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Abstract. In the convolution model Zi = Xi + εi, we give a model selection procedure to estimate
the density of the unobserved variables (Xi)1≤i≤n, when the sequence (Xi)i≥1 is strictly stationary
but not necessarily independent. This procedure depends on wether the density of εi is super smooth
or ordinary smooth. The rates of convergence of the penalized contrast estimators are the same as in
the independent framework, and are minimax over most classes of regularity on R. Our results apply
to mixing sequences, but also to many other dependent sequences. When the errors are super smooth,
the condition on the dependence coefficients is the minimal condition of that type ensuring that the
sequence (Xi)i≥1 is not a long-memory process.
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1. Introduction

The problem of estimating the density of identically distributed but not independent random vari-
ables X1, . . . , Xn when they are observed with an additive and independent noise is encountered in
numerous contexts. This problem is described by the model

Zi = Xi + εi, for i = 1, . . . , n,(1.1)

where one observes Z1, . . . , Zn, and where (εi)1≤i≤n are independent and identically distributed (i.i.d.),
and independent of (Xi)1≤i≤n. When (Xi)1≤i≤n is a Markov chain, the model (1.1) is a particular case
of hidden Markov models, with an additive structure.

Our aim is the adaptive estimation of g, the common distribution of the unobserved variables
(Xi)1≤i≤n, when the density fε of εi is known. More precisely we shall build an estimator of g without
any prior knowledge on its smoothness, using the observations (Zi)1≤i≤n and the knowledge of the
convolution kernel fε. We shall assume that the known density fε belongs to various collections of
densities, and that the dependence properties of the sequence (Xi)i≥1 are described by appropriate
dependence coefficients. More precisely, we consider two types of dependent sequences. We assume
either that the sequence (Xi)i≥1 is absolutely regular in the sense of Rozanov and Volkonskii (1960),
or that it is τ -dependent in the sense of Dedecker and Prieur (2005). These dependence conditions are
presented in Section 2 and motivated through various examples.

In density deconvolution, two factors determine the estimation accuracy. First, the smoothness
of the density g to be estimated, and second the smoothness of the error density, the worst rates of
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convergence being obtained for the smoothest errors densities. We shall consider two classes of densities
for fε: first the so called super smooth densities with exponential decay of their Fourier transform, and
next the class of ordinary smooth densities with Fourier transform having a polynomial decay.

Let us briefly recall the previous results in the independent framework. To our knowledge, the
first adaptive estimator has been proposed by Pensky and Vidakovic (1999). It is a wavelet estimator
constructed via a thresholding procedure. This estimator achieves the minimax rates when g belongs
to a Sobolev class, but it fails to reach the minimax rates when both the errors density and g are
supersmooth. More recently, Comte et al. (2006) have proposed an adaptive estimator of g constructed
by minimizing an appropriate penalized contrast function only depending on the observations and on
fε. This estimator is minimax (sometimes within a negligible logarithmic factor) in all cases where
lower bounds are previously known (i.e. in most cases). More precisely, the authors obtain non-
asymptotic upper bounds for the Mean Integrated Squared Error (MISE), which ensure an automatic
trade-off between a bias term and the penalty term. Hence, the estimator automatically achieves the
best rate obtained by the collection of non-penalized estimators when the (unknown) optimal space
is selected (sometimes up to a negligible logarithmic factor). When both the density and the errors
are super smooth, this adaptive estimator significantly improves on the rates given by the adaptive
estimator built in Pensky and Vidakovic (1999), whereas both adaptive estimators have the same rate
in the other cases. This improvement partly comes from the choice of the Shannon basis (see Section
3.2) instead of the wavelet basis considered in Pensky and Vidakovic.

In the dependent context, we follow the approach proposed in Comte et al. (2006). We give adaptive
estimators of g, constructed by minimizing an appropriate penalized contrast function. The penalty
function depends on the known density fε, but it does not depend on the dependence coefficients of
the sequence (Xi)i≥1. The adaptive estimators have the same rates as in the independent case, under
mild conditions on the dependence coefficients of (Xi)i≥1. The important point here is that the penalty
functions are the same (or almost the same) as in the independent framework. This is a bit surprising:
indeed, when the (Xi)1≤i≤n are observed (i.e. εi = 0), the threshold level proposed in Tribouley and
Viennet (1998) as well as the penalty function given in Comte and Merlevède (2002) (see also our
Corollary 5.2) depend on the mixing coefficients of the sequence (Xi)i≥1.

