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Abstract

We prove a Marcinkiewicz-Zygmund type inequality for random variables taking values in a
smooth Banach space. Next, we obtain some sharp concentration inequalities for the empiri-
cal measure of {T,T2,--- ,T"}, on a class of smooth functions, when T belongs to a class of
nonuniformly expanding maps of the unit interval.

1 Introduction and notations

Let (B, |-|g) be a real separable Banach space. The notion of p-smooth Banach spaces (1 < p < 2)
was introduced in a famous paper by Pisier ([17], Section 3). These spaces play the same role
with respect to martingales as spaces of type p do with respect to the sums of independent
random variables.

We shall follow the approach of Pinelis [16], who showed that 2-smoothness is in some sense
equivalent to a control of the second directional derivative of the map 19 defined by ¥ (z) = |z|3.
In particular, if there exists C' > 0 such that, for any z,u in B,

Dy y¥2(@) < Clulg, (1.1)

then the space B is 2-smooth (here Dgyvg(a:) denotes the second derivative of g at point z, in
the directions w, v). In his 1994 paper, Pinelis [16] used the property (1.1) to derive Burkholder
and Rosenthal moment inequalities as well as exponential bounds for B-valued martingales.

In this paper, we shall consider a class of smooth Banach spaces, whose smoothness property
is described as follows. Let p be a real number in [2, 0o[ and let ¢, be the function from B to R
defined by

Up(@) = |- (1.2)
We say that the real separable Banach space (B, |- |g) belongs to the class Ca(p,cp) if the
function v, is two times Fréchet differentiable and satisfies, for all z and v in BB,

D2y () (u,u) < cplz|h 2 uld . (1.3)

Here D%g(z) denotes the usual second order Fréchet derivative of g at point x. Using the chain
rule, it is easy to see that if (1.1) holds for the second order Fréchet derivative and if D, (0) = 0,
then (1.3) is satisfied. Before describing our results, let us quote that the class Ca(p, ¢,) contains
the Li-spaces for ¢ > 2, for which one can compute the constant c,. The following lemma will
be proved in Appendix.



Lemma 1.1.

1. For any q € [2,00[ and any measure space (X, A, ), the space LI = LI(X, A, u) belongs
to the class Ca(p, ¢p) with ¢, = p(max(p,q) — 1).

2. If B is a separable Hilbert space then it belongs to the class Ca(p, cp) with ¢y = p(p —1).

The main result of this paper is a Marcinkiewicz-Zygmund type inequality for the moment of
order p of partial sums S, of B-valued random variables, when B belongs to the class Ca(p, ¢p).
The upper bound is expressed in terms of conditional expectations of the random variables with
respect to a past o-field, and extends the corresponding upper bound by Dedecker and Doukhan
[3] for real-valued random variables. As in [18] and [3], the proof is done by writing v, (S,) as
a telescoping sum. The property (1.3) enables to use the Taylor integral formula at order 2 to
control the terms of the telescoping sums.

This Marcinkiewicz-Zygmund type bound together with the Rosenthal type bound given in
[6] and the deviation inequality given in [5] provide a full description of the moment bounds for
sums of B-valued random variables, when B belongs to the class Ca(p, ¢p). As we shall see, these
bounds apply to a large class of dependent sequences, in the whole range from short to long
dependence.

As an application, we shall focus on the L%-norm of the centered empirical distribution
function Gy, of the iterates of a nonuniformly expanding map 7" of the unit interval (modelled
by a Young tower with polynomial tails). On the probability space [0,1] equipped with the
T-invariant probability v, the covariance between two Holder observables of T and T" is of
order n~(="/7 for some v € (0,1). Hence the sequence of the iterates (T%);>; is short-range
dependent if v < 1/2 and long-range dependent if v € [1/2,1). The moment and deviation
bounds for the L%-norm of G, are given in Theorem 4.1 in the short range dependent case,
and in Theorems 4.2 and 4.3 in the long range dependent case. In Remark 4.1, we give some
arguments, based on a limit theorem for the LL>-norm of G,,, showing that the deviation bounds
of Theorem 4.3 are in some sense optimal.

As a consequence of these results, we obtain in Corollary 4.1 a full description of the behavior
of ||Wi(vp,v)|lp for p > 1, where Wi (vp,v) is the Wasserstein distance between the empirical
measure v, of {T,T?,...,T"} and the invariant distribution v. These results are different but
complementary to the moment bounds on Wi (v, v) — E(W;(vy,v)) obtained by Chazottes and
Gouézel [1] and Gouézel and Melbourne [10] as a consequence of a concentration inequality for
separately Lipschitz functionals of (T, 72,...,T™). See Section 4.3 for a deeper discussion.

All along the paper, the notation a, < b, means that there exists a numerical constant C
not depending on n such that a, < Cb,, for all positive integers n.

2 A Marcinkiewicz-Zygmund type inequality

Our first result extends Proposition 4 of Dedecker and Doukhan [3] to smooth Banach spaces
belonging to Ca(p, cp).

Theorem 2.1. Let p be a real number in [2,00[ and let (B, |- |g) be a Banach space belonging
to the class Ca(p,cp). Let (X;)ien be a sequence of centered random wvariables in LP(B). Let
(Fi)i>o be an increasing sequence of o-algebras such that X; is Fi-measurable, and denote by
E;(-) = E(:|F;) the conditional expectation with respect to F;. Define then

bin = max (Eo(I1Xif2” zejEi(Xw\p/Q))z/p-
k=i

i<t<n B

For any integer n > 0, the following inequality holds:

Eo(|Snlf) < Kp( E bm)p almost surely, where K = /2p~1/max(cp,p/2). (2.1)
=1



Remark 2.1. Taking Fo = {Q, 0}, it follows that, for any integer n > 0,

/2
)p where K = +/2p~'y/max(cp,p/2).

(2.2)
In addition, if we assume that P(|Xglp < M) = 1 for any k € {1,...,n}, inequality (2.2)
combined with Proposition 5.2 of the appendiz leads to the bound

E(|S,[2) < Kp(zn: max

i<é<n

IBHp/2

L
[Xils| Y~ B(XulF)
k=i

n—1
p p—1,p/2 2/p p/2
E(@?gnwk@) < C,MPn (kz_oe (k:)> : (2.3)
where
_Lr2pKNP | apaap _ T ;
C _2(p_1) + 250743 and H(k)_max{IE(|E(XZ\]-"Z_k)|B),z€{k+1,...,n}}.

A complete proof of Inequality 2.3 will be given in Section 5.4.

When B = L7 for ¢ > 2, the constant K of Inequality (2.2) is equal to /2(max(p,q) — 1).
However we notice that we can obtain a better constant when the underlying sequence is a
martingale differences sequence. More precisely, the following extension of the Marcinkiewicz-
Zygmund type inequality obtained by Rio (2009) when the random variables are real-valued
holds:

Theorem 2.2. Let p be a real number in [2,00[ and let (B, |- |g) be a Banach space belonging
to the class Ca(p,cp). Let (d;)ien be a sequence of martingale differences with values in B with
respect to an increasing filtration (F;)ien and such that for all i € N, |||di|gll, < oo. Then,
setting My, = > | d;, the following inequality holds:

p/2

E(Mal}) < (07 02 ( Y ldils ) (2.4)
=1

The proof is omitted since it follows closely the lines of the proof of Proposition 2.1 in [19]
(the bound (2.1) in [19] is obtained by using Inequality (1.3)).

In particular if B = LI(X, A, 1) with ¢ € [2,00[ and (T, A,v) a measure space, Inequality
(2.4) combined with Lemma 1.1 leads to

- p/2
E(Mql) < (max(p.q) = D”2( D Ildilal2)” (2:5)
i=1
| - |4 being the norm on LY(X, A, u1).

