk‖2
L(H)

( ∞∑

`=0

‖P0(ξ`)‖L2
H

)2

. (3.59)

Consequently, under (2.8) there exists a positive constant K such that

E
∥∥∥

q∑

k=p

dkξk

∥∥∥
2

H
≤ K

q∑

k=p

‖dk‖2
L(H) . (3.60)

Inequality (3.60) together with Proposition 1.1 in Merlevède, Peligrad and Utev (1997)

imply that under (2.8) and (2.10), the series in (2.7) is convergent in L2
H.

Now to show that if Condition (2.8) is replaced by (2.9), the series in (2.7) still con-

verges in L2
H, it suffices to obtain a bound of type (3.60). Note first that

E
∥∥∥

q∑
j=p

djξj

∥∥∥
2

H
≤ E‖ξ0‖2

H

(
q∑

j=p

‖dj‖2
L(H)

)
+ 2

q−1∑
i=p

q∑
j=i+1

E < diξi, djξj >H

= E‖ξ0‖2
H

(
q∑

j=p

‖dj‖2
L(H)

)
+ 2

q−1∑
i=p

q∑
j=i+1

E < diξi, dj (E (ξj|Mi)) >H .

Since E < diξi, dj (E (ξj|Mi)) >H≤ ‖di‖L(H)‖dj‖L(H)E(‖ξ0‖H‖E(ξj−i|M0)‖H) we infer that

q−1∑
i=p

q∑
j=i+1

E < diξi, dj (E (ξj|Mi)) >H≤
q∑

i=p

‖di‖2
L(H)

q∑
j=1

E
{
‖ξ0‖H‖E (ξj|M0) ‖H

}
.

Therefore

E
∥∥∥

q∑
j=p

djξj

∥∥∥
2

H
≤ 2

( q∑
j=p

‖dj‖2
L(H)

) q∑

k=0

E
(
‖ξ0‖H‖E(ξk|M0)‖H

)
. (3.61)

which proves (3.60).

Now note that under (2.8) (resp. (2.9)), Corollary 2 (resp. 3) ensures that there exists

a Mξ
0-measurable random linear operator Λξ satisfying (2.11) and such that for any ϕ in

H and any positive integer k,

lim
n→∞

∥∥∥E
(
ϕ(n−1/2

n∑

k=1

ξk)− E
∫

ϕ(x)P ε
Λξ(dx)

∣∣∣Mξ
k

)∥∥∥
1

= 0 .
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According to this result and by a careful analysis of the proof of Theorem 1, we infer that

(2.12) holds as soon as

lim
n→∞

1

n
E

∥∥∥
n∑

k=1

Xk − A

n∑

k=1

ξk

∥∥∥
2

H
= 0 . (3.62)

According to Proposition 1 in Merlevède, Peligrad and Utev (1997), this holds as soon as

a result of type (3.60) holds. This completes the proof of Theorem 4.

3.4.2 Proof of Theorem 5

According to the proof of Theorem 4, the series in (2.6) is convergent in L2
H under (2.8)

and (2.10). Since P0(ξm) = 0 as soon as m ≤ −1, we have

‖P0(Xk)‖L2
H

=
∥∥∥
∑
j≥0

ajP0(ξk−j)
∥∥∥
L2
H

=
∥∥∥

k∑
j=0

ajP0(ξk−j)
∥∥∥
L2
H
,

and consequently

‖P0(Xk)‖L2
H
≤

k∑
j=0

‖ajP0(ξk−j)‖L2
H
≤

k∑
j=0

‖aj‖L(H)‖P0(ξk−j)‖L2
H
.

Summing in k, we obtain that

∞∑

k=0

‖P0(Xk)‖L2
H
≤

∞∑
j=0

‖aj‖L(H)

∞∑

k=j

‖P0(ξk−j)‖L2
H
,

and we infer that (2.5) is satisfied under (2.8) and (2.10). Now Corollary 3 implies that

there exists a Mξ
0-measurable random linear operator Λ̃ satisfying E(Λ̃) ∈ S(H) and such

that for any ϕ in H∗ and any positive integer k,

lim
n→∞

∥∥∥E
(
ϕ(n−1/2Wn)−

∫
ϕ(x)WΛ̃(dx)

∣∣∣Mk

)∥∥∥
1

= 0 .

Moreover according to Remark 5, for any `,m in N∗, < Λ̃e`, em >H= η̃`,m where, η̃`,m is

the limit in L1 of the sequence defined in (2.1). Applying Theorem 4, we easily infer that

Λ̃ = AΛξA∗, which ends the proof of (2.13).
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[33] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition, Proc. Nat.
Acad. Sci. U.S.A. 42 43-47.

[34] Rio, E. (1993). Covariance inequalities for strongly mixing processes. Ann. Inst. H. Poincaré
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