In Section 4 we deal with non adaptive estimators. As usual, we show that the MISE of the minimum
contrast estimator is bounded by a squared bias plus a variance term. The variance term can be split
into two terms. The first and dominating term of the variance is exactly the variance of a density
deconvolution estimator in the independent context. It is as usual related to

∫
|x|≤Cn

|f∗ε (x)|−2dx,
Cn → ∞. The second and negligible term in the variance is the term involving the dependence
structure of the sequence (Xi)i≥1. The main consequence of this first result is that this non adaptive
estimator reaches the (minimax) rates of the i.i.d. case (as given in Fan (1991), Butucea (2004),
and Butucea and Tsybakov (2005)), as soon as the dependence coefficients are summable. Moreover,
even if the coefficients are not summable, there is no loss in the rate provided that the partial sums
of the coefficients do not grow too fast with respect to

∫
|x|≤Cn

|f∗ε (x)|−2dx. These results have to be
compared with previously known results for non adaptive density deconvolution in dependent contexts.
For strongly mixing sequences in the sense of Rosenblatt (1956), Masry (1993) propose a kernel-type
estimator for the joint density gp of (X1, . . . , Xp) when it exists. For the (pointwise) Mean Square
Error, he obtains the same rates as in the i.i.d. case provided that α(n) = O(n−2−δ) for ordinary
smooth fε, and provided that α(n) = O(n−1−δ) for super smooth fε. When p = 1, our assumption on
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the mixing coefficients is weaker, since we only need
∑

n>0 α(n) < ∞ in both cases (see our Remark
4.1).

In the main part (Section 5), we study the adaptive estimators. We show that the squared bias
term and the variance term obtained in the upper bound of the MISE of the adaptive estimator are
the same as in the independent case. The model selection procedure depends on wether the density fε
is super smooth or ordinary smooth.

When fε is super smooth, the adaptive estimator, is constructed with the exact penalty of the
independent context. Its rate of convergence is exactly the same as in the independent case, provided
that the dependence coefficients of (Xi)i≥1 are summable. The main tools in this case are covariance
inequalities for dependent variables, and concentration inequalities. The case of super smooth errors
is particularly important, since it contains the case of Gaussian errors. It also contains the stochastic
volatility model, in which εi ∼ ln(N (0, 1)2) (see Van Es et al. (2003, 2005), Comte and Genon-Catalot
(2006)).

When fε is ordinary smooth, the adaptive estimator, is constructed with a penalty of the same order
as in the independent context. Its rate of convergence is exactly the same as in the independent case.
For ordinary smooth errors, the main tools are the coupling properties of the dependence coefficients
(see Section 2.1). To use these properties, we need to consider a more restrictive type of dependence
than for super smooth errors, and we need to impose a polynomial decrease of the coefficients.

In both cases, super and ordinary smooth, the results hold for β-mixing and τ -dependent random
variables (Xi)i≥1. To our knowledge, this is the first time that adaptive density deconvolution in a
dependent context is considered. The robustness of this estimation procedure to dependency relies
on the independence between (Xi)1≤i≤n and (εi)i≤1≤n, and the fact that the errors are i.i.d. random
variables. We refer to Comte et al. (2005, 2006) for practical implementation of the estimators, and
for the calibration of the constants in the penalty functions. In Comte et al. (2005), the robustness of
the procedure to various dependency has been experimented in practice (see Tables 4 and 5 therein).

2. Some measures of dependence

Let (Ω,A,P) be a probability space. Let Y be a random variable with values in a Banach space
(B, ‖ · ‖B), and let M be a σ-algebra of A. Let PY |M be a conditional distribution of Y given M, and
let PY be the distribution of Y . Let B(B) be the borel σ-algebra on (B, ‖ · ‖B), and let Λ1(B) be the
set of 1-Lipschitz functions from (B, ‖ · ‖B) to R. Define now

β(M, σ(Y )) = E
(

sup
A∈B(X )

|PY |M(A)− PY (A)|
)
,

and if E(‖Y ‖) <∞, τ(M, Y ) = E
(

sup
f∈Λ1(B)

|PY |M(f)− PY (f)|
)
.

The coefficient β(M, σ(Y )) is the usual mixing coefficient, introduced by Rozanov and Volkonskii
(1960). The coefficient τ(M, Y ) has been introduced by Dedecker and Prieur (2005).