Proof of Theorem 2.1. As in [18] and [3|, we shall prove the result by induction. For any
t € 0,1] let
hn(t) = Eo(|Sn—1 + tXnlp) - (2.6)

Our induction hypothesis at step n — 1 is the following: for any &k <n — 1,

k—1
hk(t) < Kp(z b@k + tbk7k>p/2 . (27)
=1

Since K > 1, the above inequality is clearly true for K = 1. Assuming that it is true for n — 1,
let us prove it at step n.



Assume that one can prove that

n—1

1 t
ha(t) < max(cp,p/2) (D b /0 (he(s)) "7 ds + by / (hns)'"*7ds) . (28)
k=1

0

then, using our induction hypothesis, it follows that
n—1 1 k—1 9\/2 t -
hn(t) < max(cp,p/2)<2bk7n/ Kp_Q(Zbi,k + sbkk)(p— 245 + bn,n/ (hn(s)) " /P)
k=1 0 i=1 0

n—1 1 k—1 t
< max(ep,p/2) (K723 b /0 (3 bin + sbr) 72 2ds + by /0 (hn(s))' "7 ds) .
k=1 =1

Integrating with respect to s, we get

= =22 2,& 2/, (P2
b n/ bin + bk ds = — bin pf2_ 2 bin s
k’[)(;’ k’) p(é’) p(é’)
implying that
n—1 1 k-1 (r—2)/2 n—1 /2
St [ (bt stin) s =2 (Y ba)
k=1 0 “i=1 i=1
Therefore, since K? = 2p~! max(c,, p/2),
n—1 /2 t 1 2/p
h(t) < KP<Z bn) + max(cp, p/2bnn | (hn(s)) *Pds. (2.9)
i=1 0
Let Hy,(t) = (f (hn(s))l_Q/pds. The differential integral inequation (2.9) writes
n—1
p/2 —1+2/p
H) (s) (KP(ZZ)Z'JZ) + max(cp,p/2)bn7nH(s)>
i=1
Setting

Ri(s) = (K7 ( ni bm)p/ * ¢ max(cy, p/Q)bn,nH@))Q/ "
=1

the previous inequality can be rewritten as
R'/n(s) S 2]9_1 maX(Cpap/Q)bn,n .
Integrating between 0 and ¢, we derive

n—1
(ha()*” = K23 " biy < Ru(t) — Ra(0) < 2tp~ " max(cy, p/2)byn

i=1

1

Taking into account that K2 = 2p~! max(c,, p/2), it follows that

n—1
()™ < K2(3 bin + thun)
i=1



showing that our induction hypothesis holds true at step n. To end the proof it suffices to prove
(2.8). We shall proceed as in the proof of Theorem 2.3 in [18]. With this aim, let

Sa(t) =Y Yi(t), where Yj(t) = X; for 1 <i <n—1and Y,(t) = tX,.
=1

Notice that for any integer k in [1,n — 1], S,(t) = Si. Let now 1), be defined by (1.2). Applying
second order Taylor expansion, we get

n

Up(Sn(t) =Y (6p(Si(t)) — 1p(Si-1(t)))

=1
n n 1
= 3" DuylSe-)040) + X [ (1= D35 (Sims + VD) V0. Vi)
k=1 =1

But, for any integer & in [1,n],
k—1
Dy (Sk—1)(Ye(t) = Y (Dvp(Si)(Ye(t) — Debp(Si—1) (Yi(1)))
i=1
k-1 .
-3 / D2y(Si1 + 5X;) (Ya(t), Xi)ds.
=170
Notice now that for any x and u in B, D?,(z)(u,u) > 0. Indeed, the function z — t,(z) =

|x|§/ % is convex for any p > 2 and is by assumption 2-times differentiable, implying that
D2, (x)(u,u) > 0. Therefore

n

n—1 1
Yp(Sn(t) <) /0 D2¢p(5i_1+in)( 3 Yk(t),Xi)ds
=1

k=i+1
S
+2AD%@1Hmmmwmmw
i=1

Taking the conditional expectation w.r.t. Fy and recalling the definition (2.6) of hy,(t), it follows
that, for any ¢ € [0,1],

n—1 .1 n—1
ha(t) < Z/ Eo(D2p(Si1 + 5X:) (D X + X, X; ) ds)
i=1"0 k=i
1
+ 2 / Eo (D%p(sn,l + stXn)(Xn,Xn)ds) .
0
Using again the fact that D%, (v)(u,u) > 0, we have
1 t
2 / Eo (D%,,(Sn_l +stXn)(Xn,Xn)ds> < / o (Dzz/;p(sn_l +an)(Xn,Xn)du).
0 0

Hence setting

n—1
ain(t) = Xi+ Y E(XilF) + tE(X,|F),
k=i+1

and using the fact that (F;) is an increasing sequence of o-algebras, we derive
n—1 1 t

ha(t) <3 / Ey (D%p,,(si_1 + in)(am(t),Xi)ds) + / o (D2¢p(5n_1 + 5X) (X, Xn)ds> .
i=1 70 0

5



Notice now that since (B,| - |g) belongs to the class Ca(p,cp) then (1.3) holds and Cauchy-
Schwarz’s inequality then implies that: for all z,u,v in B,

-2
| D) (u, 0)| < cplarlfy[uls|v]s -

It follows that

n—1 .1 t
hat) <y /0 Bo (|Si1+5Xil} i (1) 5| Xils ) ds-+c, /0 Eo (|81 Xal§ | Xl ) ds.
i=1

Holder’s inequality entails that

1 p
)< 3 [ () "2 (Bo a1 ) s

+¢ /0 t (hn(s))“’*”/p(Eo(yxnyﬁ))w “ds. (2.10)

Let Gin(t) = Eo(]aivn(t)\ﬁ/ﬂ)(i\%ﬂ). Since it is a convex function, for any ¢ € [0, 1],

Gin(t) < max (Gin(0), Gin(1)) < B202. (2.11)
Starting from (2.10), using (2.11) and the fact that (Eo(|X,,[5))%/? < by, the inequality (2.8)
follows. ¢

3 Hoeffding type inequalities for martingales

In the following corollary, we give an exponential inequality for the deviation of the L%-norm of
martingales.

Corollary 3.1. Let ¢ € [2,00[ and (X, A, ) a measure space. Let (d;)ien be a sequence of
martingale differences with values in L9 = LI(X, A, ) (equipped with the norm | - |q) with
respect to an increasing filtration (F;)ien. Assume that for all i € N, there exists a positive real
b such that |||d;|ql|lcc < b. Let My, = Y"1, d;. For any positive integer n and any positive real x,
the following inequality holds

1 if x <by/(¢g—1)n
]P’(llgkaé( \Mk\qzx) < M ifby/(¢g—1)n <z < by/e(qg—1)n (3.1)
<k< %exp(—%) if © > by/e(q—1)n.

Under the assumptions of Corollary 3.1, Theorem 3.5 in [16] gives the following upper bound:
for any positive integer n and any positive real x,

2
x
> < - . .
P o 1My 2 7) < 2exp (- 53 ) 32)
It is noteworthy to indicate that for any ¢ > e + 1, the bound in (3.1) is always better than the
one given in (3.2). However, note that Theorem 3.5 in [16] holds not only in .Y (¢ > 2) but also
in any 2—smooth Banach space.

Proof of Corollary 3.1. Let p be a real number in [2, oo[. By the Doob-Kolmogorov maximal
inequality,

>q) <z7P P).
P(lréllgécn|Mk|q > :U) <z E(\Mn|q)



Therefore, using Inequality (2.5), we derive that

Varn\"
]P’( max |Mylq > x) < <apn> , where a, = max(p,q) — 1.

