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Abstract

We give a sufficient condition for a stationary sequence of square-
integrable and real-valued random variables to satisfy a Donsker-type
invariance principle. This condition is similar to the L!-criterion of
Gordin for the usual central limit theorem and provides invariance
principles for a-mixing or §-mixing sequences as well as stationary
Markov chains. In the latter case, we present an example of a non

irreducible and non a-mixing chain to which our result applies.
Résumé

Nous donnons une condition suffisante pour qu’une suite station-
naire de variables aléatoires réelles de carré intégrable satisfasse le
principe d’invariance de Donsker. Cette condition est comparable au
critere L' de Gordin pour le théoreme limite central usuel. Nous en
déduisons des principes d’invariance pour les suites a-mélangeantes
ou [-mélangeantes, ainsi que pour les chaines de Markov station-
naires. Dans ce dernier cas, nous exhibons une chaine de Markov

ni irréductible ni a-mélangeante a laquelle notre résultat s’applique.
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1 Introduction

Let (2, A,P) be a probability space, and T : £ — Q be a bijective bimea-
surable transformation preserving the probability P. In this paper, we shall
study the invariance principle for the strictly stationary process (X o T%),
where X is some real-valued, square-integrable and centered random vari-

able. To be precise,write X; = Xy o0 T7,
S,=X;1+---+X, and Sn(t) = S[m] + (nt - [nt])X[nt]+1-

We say that the sequence (X o T") satisfies the invariance principle if the
process {n~Y2S,(t) : t € [0,1]} converges in distribution to a mixture of
Wiener processes in the space C([0, 1]) equipped with the metric of uniform
convergence.

One of the possible approaches to study the asymptotic behaviour of the
normalized partial sum process is to approximate S,, by a related martingale
with stationary differences. Then, under some additional conditions, the cen-
tral limit theorem can be deduced from the martingale case. This approach
was first explored by Gordin (1969), who obtained a sufficient condition for
the asymptotic normality of the normalized partial sums. One of the most
interesting cases arises when the sequence (X, o T%) admits a coboundary
decomposition. This means that (X, o T%) differs from the approximating

martingaledifferences sequence (My o T%) in a coboundary, i.e.
X()—M[):Z—ZOT (11)

where Z is some real-valued random variable.In this case, the invariance
principle and the functional law of the iterated logarithm hold as soon as
My and Z are square integrable variables. As shown by Heyde (1975), this
condition is equivalent to the convergence in L2 of some sequences of random
variables derived from the stationary process (Xo o T%). To say more on this

subject, we need the following definition.

Definition 1. Let M, be a o-algebra of A satisfying My C T~1(M,), and
define the nondecreasing filtration (M, );cz by M; = T=(M,). For any in-
tegrable random variable Y, we denote by E;(Y") the conditional expectation
of Y with respect to the o-algebra M;.

From Heyde (1975) and Volny (1993), we know that the stationary sequence
(X;) = (Xo o T%) admits the coboundary decomposition (1.1) with M in
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L?(M,) and Z in L?(.A) if and only if

ZEO(Xn) and Z (X_, —Eg(X_,)) converge in L. (1.2)
n=0 n=0

Consequently, the invariance principle holds as soon as (1.2) is satisfied. However,
criterion (1.2) may be suboptimal when applied to Markov chains or to
strongly mixing sequences (cf. Section 2, Remark 2).

To improve on condition (1.2) it seems quite natural to weaken the con-
vergence assumption. For instance, if we replace the convergence in L2 by
the convergence in L' in (1.2), then (1.1) holds with both My and Z in L.
Under this assumption, it follows from Gordin (1973) that a sufficient con-
dition for My to belong to L2 is: liminf,_ . n""/?E|S,| < +occ. In that
case, n~'/2S, converges in distribution to a normal law. Nevertheless, this
is not sufficient to ensure that Z belongs to L2, and therefore the invariance
principle may fail to hold(see Volny (1993), Remark 3).

The proofs of these criteria are mainly based on the martingale conver-
gence theorem. Another way to obtain central limit theorems is to adapt
Lindeberg’s method, as done by Ibragimov (1963) in the case of stationary
and ergodic martingale differences sequences. This approach has been used
by Dedecker (1998) who gives a projective criterion for strictly stationary
random fields. In the case of bounded random variables, this criterion isan
extension of the L'-criterion of Gordin (1973). In the present work, we aim
at proving the invariance principle for the stationary sequence (X;);cz under
this new condition. To establish the functional central limit theorem, the
usual way is first to prove the weak convergence of the finite dimensional
distributionsof the normalized partial sums process, and second to prove
tightnessof this process (see Billingsley (1968), Theorem 8.1). Let

Sn = max{|51|’ ’SQ|7 R |Sn’}

In the stationary case the tightness follows from the uniform integrability
of the sequence (nilgi)nw via Theorem 8.4 in Billingsley (1968). In the
adapted case (i.e. X; is M;-measurable) we proceed as follows: firstwe prove

the uniform integrability of the sequence (n_lgi)mo under the condition

Z XoEq(X,) converges in L' . (1.3)
n=0



In order to achieve this, we adapt Garsia’s method (1965), as done in Rio
(1995) for strongly mixing sequences. Second, we use both the uniform in-
tegrability of (n‘lﬁi)mo and Lindeberg’s decomposition to obtain the weak
convergence of the finite dimensional distributions. The invariance principle
follows then straightforwardly. In the adapted case, criterion (1.3) is weaker
than (1.2) and its application to strongly mixing sequences leads to the in-
variance principle of Doukhan et al. (1994). Furthermore, condition (1.3)
provides new criteria for stationary Markov chains, which cannot be deduced
from (1.2) or from mixing assumptions either.

In the general case we apply (1.3) to the adapted sequences (E;(X;_))icz,
for arbitrary large values of k. In order to obtain the uniform integrability
of the initial sequence (n‘lgi)mo, we need to impose additional conditions
on some series of residual random variables. As a consequence, this method

yields the invariance principle under the LL9-criterion

X, € L?, ZEO(X") converges in L7 and Z | X_n = Eo(X_p)llq < 00,
n=0 n=0

(1.4)
where ¢ belongs to [1,2] and p is the conjugate exponent of g. When X is
a bounded random variable, criterion (1.4) with ¢ = 1 yields the invariance
principle for stationary sequences under the L!-criterion of Gordin (1973).