Let X = (Xi)i≥1 be a strictly stationary sequence of real-valued random variables. For any k ≥ 0,
the coefficients βX,1(k) and τX,1(k) are defined by

βX,1(k) = β(σ(X1), σ(X1+k)),
and if E(|X1|) <∞, τX,1(k) = τ(σ(X1), X1+k).
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On Rl, we put the norm ‖x− y‖Rl = l−1(|x1 − y1|+ · · ·+ |xl − yl|). Let Mi = σ(Xk, 1 ≤ k ≤ i). The
coefficients βX,∞(k) and τX,∞(k) are defined by

βX,∞(k) = sup
i≥1,l≥1

sup {β(Mi, σ(Xi1 , . . . , Xil)), i+ k ≤ i1 < · · · < il} ,

and if E(|X1|) <∞, τX,∞(k) = sup
i≥1,l≥1

sup {τ(Mi, (Xi1 , . . . , Xil)), i+ k ≤ i1 < · · · < il} .

2.1. Coupling. We recall the coupling properties of these coefficients. Assume that Ω is rich enough,
which means that there exists U uniformly distributed over [0, 1] and independent of M∨σ(X). There
exist two M∨σ(U)∨σ(X)-measurable random variables X∗

1 and X∗
2 distributed as X and independent

of M such that

(2.1) β(M, σ(X)) = P(X 6= X∗
1 ) and τ(M, X) = E(‖X −X∗

2‖B) .

The first equality in (2.1) is due to Berbee (1979), and the second one has been established in Dedecker
and Prieur (2005), Section 7.1.

2.2. Covariance inequalities. Denote by ‖ · ‖∞,P the L∞(Ω,P)-norm. Let X,Y be two real-valued
random variables, and let f, h be two measurable functions from R to C. Then

(2.2) |Cov(f(Y ), h(X))| ≤ 2‖f(Y )‖∞,P‖h(X)‖∞,P β(σ(X), σ(Y )) ,

and if Lip(h) is the Lipschitz coefficient of h,

(2.3) |Cov (f(Y ), h(X))| ≤ ‖f(Y )‖∞,PLip(h) τ(σ(Y ), X) .

Inequalities (2.2) and (2.3) follow from the coupling properties (2.1) by noting that if X∗ is distributed
as X and independent of Y ,

Cov (f(Y ), h(X)) = E(f(Y )(h(X)− h(X∗))) .

2.3. Examples. Examples of β-mixing sequences are well known (we refer to the books by Doukhan
(1994) and Bradley (2002)). One of the most important examples is the following: a stationary,
irreducible, aperiodic and positively recurrent Markov chain (Xi)i≥1 is β-mixing, which means that
βX,∞(k) tends to zero as k tends to infinity.

Unfortunately, many simple Markov chains are not β-mixing (and not even strongly mixing in the
sense of Rosenblatt (1956)). For instance, if (εi)i≥1 is i.i.d. with marginal B(1/2), then the stationary
solution (Xi)i≥0 of the equation

(2.4) Xn =
1
2
(Xn−1 + εn), X0 independent of (εi)i≥1

is not β-mixing (and not even strongly mixing) since βX,1(k) = 1 for any k ≥ 0. By contrast, for this
particular example, one has τX,∞(k) ≤ 2−k. More generally, the coefficient τX,∞(k) is easy to compute
in many situations (see Dedecker and Prieur (2005)). Let us recall some important examples:

Linear processes. Assume that Xi =
∑

j≥0 ajξn−j , where (ξi)i∈Z is i.i.d. One has the bounds

τX,∞(k) ≤ 2E(|ξ0|)
∑
j≥k

|aj | and τX,∞(k) ≤
√

2Var(ξ0)
∑
j≥k

a2
j .
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Markov chains. Let (Xn)n≥0 be a stationary Markov chain such that Xn = F (Xn−1, ξn) for some
measurable function F and some i.i.d. sequence (ξi)i≥1 independent of X0. Assume that there exists
κ < 1 such that

E(|F (x, ξ0)− F (y, ξ0)|) ≤ a|x− y| .
Then one has the inequality

τX,∞(k) ≤ 2E(|X0|)ak .
An important example is Xn = f(Xn−1) + ξn for some a-lipschitz function f .

Expanding maps. Let T be a Borel-measurable map from [0, 1] to [0, 1]. If the probability µ is
invariant by T , the sequence (Yi = T i)i≥0 of random variables from ([0, 1], µ) to [0, 1] is strictly
stationary. Define the operator K from L1([0, 1], µ) to L1([0, 1], µ) via the equality∫ 1

0
(Kh)(x)k(x)µ(dx) =

∫ 1

0
h(x)(k ◦ T )(x)µ(dx)

where h ∈ L1([0, 1], µ) and k ∈ L∞([0, 1], µ). It is easy to check that (Y1, Y2, . . . , Yn) has the same
distribution as (Xn, Xn−1, . . . , X1) where (Xi)i∈Z is a stationary Markov chain with invariant distri-
bution µ and transition kernel K. If T is uniformly expanding (see for instance the assumptions on
page 218 in Dedecker and Prieur (2005)), then there exist C > 0 and ρ in ]0, 1[ such that

τX,∞(k) ≤ Cρk

(see Dedecker and Prieur page 230). Note that the Markov chain (Xi)i≥1 is not β-mixing (and not
even strongly mixing). Indeed β(σ(X1), σ(Xn)) = β(σ(Tn), σ(T )). Since σ(Tn) ⊂ σ(T ), it follows that

β(σ(X1), σ(Xn)) ≥ β(σ(Tn), σ(Tn)) = β(σ(T ), σ(T ))

and the later is positive as soon as µ is non trivial.