1<k<n z

Taking p = ¢q if x < ((q — 1)eb2n)1/2 (so in this case a, = ¢—1) and p = 1+ % if x >
((g — 1)eb?n) 1/2 (so in this case a, = p — 1), the inequality (3.1) follows. ¢

In the following corollary, we give an exponential inequality for the deviation of the L9-norm
of partial sums. The proof is omitted since it is exactly the same as that of Corollary 3.1, by
using Inequality (2.2) instead of Inequality (2.5).

Corollary 3.2. Let g € [2,00[ and (X, A, u) a measure space. Let (X;)ien be a sequence of
random variables with values in LI = LY(X, A, p) (equipped with the norm |- |). Let (F;)i>0 be
an increasing sequence of o-algebras such that X; is F;-measurable, and denote by E;(-) = E(-|F;)
the conditional expectation with respect to F;. For any positive integer n, let S, = > i | X;.
Assume that for any integer i € [1,n],

] e <12
k=1

Then, for any positive real x, the following inequality holds

1 if © < bp\/2(q—1)n
IP’(]Sn]q > at) < 7(21)’2“’((1;;)”)(1/2 if bp/2(g — D)n <z < bpy/2e(q — 1)n
2 .
ﬁexp(—%ﬂ;}w) if © > bpy/2e(q — 1)n.

4 Moment and deviation inequalities for the empirical process of
nonuniformly expanding maps

In this section, we shall apply Theorem 2.1 and the inequalities recalled in the Appendix to
obtain moment and deviation inequalities for the IL? norm of the centered empirical distribution
function of nonuniformly expanding maps of the interval. More precisely, our results apply to the
iterates of a map 7T from [0, 1] to [0, 1] that can be modelled by a Young tower with polynomial
tails of the return time.

In Section 4.1, we recall the formalism of Young towers, which has been described in many
papers (see for instance [20] and [13]) with sometimes slight differences. Here we borrow the
formalism described in Chapter 1 of Gouézel’s PhD thesis [8].

The moment inequalities are stated in Section 4.2, and an application to the Wassertein
metric between the empirical measure of {T,T2,...,7"} and the T-invariant distribution is
presented in Section 4.3. To be complete, we give in Section 4.4 some upper bounds for the
maximum of the partial sums of Hélder observables, which can be proved as in Section 4.2.

4.1 One dimensional maps modelled by Young towers

Let T be a map from [0,1] to [0,1], and A be a probability measure on [0,1]. Let Y be a
Borel set of [0,1], with A(Y) > 0. Assume that there exist a partition (up to a negligible set)
{Yk}eeqr,...xy of Y (note that K can be infinite) and a sequence (¢x)req,..., x} of increasing
numbers such that T%*(Yy) = Y. Let then ¢y be the function from Y to {Spk}ke{l,...,K} such
that vy (y) = ¢k if y € Yy
We then define a space
X={(y,):yeYi<oy(y)}



and a map T on X:
_ y,2+ 1 ifi<oey(y) —1
T(y,l): ( ()) P Y()
(T?v¥(y),0) ifi=ey(y) -1

The space X is the Young tower. One can define the floors Ay, for £ € {1,..., K} and
i€40,...,06 — 1} Agi ={(y,7) : y € Y }. These floors define a partition of the tower:

X = U Api-
ke{l,...,K},i€{0,...,.0—1}

On X, the measure m is defined as follows: if B is a set included in Ay.i, that can be written
as B = B x {i} with B C Y}, then m(B) = A\(B). Consequently, for a set A C U: p>iy Do
which can be written as A = A x {i} = (U{k:wpi} By) x {i} with By, C Y}, one has

Let 7 be the “projection” from X to [0, 1] defined by 7(y,i) = T%(y). Then, one has
noT =Tor.
Indeed, if i < py (y) — 1, then T'(y,i) = (y,i + 1) so that
moT(y,i) =n(y,i+1) =T (y) = Ton(y,i).
If i = oy (y) — 1, then T(y,4) = (T** ¥ (y),0) so that
moT(y, oy (y) — 1) = T*W(y) = T(T? W~ (y)) = Tom(y, oy (y) — 1)

Assume now that T preserves the probability # on X, and let v be the image measure of ¥
by w. Then, for any measurable and bounded function f,

v(f(T) =o(f(Tom)=v((for)(T)) =v(fom) =v(f),

and consequently v is invariant by 7.
The map T can be modelled by a Young tower if:

1. For any k € {1,..., K}, T% is a measurable isomorphism between Y; and Y. Moreover
there exists C' > 0 such that, for any k € {1,..., K} and almost every z,y in Y,

(T#r) ()

L Ty

< O[T () = T (y)l -

2. There exists C' > 0 such that, for any k£ € {1,..., K} and almost every z,y in Y}, for any
i < Pk, . .
T (x) = T*(y)| < CIT%(x) = T (y)] .-
3. There exists 7 > 1 such that, for any k£ € {1,..., K} and almost every x,y in Yj:

[T () =T (y)| = 7lz —yl.

4. 8 oA (V) < o0.



If T can be modelled by a Young tower, then, on the tower, there exists a unique T-invariant
probability measure 7 which is absolutely continuous with respect to m. Hence, there exists
a unique T-invariant measure v which is absolutely continuous with respect to the measure A
(see [8], Proposition 1.3.18). This measure is the image measure of by the projection 7 and is
supported by
A= T
n>0

Let Y be the basis of the tower, that is Y = {(y,0),y € Y}. Let ¢y be the function from
Y to {¢rtreqr,... iy such that oy ((y, 0)) = ¢y (y). By definition of T one gets T (Ayo) =Y.
In addition, the quantity 7({(y,0) € Y : ¢y ((y,0)) > k}) is exactly of the same order as
AM{y €Y :py(y) > k}) (see [8], Proposition 1.1.24).

On the tower, one defines the distance s as follows: s(x,y) = 0is x and y do not belong to
the same partition element Ay ;. If x = (a,i) and y = (b,4) belong to the same Ay ; (meaning
that a and b belong to Y}), then d(x,y) = B5=Y) for 8 = 1/7, where s(z,y) is the smallest
integer n such that S"(a) and S™(b) are not in the same Yj.

Because of Item 3, we know that |S’| > 7 > 1, so that S is uniformly expanding. For
z = (a,i) and y = (b,7) in Ay, one has

[m(z) = 7(y)| = |T"(a) = T'(b)| < C|T?*(a) — T+ (b)|

by Item 2. Since T¥* = S on Y}, and since |S’| > 7, it follows that

(@) — n(y)] < € < G,

Now, if z and y do not belong to the same partition element Ay, ;, then |7 (z)—7(y)| < Bs@y) = 1.
It follows that there exists a positive constant K such that

m(z) — 7(y)| < KBEY),

meaning that 7 is Lipschitz with respect to the distance 6.
Among the maps that can be modelled by a Young tower, we shall consider the maps defined
as follows.

Definition 4.1. One says that the map T can be modelled by a Young tower with polynomial
tails of the return times of order 1/ with v € (0,1) if \{y € Y : oy (y) > k}) < Ck~/7.

Let us briefly describe some properties of such maps. For a € (0, 1], let 6, = %, let L, be
the space of Lipschitz functions with respect to d,, and let

(4.1)

For any positive real a, let L, 4 be the set of functions such that L.(f) < a.
Denote by P the Perron-Frobenius operator of T' with respect to v: for any bounded mea-
surable functions ¢, v,

v(p v oT)=0v(P(p)¥).