The paper is organized as follows. Section 2 is devoted to background
material and to the statement of results. In Section 3, we study the uniform
integrability of the sequence (n_lgi)mo. The central limit theorems are
proved in Section 4. Next, in Section 5,we apply our invariance principle to
a class of functional autoregressivemodels which may fail to be irreducible.
Finally Section 6 collects the applications of criterion (1.3) to mixing se-

quences.

2 Statement of results

For any sequence (X;);cz of real-valued random variables, we consider the
sequences S, = X1+ -+ X,

S* = max{0,51,...,5,} and S, = max{|S|,|S|,...,[S.|}.

In this paper we give nonergodic versions of central limit theoremsand

invariance principles, as done in Volny (1993). With the same notations as
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in the introduction, an element A of A is said to be invariant if T'(A) = A.
We denote by 7 the o-algebra of all invariant sets. The probability P is

ergodic if each element of 7 has measure 0 or 1.

2.1 The adapted case

Our first result is an extension of Doob’s inequality for martingales. This

maximal inequality is stated in the nonstationary case.

Proposition 1 Let (X;);cz be a sequence of square-integrable and centered
random variables, adapted to a nondecreasing filtration (F;)icz. Let A be any

nonnegative real number and I'y, = (S§ > ).

(a) We have
n n—1
E((S; = A7) 4> E(XPIr) +8) | Xelp, E(S, — SilFi)1 -
k=1 k=1

(b) If furthemore the two-dimensional array (XpE(S, — Sk—1|Fk))1<k<n s
uniformly integrable then the sequence (n‘lgi)nw s uniformly inte-

grable.

In the stationary and adapted case, Proposition 1(b) yields the uniform in-
tegrability of the sequence (n_lgi)mo under condition (1.3). This fact will
be used in section 4 to prove both the finite dimensional convergence of the
normalized Donsker partial sum process and the following nonergodic version

of the invariance principle.

Theorem 1 Let (M;);cz be the nondecreasing filtration introduced in defin-
ition 1. Let Xo be a My-measurable, square-integrable and centered random
variable, and X; = Xo o0 T". Assume that condition (1.3) is satisfied. Then:

(a) The sequence (E(XE|T) 4 2E(X0Sn|Z))ns0 converges in L' to some non-

negative and Z-measurable random variable 7).

(b) The sequence{n='/28,(t) : t € [0,1]} converges in distribution in C ([0, 1])
to the random process \/n W, where W is a standard brownian motion

independent of L.

Remark 1. If P is ergodic then n = 0® = E(X§) + 2>, E(X,X;) and the

usual invariance principle holds.



2.2 Application to weakly dependent sequences

In this section, we apply Theorem 1 to strongly mixing or absolutely regu-
lar sequences. In order to develop our results, we need further definitions.
Definitions 2. Let U and V be two o-algebras of A. The strong mixing

coefficient of Rosenblatt (1956) is defined by
a(U, V) = sup{[P(U)B(V) —B(UNV)|:U U, V e VY. (2.1)

Let Py be the probability measure defined on (2 x QU @ V) by Pyey (U X
V) =P(U NV). We denote by P, and Py, the restriction of the probability
measure P to U and V respectively. The [-mixing coefficient (U, V) of
Rozanov and Volkonskii (1959) is defined by

ﬁ(U,V) = sup{|IP’u®V(C') - ]P)u ®PV(C)| :C eu &® V} (22)

Both Theorem 1 and the covariance inequality of Rio (1993) yield the
nonergodic version of the invariance principle of Doukhan et al. (1994) for

strongly mixing sequences.

Corollary 1 Let (X;);cz be defined as in Theorem 1, and suppose that

I ra(Mo,o(Xn)
Z/ Q*(u)du < oo, (2.3)
n=0+0

where @) denotes the cadlag inverse of the functiont — P(|Xo| > t). Then
the series Y. o || XoEo(Xn)|l1 converges and Theorem 1 applies.

Remark 2. The L? criterion (1.2) leads to the suboptimal strong mixing

condition

+oo a(Mo,o(Xn))
Zn/ Q*(u)du < .
n=0 0

This can be shown using Rio’s covariance inequality. For more about these

mixing conditions, cf. Bradley (1997).

Now, from the covariance inequality of Delyon (1990) we get the following

invariance principle for absolutely regular sequences.

Corollary 2 Let & be an Mqy-measurable variable with values in a measur-

able space £, and & = & o T?. There exists a sequence of random variables



(b)nso from (2, A, P) to [0,1] with E(b,) = (Mo, c(&,)) such that the fol-

lowing statement holds true: set B =Y _.b, and let g be a measurable func-

n>0
tion from & to R. Assume that X; = g(&;) is a square integrable and centered
random variable. If Xy belongs to L?(BP) then the seriesy ;.o || XoEo(Xk)[1

converges and Theorem 1 applies.

2.3 Application to Markov chains

In this section, we give an application of Theorem 1 to stationary Markov
chains. Let £ be a general state space and K be a transition probability
kernel on &. Let

K"(z, A) :/gK(x,dxl)/gK(ml,dxg)---/AK(:vn_l,dxn).

We write Kg and K"g respectively for the functions [ g(y)K(z,dy) and
[ 9(y)K™(x, dy).

Corollary 3 Let & be a random variable with values in a measurable space
E, and & = & o T". Suppose that (&)icz s a strictly stationary Markov
chain, denote by K its transition kernel and by u the law of &. Let g be
a measurable function from £ to R. Assume that X; = g(&) is a square
integrable and centered random variable. If the series Y~ gK"g converges
in L (1), then

(a) the random process {n=1/2S,(t) : t € [0,1]} converges in distribution in
C([0,1]) to \/nW, where W and 1 are defined as in Theorem 1.

(b) If furthermore the underlying probability P is ergodic, then (a) holds with
n=o0gy=pulg*) +23 .0 1gK"g) a.s

Remark 3. Corollary 3 can be extended to nonstationary positive Harris
chains (cf. Meyn and Tweedie (1993), Proposition 17.1.6), with the same
expression for 03. If furthermore the chain is aperiodic then the usual central
limit theorem holds as soon as the series of covariances converges, as shown
by Chen (1997). However, in order to prove that the variance of the limiting
distribution is equal to a . he has to assume that the series >~ gK"g

converges in L'(u). Note that the form of ag coincides with the one given in
Nummelin (1984), Corollary 7.3(ii) (cf. De Acosta (1997), Proposition 2.2).