3. Assumptions and estimators

For two complex-valued functions u and v in L2(R) ∩ L1(R), let

u∗(x) =
∫
eitxu(t)dt, u ∗ v(x) =

∫
u(y)v(x− y)dy, and < u, v >=

∫
u(x)v(x)dx

with z the conjugate of a complex number z. We also use the notations

‖u‖1 =
∫
|u(x)|dx, ‖u‖2 =

∫
|u(x)|2dx, and ‖u‖∞ = sup

x∈R
|u(x)|.

3.1. Assumptions for density deconvolution. The smoothness of fε is described by the following
assumption.

There exist nonnegative numbers κ0, γ, µ, and δ such that f∗ε satisfies

κ0(x2 + 1)−γ/2 exp{−µ|x|δ} ≤ |f∗ε (x)| ≤ κ′0(x
2 + 1)−γ/2 exp{−µ|x|δ}.(Aε

1)
The density fε belongs to L2(R) and for all x ∈ R, f∗ε (x) 6= 0.(Aε

2)

Since fε is known, the constants µ, δ, κ0, and γ defined in (Aε
1) are also known.

When δ = 0 in (Aε
1), fε is usually called “ordinary smooth”. When µ > 0 and δ > 0, fε is called

“super smooth”. Densities satisfying (Aε
1) with δ > 0 and µ > 0 are infinitely differentiable. The

standard examples for super smooth densities are the following: Gaussian or Cauchy distributions are
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super smooth of order γ = 0, δ = 2 and γ = 0, δ = 1 respectively. When ε = ln(η2) with η ∼ N (0, 1)
as in Van Es et al. (2003, 2005), then ε is super-smooth with δ = 1, γ = 0 and µ = π/2. For ordinary
smooth densities, one can cite for instance the double exponential (also called Laplace) distribution
with δ = 0 = µ and γ = 2. Although densities with δ > 2 exist, they are difficult to express in a closed
form. Nevertheless, our results hold for such densities. Furthermore, the square integrability of fε in
(Aε

2) require that γ > 1/2 when δ = 0 in (Aε
1).

Classically, the slowest rates of convergence for estimating g are obtained for super smooth error
densities. In particular, when ε is Gaussian and g belongs to Sobolev classes, the minimax rates are
negative powers of ln(n) (see Fan (1991)). Nevertheless, the rates are improved if g has stronger
smoothness properties, described by the set

Ss,r,b(C1) =
{
ψ such that

∫ +∞

−∞
|ψ∗(x)|2(x2 + 1)s exp{2b|x|r}dx ≤ C1

}
(3.1)

for s, r, b non-negative numbers.
Such smoothness classes are classically considered both in deconvolution and in density estimation

without errors. When r = 0, (3.1) corresponds to a Sobolev ball. The functions in (3.1) with r > 0
and b > 0 are infinitely many times differentiable. They admit analytic continuation on a finite width
strip when r = 1 and on the whole complex plane if r = 2.

Subsequently, the density g is supposed to satisfy the following assumption.

The density g ∈ L2(R) and there exists M2 > 0, such that
∫
x2g2(x)dx < M2 <∞.(AX

3 )

Assumption (AX
3 ) which is due to the construction of the estimator, is quite unusual in density estima-

tion. It already appears in density deconvolution in the independent framework in Comte et al. (2005,
2006). It also appears in a slightly different way in Pensky and Vidakovic (1999) who assume, instead
of (AX

3 ) that supx∈R |x|g(x) <∞. It is important to note that Assumption (AX
3 ) is very unrestrictive.

All densities having tails of order |x|−(s+1) as x tends to infinity satisfy (AX
3 ) only if s > 1/2. One

can cite for instance the Cauchy distribution or all stable distributions with exponent r > 1/2 (see
Devroye (1986)). The Lévy distribution, with exponent r = 1/2 does not satisfies (AX

3 ).