Let T be a map that can be modelled by a Young tower with polynomial tails of the return
times of order 1/. Then one can prove that (see [13] and Lemma 2.2 in [7]): for any m > 1
and any « € (0, 1], there exists C, > 0 such that, for any ¢ € L,,

[P () (x) = P"(¥)(y)| < Cabal,y)La(®). (4.2)



Moreover, starting from the results by Gouézel [8], we shall prove in Proposition 5.3 of the
appendix that, for any « € (0, 1] there exists K, > 0 such that

o swp [P~ H(D)]) < (43)

feLa 1 - n(lf’Y)/“f

A well known example of map which can be modelled by a Young tower with polynomial tails
of the return times is the intermittent map 77, introduced by Liverani et al. [12]: for v € (0, 1),

I (x) = {;:(1 +227)  ifae[0,1/2]

r—1 if v € [1/2,1]; (4.4

For this map, A is the Lebesgue measure on [0, 1] and one can take Y =|1/2,1]. Let zo = 1,
and define recursively z,1 = T '(x,) N [0,1/2]. One can prove that z, = L(yn)~Y7. Let
then y, = T,Y_l(xn_l)ﬂ}l/Q, 1]. The yi’s are built in such a way that Y, =|yki1,ys] is the
set of points y in Y for which Tf(Yk) = Y. One can verify, by controling explicitely the
distortion, that the items 1,2 and 3 are satisfied with ¢ = k. Item 4 follows from the fact that

2 L EANYR) < C Y002 kk~(0+D/7 < oo, since « € (0,1). Moreover, one has

MyeY oy(y) >k}) = Z)\ Y;) < Ck™V7,
i=k+1

so that the tail of the return times is of order 1/~.

4.2 Moment and deviation inequalities for the empirical process

For any ¢ € [2, 00/, let
! 1/q
= ([ 1Gaoar) ", (1.5
0
where G, is defined by

Gn(t) = (1peey, — v([0,8])) , t €[0,1]. (4.6)

l = su l kY — v .
wDea= s 252 (r —uh)]. (47)

where ¢ = ¢/(¢ — 1) and Wy ; is the Sobolev ball

,1_{ /|f yqda:<1} (4.8)

Consequently, a moment inequality on D, ;, provides a concentration inequality of the empirical
measure of {T,72,---,T"} around v, on a class of smooth functions. Note that, the class
Wy 1 is larger as ¢ increases, and always contains the class of Lipschitz functions with Lipschitz
constant 1.

In what follows, we shall denote by || - ||, the LP-norm on ([0,1],v)

Theorem 4.1. Let T be a map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/~ with v € (0,1/2), and let py = 2(1 —~)/7y. For q € [2,00[ let Dy, 4
be defined by (4.5). Then, there exists a positive constant C' such that for any n > 1,

< Cv/n.

H max Dy,

1<k<n Py, V

10



As a consequence of Theorem 4.1, for any v € (0,1/2) and any positive real z,

C
> —_.
”(f?;?f Drq xf) 22017
In addition, proceeding as at the beginning of page 872 of the paper [1], we infer that, under
the assumptions of Theorem 4.1, for any real p > 2(1 — «)/~, there exists a positive constant C'
such that, for any n > 1,

H max Dkq‘ < Cnlwtr—D/0m)

1<k<n

vV

Let us examine now the case where v > 1/2.

Theorem 4.2. Let T be a map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/y with v € [1/2,1). For q € [2,00], let D,, 4 be defined by (4.5).

1. There exists a positive constant C such that for any n > 1,

‘ max D, 4 < C(nlogn).

1<k<n Hl/yw

2. If p > 1/, then there exists a positive constant C' such that for any n > 1,

< cnlPty=1/0wp)

P,V

max D ‘
H1<k<n k.

For the optimality of the moment bounds of Theorems 4.1 and 4.2, we refer the paper by
Melbourne and Nicol [14] and to the recent paper by Gouézel and Melbourne [10]. Since, for
q > 2, the class Wy 1 contains the class of Lipschitz functions with Lipschitz constant 1, one can
apply Proposition 1.1 and 1.2 in [10], showing that these bounds are optimal. See also Remark
4.1 below for more comments about the optimality.

Theorem 4.3. Let T be a map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/v with v € (1/2,1). For q € [2,00], let Dy, be defined by (4.5).
Then, there exists a positive constant C' such that for any n > 1 and any positive real x,

1/( max Dy, > :U?”ﬂ) < Cz V7, (4.9)
1<k<n

Applying Theorem 4.3, one gets for p € [1,1/7],

) 0o nYy o0 1
— p/ :cp_ly< max Dy, > :):)dm < p/ 2P dx + C'np/ Tl
0 0

P,V 1<k<n ny rl+y

‘ max Dy q‘
1<k<n k,

Consequently, for p € [1,1/v], there exists a positive constant C' such that

H max ijq‘ <Cn”.

1<k<n

p,v

Remark 4.1. Inequality (4.9) cannot hold for v = 1/2. Indeed, for the map T, defined in (4.4),
Item 1 of Theorem 1.1 in [2] implies that, for any positive real x,

lim v

1
n—00 (\/nlogn

where N 1is a real-valued centered Gaussian random variable with positive variance. In addition,
for vy € (1/2,1), Item 2 of the same paper implies that

Dn72>x) =P(|N|>z) >0,

. 1
lim u(HDng > t) —P(|Z,| > t) >0,

n—00

where Z., is an 1/y-stable random variable such that lim,_, 2'/7P(|Z,| > 2) = ¢ > 0.

11



4.3 Application to the Wasserstein metric between the empirical measure
and the invariant measure

Let us give an application of the results of Section 4.2 to the Wasserstein distance between the
empirical measure of {T,T?,...,T"} and the invariant distribution v. Recall that Wasserstein
distance W between two probability measures 1 and v on [0, 1] is defined as

Wi (v1,v9) = inf { / |z — y|p(dz, dy), n € M(Vl,VQ)} .

where M(v1,12) is the set of probability measures on [0, 1] x [0, 1] with margins 14 and 5. Recall
also that, in this one dimensional setting,

1
Wi (v, vm) = /0 \Fon(t) — Fin(t)dt

where F,, and F), are the distribution functions of v; and vy respectively. Therefore, setting

1
vn = ; Opi
we get that for any ¢ > 2,
Wi (vp,v) < %Dn,m
The following corollary is a direct consequence of the results of Section 4.2.

Corollary 4.1. Let T be a map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/v with v € (0,1).

1. If vy €(0,1/2), then |Wi(vp,v)|h, < n= ="/ foranyp >2(1—7~)/7.
2. If y€[1/2,1), then

n~=1/ogn ifp=1/y

p
HW1<VmV)”p,V < {n(l’y)/'y ifp>1/y.

3. If v € (1/2,1), then, for any n > 1 and any positive real x,
Z/(Wl(l/n, v) > :Mﬂ_l) < x M,

In their Theorem 1.4, Gouézel and Melbourne [10] obtain general bounds for the mo-
ment of separately Lipschitz functionals of (T,T2,...,T"), where T is a (non necessarily one-
dimensional) map that can be modelled by a Young tower with polynomial tails of the return
times.

As a consequence of their results, one gets the same inequalities as in Corollary 4.1 but for
the quantity Wi (v, v) — E(W1(un,v)) instead of Wi (vy,v). Note that the upper bounds for
Wi (v, v) — E(W1(pn, v)) are valid if T' is nonuniformly expanding from X to X', where X’ can
be any metric space.

The two results are not of the same nature. However, in our one dimensional setting, the
moments bounds of Corollary 4.1 imply the same moment bounds for Wi (v, v) —E(Wi (pn, v)),
because (E(Wi(vp,v)))P < ||[Wi(in,v)||p. The same remark does not hold for the deviation
bounds, which are not directly comparable.