Remark 4. Many central limit theorems (Maigret (1978), Gordin and Lifsic
(1978)) are based upon the identity ¢ = f — K f with f in L?(u), known
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as the Poisson equation. In fact the L?-criterion (1.2) and the coboundary
decomposition (1.1) with both M, and Z in IL? are equivalent to the existence

of a solution f in L%(u1) to the Poisson equation.

Application : Autoregressive Lipschitz model. For ¢ in [0, 1] and C in |0, 1],
let £(C,6) be the class of 1-Lipschitz functions f which satisfy

f(0)=0 and |f'(t)|<1-C(1+ |t|)_6 almost everywhere.

Let (g;)icz be a sequence of i.i.d. real-valued random variables. For S > 1
let ARL(C,4,S) be the class of Markov chains on R defined by

én = f(&ne1) +en where f € L(C,0) and E(|go]”) < 0. (2.4)

Proposition 2 Assume that (&;)iez belongs to ARL(C,0,S). There exists a

unique invariant probability w, and furthermore

[ el () < +oo.

Let (&)icz be a stationary Markov chain belonging to ARL(C,4,S) with
transition kernel K and invariant probability p. Consider the configuration
space (RZ BZ P%) where P¢ is the law of (&)icz, and the shift operator 7
from RZ to R% defined by [7(w)]; = wiy1. Since p is the unique probability
invariant by K, P¢ is invariant by 7 and ergodic. Denote by m; = m o 7
the projection from RZ to R defined by m;(w) = w;. Since (m;)iez has the
same distribution P¢ as (§;);ez, Corollary 3(b) applied to the Markov chain
(7:)iez provides a sufficient condition on ¢ for the sequence (g(&;))iez to
satisfy the invariance principle. The following proposition gives a condition
on the moment of the errors under which Corollary 3 applies to Lipschitz

functions.

Proposition 3 Assume that (&):cz is a stationary Markov chain belonging
to ARL(C,6,S5) for some S > 2+ 26. Denote by K its transition kernel
and by p its invariant probability. Let g be any Lipschitz function such that
p(g) =0. Then Y, _,1gK"g| converges in L' (1) and the sequence (g(&;))icz
satisfies the invariance principle. Moreover, the variance term 03 18 the same
as in Corollary 3(b).

Remark 5. Arguing as in section 5.2, it can be shown that the LL? criterion

(1.2) requires the stronger moment condition S > 2 + 30.
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An element of ARL(C, §,S) may fail to be irreducible in the general case.
However, if the common distribution of the ¢; has anabsolutely continuous
component which is bounded away from 0 in a neighborhood of the origin,
then the chain is irreducible and fits in the example of Tuominen and Tweedie
(1994), Section 5.2. In this case, the rate of ergodicity can be derived from
Theorem 2.1 in Tuominen and Tweedie (1994) (cf. Ango-Nzé (1994) for

exactrates of ergodicity).

2.4 The general case

In this section, we extend the results of Section 2.1 to non-adaptedsequences.
In order to obtain central limit theorems, we impose some asymptotic con-

ditions on the random variables X _,, — Eo(X_,,).

Definition 3. Let (M;);cz be the nondecreasing filtration introduced in
definition 1. We set M_o = [);c;, M; and M, = U(UieZ MZ) We denote
by E_o(Y) (resp. E(Y') )the conditional expectation of Y with respect to
the o-algebra M_, (resp. My).

Let us start with the central limit theorem.

Theorem 2 Let (M;);ez be the nondecreasing filtration introduced in defi-
nition 1. Let Xo be a square-integrable and centered random variable, and
Xz' = XO @) T’Z Let

K = {k € Z such that ZEk(X())Ek(Xn) converges in IL'}.

n=0

Suppose that K is a nonempty set. If

inf lim sup B((Xo — Ex(X0))®) +2 > E(Xo(X_; —Ex(X_;))) =0, (2.5)
ke n——+o0o i1

then, for any | > 0 and any (ti,...,t;) in [0,1)',n"Y2(S,(t1),. .., Su(t))

converges in distribution to \/n(c1,...,&), where n is some nonnegative,

integrable and Z-measurable random variable and (e1,...,;) is a Gaussian

random vector independent of T with covariance function Cov(e;, €;) = t; \t;.

Remark 6. If E_(Xy) = 0 then —oo belongs to K. Conversely, arguing
as in Dedecker (1998), Proposition 3, it can be shown that E_,,(Xy) = 0 as
soon as KC # 0.



In order to obtain the uniform integrability of the sequence (n‘lgi)mo,

we need absolute values in the summands in (2.5).
Proposition 4 Let (X;);cz be defined as in Theorem 2, and suppose that
L = {l € Z such that (E;(Xo)E;(S,))ns0 5 uniformly integrable}

1s a nonempty set. If

inf (B((Xo—E(X0))%) +2 3 | (Xo—Eu(Xo)) (X ~Ei(X )1 ) =0, (26)

lel
n>0

then the sequence (n_lgi)mo is uniformly integrable.
Proposition 4 and Theorem 2 together yield the following invariance principle.

Theorem 3 Let (X;)icz and K be defined as in Theorem 2, and suppose that
K is a nonempty set. If

inf (E((Xo — E(X0))?) +2 37 [1(X0 — B(X0))(X_ — Ex(X_) 1) =0,

ke
n>0
(2.7)
then {n=25,(t) : t € [0,1]} converges in distribution in C([0,1]) to \/qW,
where 1 is some nonnegative, integrable and I-measurable random variable

and W is a standard brownian motion independent of T.

Now, Hoélder’s inequality applied to Theorems 2 and 3 gives the following

L9-criteria.

Corollary 4 Let (X;);cz be defined as in Theorem 2.Suppose furthermore
that Xo belongs to ILP for some p in [2,+00]. Let ¢ =p/(p —1).

(a) Suppose that

ZEO(Xn) and Z (X_n —Eo(X_p)) converge in IL7.
n=0

n=0
Then (2.5) holds true and Theorem 2 applies.

(b) Suppose that

ZEO(XH) converges in L9 and Z | X — Eo(X_p)|lq < 00.
n=0

n=0

Then (2.7) holds true and Theorem 3 applies.

Remark 7. To prove Corollary 4, note that assumption (a) as well as (b)

implies that X, is M-measurable.
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3 Maximal inequalities, uniform integrability

In this section, we prove Propositions 1 and 4.