3.2. The projection spaces. Let ϕ(x) = sin(πx)/(πx). For m ∈ N and j ∈ Z, set ϕm,j(x) =√
mϕ(mx − j). The functions {ϕm,j}j∈Z constitute an orthonormal system in L2(R) (see e.g. Meyer

(1990), p.22). For m = 2k, it is known as the Shannon basis. Though we choose here integer values
for m, a thinner grid would also be possible. Let us define

Sm = span{ϕm,j , j ∈ Z}, m ∈ N.

The space Sm is exactly the subspace of L2(R) of functions having a Fourier transform with compact
support contained in [−πm, πm].

The orthogonal projections of g on Sm is gm =
∑

j∈Z am,j(g)ϕm,j where am,j(g) =< ϕm,j , g >. To
obtain representations having a finite number of “coordinates”, we introduce

S(n)
m = span {ϕm,j , |j| ≤ kn}

with integers kn to be specified later. The family {ϕm,j}|j|≤kn
is an orthonormal basis of S(n)

m and the
orthogonal projections of g on S(n)

m is given by g(n)
m =

∑
|j|≤kn

am,j(g)ϕm,j .
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3.3. Construction of the minimum contrast estimators. For an arbitrary fixed integer m, an
estimator of g belonging to S(n)

m is defined by

(3.2) ĝ(n)
m = arg min

t∈S(n)
m

γn(t),

where, for t in S(n)
m ,

γn(t) =
1
n

n∑
i=1

[
‖t‖2 − 2u∗t (Zi)

]
, with ut(x) =

1
2π

(
t∗(−x)
f∗ε (x)

)
.

By using Parseval and inverse Fourier formulae we obtain that E [u∗t (Zi)] = 〈t, g〉, so that E(γn(t)) =
‖t−g‖2−‖g‖2 is minimal when t = g. This shows that γn(t) suits well for the estimation of g. Classical
calculations show that

ĝ(n)
m =

∑
|j|≤kn

âm,jϕm,j with âm,j =
1
n

n∑
i=1

u∗ϕm,j
(Zi), and E(âm,j) =< g, ϕm,j >= am,j .

3.4. Minimum penalized contrast estimator. As in the independent framework, the minimum
penalized estimator of g is defined as g̃ = ĝm̂g where m̂g is chosen in a purely data-driven way. The
main point of the estimation procedure lies in the choice of m = m̂g for the estimators ĝm from Section
3.3 in order to mimic the oracle parameter

m̆g = arg min
m

E ‖ ĝm − g ‖2
2 .(3.3)

The model selection is performed in an automatic way, using the following penalized criteria

(3.4) g̃ = ĝ
(n)
m̂ with m̂ = arg min

m∈{1,··· ,mn}

[
γn(ĝ(n)

m ) + pen(m)
]
,

where pen(m) is a penalty function, precised in the Theorems, that depends on f∗ε through ∆(m)
defined by

∆(m) =
1
2π

∫ πm

−πm

1
|f∗ε (x)|2

dx.(3.5)

The key point in the dependent context is to find a penalty function not depending on the mixing
coefficients such that

E ‖ g̃ − g ‖2≤ C inf
m∈{1,··· ,mn}

E ‖ ĝm − g ‖2 .

4. Risk bounds for the minimum contrast estimators ĝ(n)
m

We focus here on non adaptive estimation, starting with the presentation of general upper bounds
for MISEs of the minimum contrast estimators ĝ(n)

m .

Proposition 4.1. If (Aε
2) and (AX

3 ) hold, then

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m2(M2 + 1)
kn

+
2∆(m)
n

+
2Rm
n

,
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where

(4.1) Rm =
1
π

n∑
k=2

∫ πm

−πm

∣∣Cov
(
eixX1 , eixXk

)∣∣ dx.
Moreover, Rm ≤ min(Rm,β, Rm,τ ), where

Rm,β = 4m
n−1∑
k=1

βX,1(k) and Rm,τ = πm2
n−1∑
k=1

τX,1(k) .

Remark 4.1. The term Rm can be easily bounded for many other dependent sequences. For instance,
if αX,1 = α(σ(X1), σ(X1+k)) is the usual strong mixing coefficient of Rosenblatt (1956), one has
the upper bound Rm ≤ 16m

∑n−1
k=1 αX,1(k). If X is a stationary sequence of associated random

variables (see Esary et al. (1967) for the definition), then |Cov(eixX1 , eixXk)| ≤ 4x2Cov(X1, Xk),
so that Rm ≤ (8π2/3)m3

∑n
k=2 Cov(X1, Xk). For general treatment in this case, see Marsy (2003).