To conclude this section, let us mention that there is no hope to extend Corollary 4.1 to
higher dimension with the same bounds. To see this, let us consider the case of R%valued
random variables (X1, Xo, ..., X,,) that are bounded, independent, and identically distributed.
Let v, be the empirical measure of {X;, Xs,..., X,,} and v be the common distribution of the
X;’s. It is well known that, when d > 3 and v has a component which is absolutely continuous
with respect to the Lebesgue measure, E(W1 (v, v)) is exactly of order n~'/¢ which is much

slower than n~1/2.
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4.4 Moment and deviation inequalities for partial sums

In Theorem 4.4 below, we assume that 7' is a nonuniformly expanding map on (X, \) with A
a probability measure on X, and that 7" can be modelled by a Young tower. Contrary to the
previous sections, X can be any bounded metric space and not necessarily the unit interval. Let
f be a Hélder continuous function from X to R and S,,(f) = Y1 (f o T* — v(f)).

Theorem 4.4. Let T be a map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/v with v € (0,1).

1. If v € (0,1/2) then H max \Sk(f)]Hp < P~ for any p > 2(1 — ) /7.
— _n p7l/

2. If y € [1/2,1), then

| max 5]

1<k<n

P nlogn ifp=1/y
< .
PV nP= =N/ ifp > 1/,

3. If y € (1/2,1), for any n > 1 and any positive real x,

¥ =1/
V(lrél%xnlsk(f)\ >axn ) <Lz .

The proof is omitted since it is a simpler version of the proofs of Theorems 4.1, 4.2 and 4.3.
Indeed the norm | - |4 is replaced by the absolute values and we do not need to deal with the
supremum over a subset of the class of Holder functions of order 1/q.

After this paper was written, we became aware that, using different methods based on
martingale approximations, Gouézel and Melbourne [10] had independently obtained the upper
bounds given in Theorem 4.4 (but for |S,,(f)| instead of max;<x<p, |Sk(f)])-

As in Section 4.2, applying Propositions 1.1 and 1.2 in [10], we see that the moments bounds
of Theorem 4.4 cannot be improved.

Note also that, for the map T’ defined in (4.4), we can make a similar remark as Remark 4.1:
Firstly, Inequality (4.9) cannot hold for v = 1/2. Indeed by Item 3 page 88 [9], if f(0) # v(f),
for any positive real z,

. 1 _
nlggov(m|sn<f>\ > ) =P(N| > ) >0,

where N is a real-valued centered Gaussian random variable with positive variance. In addition,
for v € (1/2,1), Theorem 1.3 of the same paper implies that

lim v(|S,(f)| > an?) =P(|Z,| > z) >0,

n—oo

where Z, is an 1/v-stable random variable such that lim,_, 2'/7P(|Z,| > z) = ¢ > 0.

For the intermittent map 7', defined in (4.4), Theorem 4.4 also holds for observables with
bounded variation (BV). More generally, Theorem 4.5 below shows that the conclusions of
Theorem 4.4 also hold when we consider BV observables of the iterates of T’,, where T, is a
generalized Pomeau-Manneville map (or GPM map) of parameter v € (0,1) as defined in [4].

Theorem 4.5. Let T, be a GPM map of parameter v € (0,1) on the unit interval, with invariant
measure v~. Let f be a BV function from [0,1] to R. Then Items 1,2 and 3 of Theorem 4.4 hold

for Sn(f) = 301 (f o T = vy (£))-

13



4.5 Proofs of Theorems 4.1, 4.2, 4.3 and 4.5

Proof of Theorem 4.1. For any ¢, let f; be the function defined by fi(x) = 1,<;. Notice first
that, for any p > 1,

max
v 1<k<n

A \ (triz) 0. 00w
/ ‘Z ftoTow—y(ftow)‘ ‘p/q)
/ ‘Z fto7roT —v(fiom) ‘ dt)p/q)

Let g¢ == from and G(x) = {g:(z),t € [0,1]}. Denote by ||, the norm associated to the Banach
space B = L9([0, 1], dt). With these notations, we then have

max D )
H1<k<n k.a

::V max
1<k<n

::V max
1<k<n

k
S (T - D(G(Ti)))‘p) . (4.10)

H max Dy q‘
7

= 17( max
1<k<n N7

1<k<n
Let now (X;);en be a stationary Markov chain defined on a probability space (€2,.4,P), with
state space X, transition probability P and invariant distribution 7. Recall then (see for instance
Lemma XI.3 [11]) that for every n > 1, we have the following equalities in law (where in the
left-hand side the law is meant under 7 and in the right-hand side the law is meant under P)

n d
(..., 1)L (X1,..., X,)

Joax | Z HG(TY))], = max | Z (G (4.11)

Therefore, starting from (4.10) and using (4.11), we infer that for any real p € [1, 0o,

‘ max D 7q)

P
= IE( max
1<k<n v

1<k<n

< 2E( max ‘Zk:(a(xi) —E(G(Xi)))D. (4.12)
=1

1<k<n
1=

Whence, Theorem 4.1 will follow if one can prove that there exists a positive constant C such
that for any n > 1,

2(1—9)

k -
Y (@(x) —E(G(XZ-)))‘ g ) <Cn7 . (4.13)

IE( max
q

1<k<n

With this aim, we shall apply the Rosenthal type inequality (5.2) given in Appendix, with
p = 2(1 — ) /v (note that p > 2 since v € (0,1/2)). Letting Fr = o(X;,i < k) and GO =
G —E(G(Xy)), this leads to

2(1—v) 2(1—7)
E( max T ) <nB(IG(X0)l,
1<k<n

n (1—7)

+"(kzkl+wuH (’ZG ) T @
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where 0 = min(1/2,v/(2 — 4v)). To handle the terms HE0(| ZZ L GO ‘ H 1))y I In-

equality (4.14), we shall use Inequality (2.2) which together with Item 1 of Lemma 1.1 leads
to

k k k
Bo(| 200 x0|) < 220 - 8) 3 3 BolI6 (X o[BGO (X))
i=1 K i=1 (=i
k k
<2020~ 3) 30 D BoIE(GO (X)),
i=1 0=i

where for the last inequality, we have used the fact that for any i, |G(®(X;)|, < 1 almost surely.
Hence

HEo(\ZG

Let us now handle the term ||Eq(|E;(G©) (Xe)lg)ll(1—y)/y in Inequality (4.15). With this aim,
we first notice that

k k

)H 1—) /v 2(2q -3 ZZ”EO Ei (G (X))l (1—) /7 - (4.15)

i=1 (=i

1
(GO (X))|2 = /0 IE(Lr(x) <t Xi) — E(Lrix,)<t)|"dt .