Proof of Proposition 1(a). We proceed as in Garsia (1965):

n

(Sn = N2 = (S =N = (Si1 = N2) (3.1)

k=1
Since the sequence (S;)r>o is nondecreasing, the summands in(3.1) are non-

negative. Now
((Sk = N+ = (Sios = M) ((SE = A5+ (Sko1 = A)+) >0
if and only if S, > X and S > S;_,. In that case S = S}, whence

(Sk = N3 = (Sic = ML <28 = NSk = N+ = (Sim = N)+). - (3:2)

Consequently
(S =M% < 2D (S = A(SE = Ns =2 ((Se = A)(Si1 = V)
k=1 k=1
< A NS Ny 2D (S - N Xe (33
k=1
Noting that
1
2(Sn = A)+(S, = A+ < 5(5:1 — N3 425, = M3,

we infer that
(Sp =N <4(Sn = AT —4) (S =N Xi (3.4)
k=1

In order to bound (S, — )%, we adapt the decomposition (3.1)and next we
apply Taylor’s formula:

n

(Sn =A% = D ((Sk= N3 = (Ske1 = N)3) (3.5)

k=1
n n 1
= 2 Z(Skil B )\)+Xk + 2 Z X]? / (1 - t)]ISk,1+th>)\dt-
k=1 k=1 0

Since Tg,_, 1ix,>x < Tsrsy,it follows that

(Sn—=NF <2 (Sim1 = N X+ Y Xilgeon (3.6)

k=1 k=1
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Hence, by (3.4) and (3.6)

- N; < 42(2(Sk—1 = At = (So1 = N)+) Xk + 4ZXI?]IS;>)\- (3.7)

k=1

Let Dy =0 and Dy = 2(Sx — A+ — (Sf — A) 4+ for £ > 0. Clearly

k—1
Dy1 Xy =Y (Di = Diy) X (3.8)
=1
Hence
n—1
(Sp = N2 <4 (Di = Diy) (S, — 55) +42Xkﬂs s (39)
=1 k=1

Since the random variables D; — D;_; are F;-measurable, we have:

E((D; = Di—1)(Sn = Si)) = E((Di — Di-1)E(S, — Si | Fi))
< E|(D; — Di1)E(S, — Si | )| (3.10)
It remains to bound |D; — D;_4|. If (Sf — A\)y = (S, — )4, then
|Di = Dia| = 2[(S; = M)y = (Sim1 = M)+ < 2[X[Tgp5,

because D;—D,;_; = 0 whenever S; < Aand S;_; < A. Otherwise S; = S > A
and S;—1 <57 ; < .S;, which implies that

Di = Diy = (S;i = N+ + (S = A5 = 2(5i-1 — M)+
Hence D; — D;_; belongs to [0,2((S; — A)+ — (Si—1 — A)4+)]. In any case
|Di — Dji_q| < 2|X;|Tgxs, (3.11)

which together with (3.9) and (3.10) implies Proposition 1(a).

Proof of Proposition 1(b). Let Ai(\) = {Sx > A}. From Proposition 1(a)
applied to the sequences (X;);ez and (—X;);ez we get that

E((S. — A)? <8Z( (XELay ) + 20 L) XeB(S, — e | Fill ) (3.12)

Now, under the assumptions of Proposition 1(b), both the sequence (X?)xo
and the array (XzE(S,, — Sk | Fk))1<k<n are uniformly integrable. It follows
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that the L'-norms of the above random variables are each bounded by some

positive constant M. Hence, from (3.12) with A = 0 we get that
E(S) < 24Mn.
It follows that
P(Ap(zy/n)) < (nxQ)_lE(gi) < 24Maz 2, (3.13)

Hence, from (3.13) and the uniform integrability of both the sequence(X?)x~0
and the array (XzE(S,, — Sk | Fk))1<k<nWe get that

nTE((S, —2vn)}) < 6(2)

for some nonincreasing function ¢ satisfying lim,_, . 6(x) = 0. This com-

pletes the proof of Proposition 1(b).

Proof of Proposition 4. Since the sequence (—X;);cz still satisfies criterion
(2.6), it is enough to prove that (n~1S*?),.o is an uniformly integrable se-

quence.

Let € be any positive real number and [ be some element ofL such that

E((Xo — Ei(X0)*) +2 ) [(Xo = Ei(Xo)) (X — Ei(Xo)) |1 S e (3.14)

n<0

Notations 1. Let F; = M, and Z; = E;;(X;). Write

T, = Z1+-+2Z,, T;=max{0,Ty,...,T,} and
Yy = Xo—Zn, Wn=>5n—Th, W*=max{0,Wi,...,W,}.

Then (Z;);cz is a stationary sequence adapted to the filtration (F;);.
Clearly, for each event A,

E(S:*1,) < 2E(TF1,) + 2E(W;2). (3.15)

Now
Z0E(T, | Fo) = E(Xo)E(T,) = Ei(Xo)Ei(S,).

Since [ belongs to L, it follows that the sequence (ZyE(T, | Fo))n>o0 is uni-
formly integrable.This fact and the stationarity of (Z;);cz together ensure the
uniform integrability of the array (ZyE(T,, — Tx—1 | Fk))1<k<n. Now Propo-

sition 1(b) implies the uniform integrability of the sequence (n=177?),~¢.
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Hence there exists some positive § such that, for any event A with P(A) <§

and any positive integer n,
E(T21,) < ne. (3.16)

It remains to bound E(W;?). From (3.4) applied with A = 0 we get that
E(W,;?) <AE(W;) —4)  Cov(W;,, Ya). (3.17)
k=1

By definition of the random variables Y,

> E(YVaYa)| = Var(Xo—Ey(Xo))+2 )  |Cov(Xo—Ei(Xo), Xp —Ein (X))

neZ n<0

Now, for any negative n,

E(((Xo — Ei(X0)) (Ern(X,) — Ei(X,)) =0,

whence
> E(YaYa)| = Var(Xo — Ey(Xo)) +2 ) |Cov(Xo — Ei(Xo), Xp — By(X,,))]-
nez n<0

By (3.14) it follows that

nT'E(W) < Var(Xo — Ei(Xo)) +2 ) [[(Xo — Ei(X0)) (X — Eo(Xo))|h < e

(3.18)
Now let us recall that Cov(B, Y)) = 0 for any square-integrable and M, -
measurable random variable B. Hence it will be convenient to replace the

random variables W}, by M ;-measurable random variables in (3.17).

Notations 2. For k € [1,n] and i € [1,k[, let Y, = Epy(X;) — Eii(X5).
We set Wi, =Y+ -+ Yigand A;_; = max{Wi g, ..., Wi_1}.