We now comment the rates resulting from Proposition 4.1. As usual, the variance term n−1∆(m)
depends on the rate of decay of the Fourier transform of fε. According to Lemma 7.2 and according
to Butucea and Tsybakov (2005), under (Aε

1)-(Aε
2), we have

λ1(fε, κ′0)Γ(m)(1 + o(1)) ≤ ∆(m) ≤ λ1(fε, κ0)Γ(m)(1 + o(1)) as m→∞

where Γ(m) = (1 + (πm)2)γ(πm)1−δ exp
{

2µ(πm)δ
}
,(4.2)

λ1(fε, κ0) =
1

κ2
0πR(µ, δ)

, and R(µ, δ) = 1I{δ=0} + 2µδ1I{δ>0}.(4.3)

If (Aε
1)-(Aε

2) and (AX
3 ) hold, and if kn ≥ n, we have the upper bound

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m2(M2 + 1)
n

+
2λ1(fε, κ0)Γ(m)

n
+

2Rm
n

.(4.4)

Finally, since gm is the orthogonal projection of g on Sm, we get that g∗m = g∗1I[−mπ,mπ] and therefore

‖g − gm‖2 =
1
2π
‖g∗ − g∗m‖2 =

1
2π

∫
|x|≥πm

|g∗|2(x)dx.

If g belongs to the class Ss,r,b(C1) defined in (3.1), then

‖g − gm‖2 ≤ C1

2π
(m2π2 + 1)−s exp{−2bπrmr}.

Hence, according to (4.4), if (AX
3 ) holds and kn ≥ n, the risk of ĝ(n)

m is bounded by

C1

2π
(m2π2 + 1)−s exp{−2bπrmr}+

2λ1(fε, κ0)(1 + (πm)2))γ(πm)1−δ exp
{
2µπδmδ

}
n

+
m2(M2 + 1)

n
+

2Rm
n

.

Assume now that either
∑

k>0 βX,1(k) < ∞ or
∑

k>0 τX,1(k) < ∞, so that the residual terms
n−1Rm + n−1m2(M2 + 1) are of order n−1m2. As in the independent case, we choose m̆ as the
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minimizer of

(m2π2 + 1)−s exp{−2bπrmr}+
(πm)2γ+1−δ exp

{
2µπδmδ

}
n

.

The behavior of m̆ is recalled in Table 1. We see that in all cases, the residual terms n−1Rm̆ +
n−1m̆2(M2 + 1) of order n−1m̆2 are negligible with respect to the main terms since n−1∆(m) grows
faster than n−1m2 (recall that if δ = 0, we have the restriction γ > 1/2 (cf. Section 3.1)). Hence the
rate of convergence of ĝ(n)

m̆ is the same as in the i.i.d. case (see Table 1 below).

Table 1. Choice of m̆ and corresponding rates under Assumptions (Aε
1)-(Aε

2) and (3.1).

fε

δ = 0 δ > 0
ordinary smooth supersmooth

g

r = 0
Sobolev(s)

πm̆ = O(n1/(2s+2γ+1))
rate = O(n−2s/(2s+2γ+1))
minimax rate

πm̆ = [ln(n)/(2µ+ 1)]1/δ

rate = O((ln(n))−2s/δ)
minimax rate

r > 0
C∞

πm̆ = [ln(n)/2b]1/r

rate = O

(
ln(n)(2γ+1)/r

n

)
minimax rate

m̆ solution of
m̆2s+2γ+1−r exp{2µ(πm̆)δ + 2bπrm̆r}

= O(n)
minimax rate if r < δ and s = 0

When r > 0, δ > 0 the value of m̆ is not explicitly given. It is obtained as the solution of the
equation

m̆2s+2γ+1−r exp{2µ(πm̆)δ + 2bπrm̆r} = O(n).

Consequently, the rate of ĝ(n)
m̆ is not explicit and depends on the ratio r/δ. If r/δ or δ/r belongs to

]k/(k+ 1); (k+ 1)/(k+ 2)] with k integer, the rate of convergence can be expressed as a function of k.
We refer to Comte et al. (2006) for further discussions about those rates. We refer to Lacour (2006)
for explicit formulae for the rates in the special case r > 0, δ > 0.

5. Risk bounds for adaptive estimators

In the previous section, the construction of the estimators require the knowledge of the smoothness
of g. We now come to adaptive estimation, without such prior knowledge.