Again by a duality argument (as to prove (4.7)), we have

1
/0 [E(Lr(x)<tlXi) = E(Lr(x,y<e)|"dt = , Sup | Pr(xpix, (h) = Prxpy (M)
a1

where the Sobolev ball Wi, ; is defined in (4.8), Pr(x,)x, is the conditional distribution of 7(X)
given X;, and Pr(x,) is the distribution of 7(Xy). Therefore

Ei(GO(Xe)g = sup |Prixpixi(h) — Pegx,)(R)| = sup |Px,x,(hom) — Px,(hom)],
hGWq/J hGWq/,l

where Py, y, is the conditional distribution of Xy given X;, and P, is the distribution of X,.
Notice now that if f € Wy ; then for any z and y in [0, 1],

) - swi=| [ roa] <te oo [ 1700 a)"

Wg1 CHygrs

where Hj/, 1 is the set of functions that are 1/¢-Hélder with Holder constant 1. It follows that,
for any h € Wy 1, there exists a positive constant C' such that

Therefore,

lhom(a) —hor(y)l < In(@) — w7 < Coyyq(a,y).
proving that h o 7 belongs to the set L/, o defined right after (4.1). Let now
fooin(@) i= | Pypxme (o @) — P (hom)| = [P (h o m)(@) - p(ho ).
Using the triangle inequality, we have

|[femin(@) = femin(y)| < [P (hom)(x) = P (hom)(y)] -
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Since h o 7 belongs to Lj 4 ¢, the contraction property (4.2) entails that

| fo—in(z) = frmin(y)] < CCy g1 /(2. y) -
Let C = CC /4. We have shown that, for any h € Wy 1, fo—in € Foi C Ll/qé' Then, setting

my—i(x) = sup fo—in(x)
hEWq/’l

we have my_;(z) = supger, , 9(z). Therefore, if my_;(z) > my_i(y),

me—i(@) = me—i(y) = go(2) — 9y (y) < 92(2) — go(y) < C1/4(2,)

since Fy_; C L So overall,

1/¢,C"
E(GO(X0))lq — BEA(GO(X0))lg = me—i(Xi) — B(mp—i(X5)),

with my_; € L, Ja.C Next, using (4.3), it follows that there exists a positive constant C' such

that, for any ¢ > 1,

1o ([E(G® (Xe))lg) = EIE(GO(Xe)gll = 1P (me—s) = #(me—i)|1 < Cim D1 (4.16)
Using similar arguments we infer that there exists a positive constant C such that, for any
C>i+1,

E(G (X))l = (GO (Xe—i))lqlln

§1/( sup | PE( )—I?(g)|) <O —i)y~ =DM (417)

gGLl/q &

We control now the quantity Zle Z?:z | Eo (JE; (G©) (Xe) gl (1—)/y with the help of (4.16)
and (4.17). With this aim, we first write the following decomposition:

ko k
DY IEo(BA(G (X)) /VSZ Z I1E: (GO (X0))lgll o
i=1 (=i

i=1 4=21+1

k2
) ) B (JE(GO(X0))lg) — EIE(GO (X)) gl 1 /ﬁZZH\E 0(Xe))lgl

i=1 (=i i=1 (=i

Next, since (1 —+)/y > 1 and for any i, |G(®(X;))|, < 1 almost surely, we get

k
ZHEO(‘Ez‘(G(O) D=/ < Z Z E(GO(X)))], H’Y/(l

M=

=1 4=i =1 0=2i+1
21
1-2y
+27 ZZHEO<|E1<G<°><X3>>|(1>—E|Ez-<G<0>< DIl - ”+ZZH|E (X)) gl -
i=1 ¢=i i=1 {=i

Therefore, using (4.16) and (4.17), we derive that

k
S5 IE(EAGO XDl a4

k
i=1 0=1

kol
ko
kol
l\')

ZZ% +ZZ <k. (4.18)

i=1 6:2z+1 i=1 (=i i=1 ¢= H»l 'Y




So starting from (4.14) and taking into account (4.15), (4.18) and the fact that v/(1 —v) < 1,
we get

E( Zk:GXA — E(G(X; ‘w)< + (Zn: v )(1_7)/(67) < n=0n
max | ) (G(Xi) —E(G( z)))q <ntn L T+ /) " ’

which completes the proof of (4.13) and then of the theorem. ¢

Proof of Theorem 4.2. We keep the same notations as in the proof of Theorem 4.1.
We start by proving Item 1. By (4.12), it suffices to prove that there exists a positive constant
C such that for any n > 1,

/v

q

k
> (G(X0) ~ B(G(X)|

1=

]E( max
1<k<n

) < Cnlogn. (4.19)

Assume first that v = 1/2. Applying Inequality (2.3), taking into account the stationarity and
the fact that |G(X1) —E(G(X1))]q < 1 almost surely, we derive

k n
> (Gx) —EGx)| ) <0t 0 Y B GO (Xl

i=1 k=1

E( max
1<k<n

Therefore, using (4.17), it follows that

k n
> (G(Xi) - E(G(Xi)))‘;/w) <n+nd k'
i=1 k=1

E( max
1<k<n

proving (4.19) in the case v = 1/2. We turn now to the proof of (4.19) when v € (1/2,1). With
this aim, we apply the moment inequality (with p = 1/~) stated in Proposition 5.1. This leads
to

1/v
IE( max
1<k<n

k n—1
> (G(Xi) - ]E(G(Xi)))‘q ) < Oy 3 (k4 DO Eg (GO (X))l
=1 k=0

where C, is a positive constant depending only on 7. Therefore, for any v € (1/2,1) using
(4.17), we get

i(G(Xi>—E<G< x| ") < énla +Zk Y

E( max
q

1<k<n

proving (4.19) in case vy € (1/2,1). This ends the proof of Item 1.

We turn now to the proof of Item 2. By (4.12), it suffices to prove that, for v € [1/2,1) and
p > 1/, there exists a positive constant C' such that for any n > 1,

k
> (G(X) ~ B(G(X1)

IE( max
1<k<n

p) < PO/, (4.20)
q

We shall distinguish two cases: (p > 2 and p > 1/v) or p €]1/v,2[. We first consider the case
where p > 2 and p > 1/v. To prove (4.20), we shall apply Inequality (2.3). Taking into account
the stationarity and the fact that |G(X;) — E(G(X1))|q < 1 almost surely, we derive

k n
> (G —EGeaN)|") < w23 Nl )"

i= k=0

E( max
1<k<n
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Next, using (4.17) and the fact that 2(1 — v)/(yp) < 1, Inequality (4.20) follows.
We consider now the case where p €]1/7,2[. Using, once again, the moment inequality stated
in Proposition 5.1, we get

k n—1
> (GX:) ~BGX))|') < Cpn Y- (k+ 1" [Baf GO (X))l

1= k=0

IE( max
1<k<n

where C), is a positive constant depending only on p. Using then (4.17) and the fact that p > 1/7,
(4.20) follows. This ends the proof of the theorem. ¢

Proof of Theorem 4.3. We keep the same notations as in the proof of Theorem 4.1. Notice
first that, for any non-negative x,

1/( max Dy, > x) :ﬂ( max /01‘g(ftOTiow—D(ftOW)‘thyl/q Z;r)

1<k<n 1<k<n

1, k
_ — a (1/q
(g | [ 1 teome T = stomf'a] ™ =)

a( max zk:(G(Ti) —D(G(Ti)))( > x)

1<k<n

According to (4.11),

DG - BGX))| 2 2)

y( max Dy, > a:) :]P’( max
q

1<k<n 1<k<n

1=

k

> (G(X3) ~ E(G(X.)