Since Aj_; is My ;-measurable, we have:
Now recall that (aq,...,a5_1) — max(0,a1,a1 + ag,...,a; + -+ + ax_1) is

a 1-Lipschitz mapping with respect to the ¢!-norm. Hence

k—1 k—1
Wiy = Al <D= Yigl = > 1X = Eea(X5)],

=1 =1
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which, together with (3.19) implies that

k—1
[Cov(Wi_y, Yi)l < ) IVi(X = Bra (X)) (3.20)

=1

k1
< D (X = Ei(Xo)(Xik — Ei(Xip) 1
i=1
Collecting (3.17) (3.18) and (3.20), we obtain that

iE(WZZQ) < Var(Xo — Ei(X0)) +2 ) [|(Xo — Ei(X0)) (X — Ei(Xa)[1 < e.

8n
n<0

Together with (3.15) and (3.16), it implies that E(S**14) < 18ne for any
event A with P(A) < 4. This completes the proof of Proposition 4.

4 Central limit theorems

4.1 The adapted case

In this section, we prove Theorem 1.

Proof of Theorem 1(a). From assumption (1.3), the sequence of random
variables (E(X3|IM_x) + 2E(X0S,|M_o))n0 converges in L'. Theorem
1(a) is then a consequence of part (b) of Claim 1 below:

Claim 1 We have:
(a) Both E(XoX|Z) and E(E(XoXp|M_x)|Z) are M_-measurable.
(b) E(XoXk|Z) = E(E(XoXk|M-c)|Z).
Claim 1(b) is derived from Claim 1(a) via the following elementary fact.

Claim 2 Let Y be a random variable in LY(P) and U, V two o-algebras of
(Q, A,P). Suppose that E(Y|U) and E(E(Y|V)[U) are V-measurable. Then
E(Y[U) = EEYW)U).

It remains to prove Claim 1(a). The fact that E(E(XoXz|M_o)|Z) is
M _-measurable follows from the L!'-ergodic theorem. Indeed the random
variables E(X; Xy ;| M_) are M_,,-measurable and

1 n
E(E(XoXi|M_o)|Z) = lim EZE(XiXHAM_OO) in L.
1=1

n—oo

15



Next, from the stationarity of the sequence (X;);cz, we have

n —N—-k
1 1
HE(XOXkyI) -=> :XiXZ»+kH1 - HE(XOXk\I) - ¥ XiXHkHl.
i=1 i=1—(N+n+k)

Both this equality and the L'-ergodic theorem imply that E(XX|Z) is the
limit in ! of a sequence of M _ y-measurable random variables. Since this is
true for any integer N, we infer that E(XoXx|Z) is M_-measurable. This
concludes the proof of Claim 1(a).

Proof of Theorem 1(b). The first step of the proof is a central limit theorem

for the normalized sums.

Notations 3. Let (¢;);ez be a sequence of N (0, 1)-distributed and indepen-
dent random variables, independent of the sequence (X;);cz. For any ¢ in
10,1], let ¢ = q(0) = [nd] and p = p(d) = [n/q| for n large enough. For any

integer ¢ in [1, p| we set
Ui = nil/Z(Xiqqurl +ee Xiq)v Vi=Uy+Uy+---+ U
A; = (n/n)lﬂ(eiq,q“ +otgy) and Ty = A+ A+ -+ A,

Notations 4. Let g be any function from R to R. For k and [ in [1,p + 1],
we set gz, = g(Vi + 1), with the conventions g ,+1 = g(Vi) and go; = g(I).
Afterwards, we will apply this notation to the successive derivatives of the
function h.

Let B}(R) denote the class of three-times continuously differentiable func-
tions h from R to R such thatmax(||h ||, |2 |0, [|R"]|0) < 1.

The convergence in distribution of n='/25, is an immediate consequence

of the proposition below.

Proposition 5 Under the assumptions of Theorem 1,

lim E(h(n"Y28,)) = E(h(n"/%))

n—-+o0o

for any h in B3(R), where n is defined as in Theorem 1 and € is a standard

normal random variable independent of T.

Proof. First, we make the elementary decomposition:

E(h(n™"28,) — h(n'?e)) = E(h(n™'28,) — h(V})) (4.1)
+ E(h(V,) = h(T'1) + E(h(T1) — h(y'?e)).

16



Suppose that pg # n. Noting that h is 1-Lipschitz, we have
E(h(n728,) = h(Vy)] < [In""2S, =V, s < Voll(n = pg) ™S pgll2-
Since the sequence (k715%);¢ is bounded in L', we infer that

lim lim sup IE(h(nY2S,) — h(V}))| = 0. (4.2)

-0 p—too

In the same way
(A1) = h(n2e))| <020 2 lallepgn + - + enlla < Vol
and consequently

lim lim sup [E(h(I'y) — h(n'/%e))| = 0. (4.3)

=0 p—otoo

In view of (4.2) and (4.3), it remains to control the second term in (4.1).

Here we will use Lindeberg’s decomposition:
p p
E(h(V;) =h(T1) = > E(hkpir —urni) + D Blhn 1 psn =i 1x). (44)
k=1 k=1

Now, applying the Taylor integral formula we get that:

hk,k+1 - hkz—l,k:+1 = Ukh;c—l,k+1 + %Ulgh;cl—l,k+1 + Ry
hp1pir —heap = —Dphj g4 — %Aih%—mﬂ + T
where
|Ry| < U,f(l A |Ug|) and |rg] < Ai(l A | Agl). (4.5)

Since E(Aghj,_; 1) = 0, it follows that

E(h(V,) — h(I'y)) = Dy + Dy + D3, (4.6)
where
p
Dy = ) EB(Uhiy 1),
k=1
1 p
D, = §ZE((U13 - Ai) /k/—l,k+1)7
k=1
p
Dy = Y E(Ri+m).
k=1

17



Control of Ds.

By (4.5) and the stationarity of the sequence, we get that

> I Rully < pEUE(LA|UL)).

k=1

Bearing in mind the definition of U;, we obtain

|5 Iﬂ [53 < ISqI)]
Rills <E <supE | —1AN—=]]|.
ZH +lh { ( v P4q q>0 q v Pq
From the uniform integrability of the sequence (qing)po, the right hand

term of the above inequalities tends to zero as ¢ tends to 0 (i.e. p tends to

infinity).Obviously the same holds for > %_, ||rx||1, which entails that

lim lim sup | D3| = 0.