5.1. A first bound in adaptive density deconvolution. Theorem 5.1 gives a general bound which
holds under mild dependence conditions, for fε being either ordinary or super smooth. For a > 1, let
pen(m) be defined by

(5.5) pen(m) =


24a

∆(m)
n

if 0 ≤ δ < 1/3,

8a
(

1 +
48µπδλ2(fε, κ0)

λ1(fε, κ′0)

)
∆(m)mmin((3δ/2−1/2)+,δ))

n
if δ ≥ 1/3.
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The constant λ1(fε, κ0) is defined in (4.3) and λ2(fε, κ0) is given by

λ2(fε, κ0) =‖ fε ‖ κ−1
0

√
2λ1(fε, κ0)1I0≤δ≤1 + 2λ1(fε, κ0)1Iδ>1.(5.6)

In order to bound up pen(m), we impose that

πmn ≤


n1/(2γ+1) if δ = 0[
ln(n)
2µ

+
2γ + 1− δ

2δµ
ln
(

ln(n)
2µ

)]1/δ

if δ > 0.
(5.7)

Subsequently we set

κa = (a+ 1)/(a− 1), and Ca = max(κ2
a, 2κa).(5.8)

Theorem 5.1. Assume that fε satisfies (Aε
1)-(A

ε
2), that g satisfies (AX

3 ), and that mn satisfies (5.7).
Consider the collection of estimators ĝ(n)

m defined by (3.2) with kn ≥ n and 1 ≤ m ≤ mn. Let pen(m)
be defined by (5.5). The estimator g̃ = ĝ

(n)
m̂ defined by (3.4) satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,··· ,mn}

[
‖g − gm‖2 + pen(m) +

m2(M2 + 1)
n

]
+
C(Rmn +mn)

n
,

where Rm is defined in (4.1), Ca is defined in (5.8), and C is a constant depending on fε and a.

Let us compare the rate of g̃ with the rate obtained in the independent framework. The term
infm∈{1,··· ,mn}[‖g − gm‖2 + pen(m) + m2(M2 + 1)/n] corresponds to the rate of g̃ when all variables
are i.i.d. The dependent context induces the additional term n−1(Rmn + mn). If the dependence
coefficients are summable and the errors are super smooth, then n−1(Rmn + mn) is negligible and g̃
achieves the rate of the independent framework. If ε is ordinary smooth, the term n−1(Rmn + mn)
may not be negligible and Theorem 5.1 is not precise enough.

5.2. Adaptive density deconvolution for super smooth fε. If (Aε
1)-(Aε

2) hold for some δ > 0,
we have the following corollary.

Corollary 5.1. Assume that fε satisfies (Aε
1)-(A

ε
2) with δ > 0, that g satisfies (AX

3 ), and that mn

satisfies (5.7). Let pen(m) be defined by (5.5). Consider the collection of estimators ĝ(n)
m defined by

(3.2) with kn ≥ n and 1 ≤ m ≤ mn.

(1) If
∑

k>0 βX,1(k) <∞, the estimator g̃ = ĝ
(n)
m̂ defined by (3.4) satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,··· ,mn}

[
‖g − gm‖2 + pen(m) +

m2(M2 + 1)
n

]
+
C(ln(n))1/δ

n
,

where Ca is defined in (5.8) and C is a constant depending on fε, a and
∑

k>0 βX,1(k).
(2) If

∑
k>0 τX,1(k) <∞, the estimator g̃ = ĝ

(n)
m̂ defined by (3.4) satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,··· ,mn}

[
‖g − gm‖2 + pen(m) +

m2(M2 + 1)
n

]
+
C(ln(n))2/δ

n
,

where Ca is defined in (5.8) and C is a constant depending on fε, a and
∑

k>0 τX,1(k).
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Corollary 5.1 requires important comments. The terms involving power of ln(n) are negligible
with respect to infm∈{1,··· ,mn}[‖g − gm‖2 + pen(m) + m2(M2 + 1)/n]. The risk of g̃ is of order
infm∈{1,··· ,mn}[‖g − gm‖2 + pen(m)], that is of the best order, as in the independent framework. The
penalty does not depend on the dependence coefficients and is the same as in the independent frame-
work.

As a conclusion, we see that the adaptive estimator g̃ built with the same penalty as in the inde-
pendent framework, still achieves the best rates under mild conditions on the dependence coefficients.

5.3. Adaptive density deconvolution for ordinary smooth fε. For a > 1, define pen(m) by

(5.9) pen(m) =
25a∆(m)

n
.

Theorem 5.2. Assume that fε satisfies (Aε
1)-(A

ε
2) with δ = 0, that g satisfies (AX

3 ), and that mn

satisfies (5.7). Let pen(m) be defined by (5.9). Consider the collection of estimators ĝ(n)
m defined by

(3.2) with kn ≥ n and 1 ≤ m ≤ mn.