=1

< ]P’( max
1<k<n

The theorem will then follow if we can prove that, for any positive real x,

k
> (G(X:) ~ E(G(X1)

1=

IP’( max
1<k<n

> 4:,;) < nz~V7, (4.21)
q
Obviously, it suffices to prove it for z < n/4 since otherwise the left-hand side is zero so the in-
equality is trivial. To prove (4.21) when = < n/4, we apply Inequality (5.4) with ¢ = max([z], 1).
Using (4.17), this leads to the following inequality: for any positive real z < n/4,
[]

n
24%) 1/7 2];:: k+1 A=y)/v’

Mw

< max
1<k<n

E(G(X))|,
‘:1

and (4.21) follows. ¢

Proof of Theorem 4.5. We start by proving that Item 1 of Theorem 4.4 holds for S,(f) =
Sy (f o T — vy(f)) where T, is a GPM map of parameter v € (1/2,1) and invariant measure
vy, and f is a BV function. With this aim, we first note that when (X;);cz is a stationary
sequence of real-valued random variables adapted to an increasing filtration (F;) and such that

P(|Xo| < M) =1, Theorem 6 and Lemma 19 in [15] imply the following moment inequality for
the maximum of the partial sums of (X;);ez: for any p > 2 and any positive integer n,

2 ( o | ZX ") < "p”(ZAk) %ol
k

(S l) (5 (58 0

Jj=1
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where § = min(1,1/(p — 2)) and

Ay = max ([Eo(X,) 1, 5up [Eo(X,X,) ~ E(X: X)) for j > 0. (4.23)
127

The constant that is implicitly involved in the notation < in (4.22) depends only on p, ¢ and
M. Let now (Y;);en be a stationary Markox chain defined on a probability space (€2, .4, P) with
state space [0, 1], invariant measure v, and transition kernel K, given by the Perron-Frobenius
operator of T, with respect to v,,. Let X, = f(Yy) — v (f). Slnce the law of (7,...,T%) under
v, is the same as that of (Y},,...,Y7) under P, it follows that for any positive real T,

> <
oo 19k 2 2) <P o |

> w) , (4.24)

implying that, for any real r € [1, o],

k
D Xi

| max 5,(7)]

1<k<n T,Vy

< 2TIE< max
1<k<n

) . (4.25)

Starting from (4.25) with r = p, using (4.22) and taking into account that there exists a positive

constant C such that for any k£ > 1,
C

M S par
(see Proposition 1.17 in [4]), Item 1 easily follows. To prove Item 2 (resp. Item 3) it suffices to
start from (4.25) (resp. (4.24)) and to use Inequality (5.5) when p €]1/7,2[ or Inequality (2.3)
when p > 2 and is strictly larger than 1/ (resp. Inequality (5.4)) and to use the upper bound

(4.26). O

(4.26)

5 Appendix

5.1 A Rosenthal-type inequality for stationary sequences

In this section, for the reader convenience, we recall the Rosenthal-type inequality stated in
[6] (see Inequality (3.11) therein). This inequality is the extension to Banach-valued random
variables of the Rosenthal type inequality given by Merlevéde and Peligrad [15].

Let (2, A,P) be a probability space, and 6 : 2 — Q be a bijective bimeasurable transforma-
tion preserving the probability P. For a o-algebra JFy satisfying Fo C T~ (Fy), we define the
nondecreasing filtration (F;);cz by Fi = 6~¢(Fo). We shall use the notations Ex(-) = E(-|Fy).

Let X be a random variable with values in B. Define the stationary sequence (X;);ez by
X; = XgoT?, and the partial sum S,, by S, = X1 + Xo + --- + X,.

Theorem 5.1. Assume that Xo belongs to LP(B) where (B, |- |g) is a separable Banach space
and p is a real number in |2, 00[. Assume that Xy is Fo-measurable. Then, for any r >0,

N (1 RS I, \ P
E(lgﬁx 1Si18) < 2E(1 Xol}) +2 kz_o s , (5.1)

where § = min(1/2,1/(p — 2)).
Remark 5.1. The inequality in the above theorem implies that for any positive integer n,

n

p/(26)
1
E( max 513) < nE(|Xolf) +n (Z R ||Eo<|skrﬁ>up/g> .62
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5.2 A deviation inequality

The following proposition is adapted from Proposition 4 in [5]. It also extends Proposition 6.1
in [2] to random variables taking values in a separable Banach space belonging to the class

62(2, 62).

Proposition 5.1. Let Y1,Ys,...,Y, be n random variables with values in a separable Banach
space (B,| - |g) belonging to the class C2(2,c2). Assume that P(|Yilp < M) = 1 for any k €
{1,...,n}. Let Fi,...,Fn be an increasing filtration such that Yy is Fp-measurable for any

ke{l,....,n}. Let Sp, =3 1 Yk, and for k € {0,...,n — 1}, let
6(k) = max {E(\E(mﬂ_k)m),i e{k+1,... ,n}} . (5.3)

Then, for any q € {1,...,n}, and any x > qM, the following inequality holds

-1
nb(q) 4ea K2nM %
P 19k 2 de) < Z B e+ =557 300, (5.4)

where K = y/max(co,1). In addition, for any p € [1,2],

4P+ 1pCQK2

n—1
- )Mp_ln 3 (k+ 1)P20(k) . (5.5)

k=0

p < ( P
E( max |Silp) < (4"p+

Proof of Proposition 5.1. Let Sy = 0 and define the random variables U; by: U; = Siq—S(i,l)q
fori e {1,...,[n/ql} and Up,/g41 = Sn — Syjn/q- By Proposition 4 in [5], for any = > Mg,

[n/q]+1 [n/q]+1

1 C2 2
P( max [Sifs > 4x) < > BBUIF o)) + 35 30 BV = BUIF-n)lf)
1 [n/q]+1 des [n/q]+1
<— > E(EUlFi-p)lk) + — D> E(U). (56)
1=3 i=1

Z E(|E(Ui|f(if2)q)‘B) <nb(q)1g<n - (5.7)
1=3

To handle the second term in (5.6), we use Inequality (2.2) with p = 2. This leads to the
following upper bounds: for any i € {1,...,[n/q]},

1q 1q
E(UR) <K* > > E(YilsE(Y;F)s) .
k=(i—1)q+1 j=k

and

E(|Upnsgs1la) < K2 > D E(|ValslE(Y;|Fe)l) |
k=q[n/q]+1 5=k

where K = y/max(cz, 1). Using the fact that P(|Yy|p < M) =1 for any k € {1,...,n} and that

(0(k))k>0 is a non-increasing sequence, we then derive that, for any i € {1,...,[n/q]},
iq iq q—1
E(Uilf) < K*M > > 0 —k) < K*Mg) 0(k),
k=(i—1)q+1j=k k=0
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and

n n q—1
E(|Upjgeli) < K°M Y D 0 —k) < K*M(n—qln/q) > 0(k).
k=q[n/q|+1 j=k k=0
Whence
[n/q]+1 q—1
> E(UIR) < K2MnY " 0(k). (5.8)
=1 k=0

Starting from (5.6) and using the upper bounds (5.7) and (5.8), Proposition 5.1 follows. ¢

5.3 A maximal inequality

Proposition 5.2. Let n > 2 be an integer and Y1, Ys, ..., Y, be n random variables with values
in a separable Banach space (B, |- |g). Assume that P(|Yi|p < M) =1 for any k € {1,...,n}.
Let F,...,Fp be an increasing filtration such that Yy is Fy-measurable for any k € {1,...,n}.
Let Sp =>4, Yy and 0(k) be defined by (5.3). Then, for any real p > 1, the following inequality
holds:

n—2
1/ 2p \»r _ _ _
P p p—lap, 7 rp—1 p—2
E(l@%n‘sk‘ ) 2( 1) E(|Sn|p) + 2P~ 3PpM nkg_o(k—i—l) 0(k).

Proof of Proposition 5.2. All along the proof, Ex(:) = E(:|F)). We start by noticing that
Sk = Ex(Sn) + Ex(Sk — Sn) -
Therefore
E(lrgl?écn\Sk\@ < or- 1E( max [Ex( n)\g) +op- 1E( max [Ex (S, —Sk)v’)
Notice now that (|Ex(Sy)|, Fx)i<k<n is a submartingale. Therefore by the Doob’s maximal
inequality,

1<k<n 1

E( max [Ex(5018) < (25) ESal)-

So, overall,

E(lgl?gnwp) §21(pQ_pl)pE(\Sn\§;) +or 11@( max [x(S, ~SlL).