0—0 n—too

Control of D;.

E(Ukhﬁcq,kﬂ) (Fk+1))

E(Uk
—1)q
Z (Up(R (0728, + Thpn) — B (728,21 + Tiyn))) -

By definition, we have

kq

1 pq
/ _ = / 1/2 . )
B(UH (Thin)) = 7= B | W (/)2 > e) 3 X
kg+l  (k—1)g+1
Note that (1.3) implies that n=15,, converges to 0 in 2. Hence E(X|Z) =0
by the L2-ergodic theorem. Taking the conditional expectation with respect

to Z in the above equation, it follows that E(Uzh/(I'x4+1)) = 0.

Now, in order to bound the summands in the above decomposition, we
proceed as follows: let T; be the random variable obtained by integrating
h’(n‘l/sz—i-I‘kH) —h’(n_l/sz_l—i-FkH) with respect to the sequence (&;);~0.

Since 1 is M_-measurable (see Claim 1(a)), we infer that the random

18



variable T; is M -measurable. Moreover h’ is 1-Lipschitz (cf. Notations 4),

which implies that
B (=285 + Tpgr) = B (072850 + Trgn)| < n V21X,

and therefore |Y;| < n~'/2|X;|. Hence

(k—1)gq
E(Uihy 1)) <Y [B(E(UM;)T)]
j=1
(k—1)q
< 072N EE(UNM,)X]
j=1

Bearing in mind the definition of Uy and using the stationarity of the se-

quence, we obtain the upper bound:

(k—1)q
[E(Ukh 1 )] 070> B XoEo(Sqrm-1 — Sm1)l-

m=1

Now, by assumption (1.3)

lim SupE‘XOEO(Squmfl - Smfl)‘ =0,

m—+00 40
and consequently
(k—1)q
im n! n; E|XoEo(Sgim-1 — Sm_1)| = 0.

Finally, for each integer k in [1, p],

n—-4o0o

which entails that D; converges to 0 as n tends to 4oc0.

Control of D-.

First, note that the random vector (€xg—g+1,---,Eke) is independent of the
o-field generated by 7, (&;)i>k, and the initial sequence. Now integrating
with respect to (€xg—qt1, - - -, Ekg) We get that

E(Azhg—mﬂ) = (Q/n)E(nh/k,—l,k—H)' (4.7)
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Here we need some additional notation.

Notations 5. For any positive integer N, we introduce

[(k - N {(Zv

E(X2[T) + 2(E(XoX1|T) + - - + E(XoXn|T)).

AN
Apn

g+ 1, kq]?
g+ 1, kq)?

j) €L |i—jl < N},
j)E€EZ*:j—i>N}
and ny =

With these notations, by (4.7) we have:

E((Ulg - Az)h;cl—l,lwl) = (< Z XiXj — q77N> h?clfl,kJrl)
(4,)EAE, N
+ (( > XX ) o) (48)
(4,9)ENk, N
q
+ EE(O?N - 77)h/k/71,k+1) .
ny converges in L' to 1, and therefore
lim_tim sup(q/n)E((ny — n)h{_1 1) = 0. (4.9)

N—=+oo potoo

We control now the second term of decomposition (4.8). According to Claim
1(a), the random variable 7 is M_,-measurable. Hence, integrating hy_,, .,
with respect to the sequence (g;);>0, we obtain a Mj,_,-measurable random
variable with values in [—1,1]. It follows that

kq
L X X0 < Y Bl Y s
(3,9) €Ak, N i=(k—1)g+1 Jj=N+i+1
kq kq—1
< Z E | Xo Z E(X;[Mo)|-
i=(k—1)g+1 j=N+1
Now, by assumption (1.3)
kq—i
im supE | X Z E(X;|Mp)| =0,
—+00 ¢4 N+l
and consequently
lim limsup — Z ro1k1XiX5)| = 0. (4.10)

N—o4oo potoo N

(4,5)€AR, N
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To control the first term of decomposition (4.8), we write

JE(( 3 Xin—qu)h;g_ml) <E| Y XX, —an|. (411)

Here, note that

kq i+N

nETOO%E dOXX - > D> XX =0 (4.12)

(4,5) €Ak, N i=(k—1)q+1 j=i—N
The L'-ergodic theorem applied to the last sum gives

kq i+N

lim Ig |1 S Y XX, x| =0 (4.13)

n—-4oo N,
q i=(k—1)g+1 j=i—N

From (4.11), (4.12) and (4.13), we obtain

1
lim — E(( 3 Xin—qu> g_l,kﬂ) ~0. (4.14)

n—+oo N L
(lzj)GAk,N

Collecting (4.9), (4.10) and (4.14) we get that

lim E«Ul? - Ai) /é—1,k+1) =0,

n—-4o00

which entails that Dy converges to 0 as n tends to 4o00.
End of the proof of Proposition 5.

Collecting the above controls, we get that

lim lim sup |[E(h(V,) — h(I'1))| = 0. (4.15)

0—=0 pn—itoo

Now Proposition 5 follows from both (4.1), (4.2), (4.3) and (4.15).

Proof of Theorem 1. From the uniform integrability of (nilgi)nw, we know
that the sequence of processes {n=/23,(t) : t € [0, 1]} is tight in C([0,1]). Tt

remains to prove the weak convergence of the finite dimensional marginals.
Notation 6. For m and n in N with m < n, let Sy, = (n—m)~Y2(S,—S,,).

In fact, it suffices to prove that if the differences n;,; — n; converge to

400 then the array of random vectors (Son,, Sninys-- -5 Sn, 1n,) CONVErges
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in distribution to \/n(y1,...,¥,), where y1,...,y, are independent standard

normals. For any p-tuple (ay,...,a,) and any h in B}(R), write

h(aflso,nl +...F a’pSnp—1,np)) - h(\/ﬁ<a1y1 +...+ apyp)) =

p

> [95(arSuy_m) — 96 (VTaxye)];

k=1

where

gi(x) = h<0150,n1 + ot ap1Sn, om0+ VN1 Y + o F a’pyp)>'

Note that the random functions g; belong to B}(R) for any w in Q. To prove

the finite dimensional convergence, it is then sufficient to prove that

lim E(gr(arSn, 1 n,) — 9x(v/naryr)) = 0,

(ng—ng_1)—+o00

which can be done as in the proof of Proposition 5. This completes the proof

of Theorem 1.

4.2 The general case

In this section, we prove Theorem 2. Let ¥ be a map from IN into K such
that

n

lim {E((XO — By (Xo))?) + 2limsup Y E(Xo(X_; — E¢(k)<X—i)))} =0.

k—+o00
n—+00 =1

Notations 7. Let Xék) = Eyx)(Xo) and Yo(k) =Xy — Xék). We set
SE =X o+ 4 X o1

and we denote by {S,sk) (t) : t € [0,1]} the partial sum process associated to
the sums S\,

By Theorem 1 applied to the sequence (Xi(k))i = (Xék) o T%);, the finite
dimensional marginals of the process {n=25%(t) : t € [0,1]} converge in
distribution to the corresponding marginals of the process \/WW, where
W is a standard Brownian motion on [0, 1] independent of Z and n® is the

nonnegative, integrable and Z-measurable randomvariable defined by

1 = B((XOIT) +2 3 RO X)), (4.16)

1>0

Hence Theorem 2 follows from Proposition 6 below via the triangle inequality.
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Proposition 6 Under the assumptions of Theorem 2,
(a) we have:
lim limsupn=/?||S, — S¥)||, = 0.

k—+00 n—ioo

b) The sequence (k) ), converges in L2 to some nonnegative and I-
n g g

measurable random variable /1.

Proof. We start by proving (a). Let Y;(k) = Yo(k) oT".Since Yb(k) is orthogonal
to IL*(Myx) ), we have for any positive ¢,

E(Y, YY) = (VP (Xoi — By (X-2))) = E(Xo(X_s — By (X_0))).

Hence

1 (k) (12 1 = (k)\2 —

50— SPI == > [ E((47)2) + 23 B(Xo(Xoi — By (X-)) |
N=0 =1

Now Proposition 6(a) follows from (2.5) and the above inequality via the

Cesaro mean convergence theorem.

In order to prove (b), we will use the following elementary Lemma.

Lemma 1 Let (B, ||.||) be a Banach space. Assume that the sequences (un),

(un) and (vy) of elements of B satisfy

lim Hmsup ||ty — us|| =0 and LHm u,, = vg.

—4-00 n—-+4oo n—+00

Then the sequence (vy) converges in B.
Let B =1L*(Z). We now apply Lemma 1 with
v = V0®, u, =n VPEVA(S2T) and up = n”VPEVA((SW)?T).
From the triangle inequality applied conditionally to Z, we get that
0280 = Sz > [l — unllo-
Hence, by Proposition 6(a),

lim limsup ||w,, — unll2 = 0.
=+ p—itoo

Now Theorem 1(a) and the Cesaro mean convergence theorem together imply
that u? , converges to v} in L'(Z). Since the random variables uy, ; and u,, are
nonnegative, it follows that u, ; converges to vy in L?(Z), which completes

the proof of Proposition 6(b).
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5 Markov chains

5.1 Proof of Proposition 2

Existence of . Since f is continuous, the chain §; is weak Feller (cf. Meyn
and Tweedie (1993) Chapter 6). Therefore, to prove the existence of an
invariant probability p it suffices to show (cf. Meyn and Tweedie, Theorem
12.3.4) that KV <V — 1+ bl for some positive function V', some compact

set [’ and some positive constant b.
Let V(z) = |z|. By definition, KV (x) = E(|&,+1] |§. = «).Hence
KV(z) < [f(z)] +Ele|
< z|+ 01 =871 = (14 |2)'0) + Eleo| .

Let R be a positive real such that
C(1—0)7 1 — (14 |z))*°] + E|go| < —1 for any |z| > R.

Then KV <V — 1+ bl|_g ) and the existence of u follows.

Uniqueness of pi. We denote by (£%),>o the chain starting from & = z. To
prove the uniqueness of the invariant probability u, it suffices to show (see
Duflo (1996) Proposition 1.IV.22) that for any (z,y) in R%:

lim E|" — Y| = 0. (5.1)

n—-4o0o

Since [&; — &4 = [f(&5-1) — f(§-1)], we have

T Y _ O €T _
-8 < (1~ e rey) 16 6l 62

Set a(t) =1—C(1+t)7° and X) = |e1]| + - - -+ |ex|. Noting that, for (z,y) in
R?, max (€24, €Y _1]) < |z| + |y] + X,_1, and iterating (5.2) n times, we get

&0 — &l < (] + |yl + En-a) |z —yl.

So, it remains to control I,, := E(a™(|z| + |y| + X—1)). With this aim in

view, we write

1
I = n/ P(all] + [yl + Z,mr) > A) VA
0

(
= n/ollP’(l +|z| + |yl + X1 > [C/u]l/‘S)(l —u)" 'du. (5.3)
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Clearly,

C

b E |yn>6r ' ”/olp(mn-l > [0/ ) (1 = w)du

The first term on the right hand side tends to zero as n tends to infinity.
To control the second term, which we denote by 17(11)7 we apply Markov’s

inequality:

— DE[¢ |
(1) n(n 0 1/5 =l

< — .
< o — 1 m— dv (5.4)

2”Mfo / 1/8 v
< 2RO
S Ty ), Ve

Since § < 1, IV tends to zero as n tends to infinity. Consequently (5.1)
holds, and the invariant probability p is unique.

Moment of p. Let us consider the function V(x) = |z|¥. Since

KV (2) = E(|&1]%[60 = @) = E(|f(2) + g0 ),

we have
[KV (x)]"/* (1f (@)] + ll=olls)
|| - |z|

IN

1+ ! ¢ L —(1+— 1\
o \ @9 [l U

From this inequality, we infer that there exist two positive constants R and
c such that |z|7[KV (2)]*/% <1 — c|x|™° for any |z| > R. It follows that

KV (z) <V (x) = c|o|"° + bl_g gy ().