To end the proposition, it remains to prove that

n—2
_ p D p—1 p—2
E(lglggn IEx(Sn — Si)| ) < 3PpM nkz_o(k + 1P 20(k) . (5.9)

With this aim, we write

nM
IE( max |Ex(S, — Sk)]p> —p/ xp_1P< max |Ex(S, — Sk)lp > :U)d

1<k<n 1<k<n

Let ¢ be a non-negative integer such that ¢ < n. Notice that

i=k+1 B i=k+1 i=k+1 B
But
q+k
|0 BB ()| = | DD (Be(X) ~Eig(X0)| < 201
i=k+1 i=k+1



Therefore, for any real x such that = € [0, n], choosing ¢ = [z], we get

— <
P, IBu(S0 = Suls > 304z) <P, |

Zn: M(Ei,m(&))]ﬁ > Mx)
1

< P g B B (K0l > ).
- =2

But (B (Y7 [Ei)(X:)|); Fk)i<k<n is a martingale, so the Doob-Kolmogorov’s inequality
implies

<1I<HI?<XnEk<Z|Ez (2 (X |IB> > MCL‘) < —ZE Josr Xi)lg) < niw([i])

So, overall,

n/3
E( max. \Ek(S —SK)|R) =p(BM)P / xp_llP’( max |Ex(S, — Sk)lp > 3Mx>dx
0

1<k 1<k<n
n/3
< SPpMpln/ 2P720([z])dz
0

proving (5.9) by using the fact that (0(k))x is a non-increasing sequence. The proof of the
proposition is therefore complete. ¢

5.4 Proof of Inequality (2.3)
Proposition 5.2 together with Inequality (2.2) leads to

E( max [Sk|R) < 2_1<p2—pl) Kp<z max H|X1'|B‘ iE(XkU:z')‘]BHp/Q)p/
P k=i

1<k<n = i<l<n
n—2
+ 207 13PpMP 0> "(k+ 1)P20(k) . (5.10)
k=0
Since P(|Xy|lp < M) =1 for any k € {1,...,n}, it follows that
l n—1
, : 2-2/ 2/
3= Il SR, <o S, e
On the other hand, since (8(k))k>1 is non-increasing,
n—2 logy(n—1)—12¢+1_1 logy(n—1)
> (k+1)P20(k) = Z D (k+ 1P Pok) <2072 Y 2fmlg(2f).
k=1 k=2¢ =0

Hence, using the fact that p > 2 and again that (6(k))x>1 is non-increasing, we successively
derive

02 logy (n—1) o2
Stk 1y o <272 YD 2fenge(e))
k=1 /=0

logy(n—1)  2¢

< 2P~ 2(92/10 +2 Z Z 9(1-2/p) 92/p(2€)> »/2 < 22p3<7§k12/p92/p(k))p/2.

(=1 [=20-141 k=1
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Since p > 2, it follows that

n—2 n—1 9
3 (k4 1)P20(k) < 22 Pr/2 ( 3 k1—2/p92/1’(k))p/ : (5.12)
k=1 k=1

Starting from (5.10) and considering the upper bounds (5.11) and (5.12), the inequality (2.3)
follows. ¢

5.5 Dependence properties of Young towers

In this section, we assume that 7" is a nonuniformly expanding map on (X, ) with A a probability
measure on X, and that 7" can be modelled by a Young tower. As in Section 4.4, X’ can be any
bounded metric space and not necessarily the unit interval.

Proposition 5.3. Let T' be map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/~ with v € (0,1). Then the inequality (4.3) holds, that is: for any
a € (0,1] there exists Ko > 0 such that

<

v( sup [P"(f) = w(f)]

feLa,l

Proof of Proposition 5.3. The proof is a slight modification of the proof of Theorem 2.3.6

in 8] and is included here for the sake of completeness. In this proof, C' is a positive constant,

and C, is a positive constant depending only on a. Both constants may vary from line to line.
We keep the same notations as in Subsection 4.1. For f € L,, let

[fllze = La(f) + I f]loo -
Let fO = f —5(f). Since ||f Do < La(f), it follows that

If = 2(F)llLe < 2La(f) - (5.13)
Recall that one has the decomposition
Pif= > MNHAAy)+ D AdEByf +Cuf (5.14)
a+k+b=n a+k+b=n

where the operators A,,, B,, C, and E,, and are defined in Chapter 2 of Gouézel’s PhD thesis
[8] and A\p(f) = v(By(f)). In particular, Gouézel has proved that

Callflza
(k+1)A=-1/7

CallflLa

E < —_—
|| kf”La — (k—‘—].)l/’y

and By f|z. < (5.15)

Following the proof of Lemma 2.3.5 in [8], there exists a set Z,, such that, for any bounded

measurable function g,

[Cn(9)| < Cllglloc1z, (5.16)

and

] C
) < Crya=n

We now turn to the term >, ., A EByf in (5.14). Following the proof of Lemma 2.3.3.
in [8], there exist a set U, such that, for any bounded measurable function g,

(5.17)

[An(9)| < Cllglloolu,, ; (5.18)
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and

C

p(Up) < ——r. 5.19
V( ) — (n+ 1)1/7 ( )
Using successively (5.18) and (5.15), we obtain that
‘ > AaEkaf’ <C Y |EByflolu,
a+k+b=n a+k+b=n
1y
<Co Y. IBoflia—ri—rm
a+k+b=n k + 1)( h
1y,
<Colfllra = —. (5.20)
it (k +1)@E=9/7(b + 1)1/

We now turn to the term )
(2.21) in [8], if #(f) =0,

217 Byf) |
b=0

atbrben Aa(1y) - D(Bypf) in (5.14). From the last equality of

Callf Iz,
> B < Y 1Bl Y G

b>n—a b>n—a b>n—a
CallfllLa
= P ey (5.21)
From (5.21) and (5.18), if 7(f) =0,
n n—a ) n 1y
Aag) - (S oBn) )| < Calfln. S (5.22)
;} (;0 ) ; (n +1 - a)(l_W)/"/

From (5.13), || f —v(f)llz, < 2La(f). Hence, it follows from (5.14), (5.16), (5.20) and (5.22)
that

n . 1y, 1y,
P =)l < Calalf) (12“ * ;} (n+1—a)d-/ * WZ%H (k4 1)A=9/7(b + 1)l/w) ‘
(5.23)

From (5.23), (5.17) and (5.19), it follows that

_ " _ 1 " 1
y(lezsl 1P(f) — V(f)|> < Ca((n + 1)(177)/7 + ; (a+ 1)1/7(71 +1-— a)(lf“/)/v

1
. (524
+a+;zn (@ + D)V (k4 1)A=2/7(b + 1)1/7) ( )

All the sums on right hand being of the same order (see the end of the proof of Proposition 6.2
in [2]), it follows that there exists K, > 0 such that

v( sup [P(f) - w(f)]) <

fELa,l

and the proof is complete. ¢

5.6 Proof of Lemma 1.1

We shall only prove Item 1 since the proof of Item 2 uses the same arguments as for the L2
case. Set |z|g = ( [y [2(t)]|%dv(t)) Y9 and recall that Vp(z) = |z[j. Proceeding as in the proof of
Proposition 2.1 in Pinelis (1994), we infer that, for any x and w in L9,

Dm@mw=%me””Aywmww%wmuw
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and
D) (uyu) = 2(q — 1) (a(2)) '~ /X () |2 (t)|9 2 p(dt)
+2(2 - ) (wa(e)' ([

X

u()e(O]a(0]" ()’

Hence by the chain rule, it follows that

D20y (a) ) = pla — Vil [ 2Ol la
X
2
(= lely ([ welal2uian)”. 6.2

Item 1 then follows by using Holder’s inequality (and, for the case g > p, by taking into account
the fact that ([, v(t)|x(t)]q_2:n(t)u(dt))2 is non-negative). ¢
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