[terating this inequality n times gives

% 3 / Y5 K" (x, dy) < %KV(m) + % > K*([=R, R])(x).
k=1

k=1

Letting n — +o00, we get that

/ o1 p(dr) < u([~R, R]) < oo
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5.2 Proof of Proposition 3

Let g be any L-Lipschitz function. We have:
K90 -l < | [IK9(0) = K"alo)lu(an
< [Bigte) - g(eDlutay)
< L [ Bl - gty

Using he same notations as in the proof of the uniqueness of y, we have:

|[K"g(x) — u(g)| < L/E(a”(liﬂl + [y +Xn-1)) |2 — ylp(dy). (5.5)

Here again, we need to control the term [, := E(a”(|z| + |y| + £n-1)). Set
o1 =3,1— (n—1)El|go|. Starting from (5.3), we write:

1
I, = n/ P(Pas > O/ = [+ fal + [yl + (0 — DEeol)) (1 — u)"du
0
Set A,(z,y) = C[2(1 + |z| + |y| + (n — 1)E|eo|)] °. We have
An(z,y)
I, <(1—A.(z,y)" + n/ P (20,1 > [C/u]1/5) (1—u)""'du
0

To control the second term on the right hand side, which we denote by L(f),

we use a Fuk-Nagaev type inequality (cf. Petrov (1995), Lemma 2.3). For

any r > 1,
s 1 TC1Y
02/5 -r
2e” |1 )
+ee [ + dru2/d(n — 1)E(53)}

Integrating this inequality, we obtain

10 < n(n—1) /011@ (yeo| > % {%} w) (1—w)"du+2 {%y

Proceeding as in (5.4), we write:
2r)°E(|go|)n(n — 1) [* _ erE(e2) 1"
@ < ( / S/5(1 — )"y + 2 0
nos 'SP L e 2 e e

L Y .- I
CS/5(n —1)55 |, (n — 1)E2|zq|
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Taking r = S/0 — 1 provides I = O(n'=9/%). Consequently, there exists a
constant M such that:

I, <[1—A,(z,9)]" + Mnt=5/%,
Hence from (5.5) we obtain
Kgle) = pl)] < LMt [ 1o~ ylu(ay)
o L= Aol - slady). G9)

Set B,(z) = C[4(1+ |z| + (n — 1)E|go|)] ™ and denote by .J,, the second term
on the right hand side. We have

J, <L(1-B /]x—ymdy

+ nL/O |:/ |ZE - y|][(4|y>[c/u]1/5),u(dy)} (1 _ u)n—ldu‘

Since x — |z|°~° belongs to L'(), we have the finite upper bound

(S-1)
45y S—5-1
& = Y s iopusyildy) < |~ |z = yllyl”"" uldy).

Proceeding as in (5.4) we find:

J, < L(1-B /|x—y|udy

49 L AR CE
—leg—vg o S—6—1 du).
+ l—c(n_l)} — {/0 v e v] /!1‘ yllyl u(dy)

From the above inequality and (5.6), we infer that there exists a constant R
such that

|K"g(z) — u(g)] < LMnlS/5/|x—y|u(dy)
© L(1- B,(2)" / 1z — ylyu(dy) (5.7)

T / 2 — g5 u(dy)
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Since g is L-Lipschitz |g(z)| < L(|x| + a)for some positive constant a. Now
1(g) = 0, which gives

ulgkng) < a5 [ (] +a)le  yluldo(dy
w2 [0 B (el + @l - ylutdolntay)  G3)
4 LR [ (] 0o = ylyl®* ldotay).

Since S > 2 + 6, from Proposition 2 we obtain that 22 is p-integrable. This
implies that the first integral on the right hand side is finite. Moreover |y|®—°
is p-integrable, which implies the convergence of the third integral on the
right hand side. Hence we deduce from (5.8) that a sufficient condition for

the convergence of the series ) _, u(|gK"g|) is

S [[ 0= B el -l - utaptn) < e

By Fubini’s theorem and the fact that (1 — B,(z))" < exp(—nB,(z)) it

suffices to prove that

+oo
/] (Ze-“BM) (1o + @)l — ylu(de)u(dy) < +o0.  (5.9)

If || <1
Zeann(:v) < Zexp( Cn(8 + 4nkE|eo|) ™ ) < 400. (5.10)
If |z| > 1
+oo
sum;, e "B < / exp(—C’y(él[l + |z| + yIE|50H)_§> dy
0
e 5 5 5
< [ exp(~Colel (s + aylal Blel) )y
0

—+o00
< |x|6/ exp(~C2(8 + 42Elsy))*)dz.  (5.10)
0

From (5.9) (5.10) and (5.11) we conclude that a sufficient condition for the
convergence of Y o u(|gK"gl) is

/ 2l (|| + )|z — ylu(dr)u(dy) < +oo.

which is realized as soon as x — |z|?*° belongs to L' (). Now, by Proposition
2, the function |x|**? is pu-integrable if S > 2+ 2§, which concludes the proof
of Proposition 3.
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6 Weakly dependent sequences
In this section, we prove Corollaries 1 and 2. First, write
E|XoEo(Xy)| = Cov(|Xo|(Teo(x,)>0 — Trg(x,)<0)s Xi) - (6.1)

Now, by the covariance inequality of Rio (1993),

a(Mo,o (X)) )
Cov (| Xo|(Tgy (x>0 — Teg(xp)<0), X)) < 4/ Qx,(u)du. (6.2)
0

Collecting (6.1) and (6.2) we obtain Corollary 1. Before proving Corollary 2,

let us recall the covariance inequality of Delyon (1990).

Proposition 7 Let (2, A, P) be a probability space, andU, V two o-algebras
of A. There exist two random variables dy an d dy from (2, A, P) to [0, 1] re-
spectively U and V-measurable, with B(dy) = E(dy) = (U, V) and such that
the following holds: For any conjugate exponents p and q, and any random
vector (X,Y) in LP(U) x LY(V),

|Cov(X,Y)| < 2EYP(dy | X |P)EY(dy|Y|P).

Proceeding as in Viennet (1997), we apply Proposition 7 to the sequence
X; = g(&), where the variable &, is My-measurable. There exist two ran-

dom variables di g, and dag, . respectively M and o (& )-measurable, with
E(dk p1y) = E(datgr) = B(Mo, (&) and such that

Cov (| Xo|(Tgy(xp)>0 — Tzo(xiy<0)s Xi) < 2EY?(dg o | Xo|)EY 2 (dvtg ) Xi|?)
< E(dymto| Xol?) + E(dao,n| Xnl?) -

Since da,x is 0(&x)-measurable, it may be written as dyr = Do r(Er)-
Using (6.1) and the stationarity of the sequence (&;);cz, we obtain

E|XoEo(X&)| < E([dk o + Dator(€0)]| Xol?) - (6.3)

Put by = [di e + Damor(&0)]/2 and B = Y- b,. The sequence (by)rso
satisfies E(by) = B(My,0(&)). Moreover, we deduce from (6.3) that if X,
belongs to L?(BP) then the series Y, | XoEo(Xx)|1 is convergent. This

completes the proof of Corollary 2.
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