(1) If βX,∞(k) = O(k−(1+θ)) for some θ > (2γ + 3)/(2γ + 1), then the estimator g̃ = ĝ
(n)
m̂ defined

by (3.4) satisfies

(5.10) E(‖g − g̃‖2) ≤ Ca inf
m∈{1,··· ,mn}

[
‖g − gm‖2 + pen(m) +

m2(M2 + 1)
n

]
+
C

n
,

where Ca is defined in (5.8) and C is a constant depending on fε, a, and
∑

k>0 βX,∞(k).
(2) If τX,∞(k) = O(k−(1+θ)) for some θ > (2γ + 5)/(2γ + 1), then the estimator g̃ = ĝ

(n)
m̂ defined

by (3.4) satisfies (5.10), where C is a constant depending on fε, a and
∑

k>0 τX,∞(k).

Remark 5.1. Note that the condition for βX,∞(k) is realized for any γ > 1/2 provided θ > 2. In the
same way, the condition for τX,∞(k) is realized for any γ > 1/2 provided θ > 3. In both cases, the
condition on θ is weaker as γ increases. In other words, the smoother is fε, the weaker is the condition
on the dependence coefficients.

Remark 5.2. For m large enough, the penalty function given for ordinary smooth errors in Theorem
5.2 is an upper bound of more precise penalty functions which depend on the dependence coefficients.
Under the assumptions of (1) in Theorem 5.2, let pen(m) be defined by

(5.11) pen(m) =
24a∆(m) + 128a

(
1 + 4

∑n
k=1 βX,1(k)

)
m

n
.

Under the assumptions of (2) in Theorem 5.2 let pen(m) be defined by

(5.12) pen(m) =
24a∆(m)

n
+

64a [1 + 38 ln(m)]
(
m+ π

∑n
k=1 τX,1(k)m

2
)

n

In both cases, the estimator g̃ = ĝ
(n)
m̂ defined by (3.4) satisfies (5.10). Remark 5.2 follows from the

proof of Theorem 5.2.
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5.4. Case without noise. One can deduce from Proposition 4.1, Theorem 5.2, its proof and Remark
5.2, a result for density estimation without errors, on the whole real line, that is when X is observed.
If ε = 0, then we can consider that Z = X and replace f∗ε by 1. It follows that u∗t (Zi) = t(Xi) and the
contrast γn simply becomes

(5.13) γn,X(t) = ‖t‖2 − 2
n

n∑
i=1

t(Xi).

Let kn ≥ n2, and consider as previously

(5.14) ĝ(n)
m = arg min

t∈S(n)
m

γn,X(t), pen(m) = 128a
(
1 + 4

n∑
k=1

βX,1(k)
)m
n
,

and

(5.15) m̂ = arg min
m∈{1,...,n}

[γn,X(g(n)
m ) + pen(m)].

The following results follow straightforwardly.

Corollary 5.2. Assume that ε = 0. Let kn ≥ n2. Then
1)

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m(M2 + 3)
n

+
2Rm
n

.

2) If βX,∞ = O(k−(1+θ)) for some θ > 3, then the estimator g̃ = ĝm̂ defined by (5.14) and (5.15)
satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,··· ,n}

[
‖g − gm‖2 + pen(m) +

m(M2 + 1)
n

]
+
C

n
,

where Ca is defined in (5.8) and C is a constant depending on a and
∑

k>0 βX,∞(k).

The result 1) shows that if
∑

k>0 βX,1(k) <∞, one obtains the same bounds (and the same rates)
as in the i.i.d. case. However, if

∑
k>0 τX,1(k) <∞ the term n−1Rm is of order n−1m2 and the rates

for ĝ(n)
m are less good than in the i.i.d. case.

This result 2) shows that this estimation procedure also works in density estimation without errors.
It allows to estimate a density on the whole real line and to reach the usual rates of convergence, by
using a penalty of the classical order m/n. This remark is valid in the β-mixing framework and in the
case of independent Xi’s. We refer to Pensky (1999) and Rigollet (2006) for recent results in adaptive
density estimation on the whole real line in the i.i.d. case.

6. Proofs

6.1. Proof of Proposition 4.1. The proof of the proposition 4.1 follows the same lines as in the
independent framework (see Comte et al. (2006)). The main difference lies in the control of the
variance term. We keep the same notations as in Section 3.3. According to (3.2), for any given m

belonging to {1, · · · ,mn}, ĝ(n)
m satisfies, γn(ĝ

(n)
m )− γn(g(n)

m ) ≤ 0. For a random variable Y with density
fY , and any function ψ such that ψ(Y ) is integrable, let

νn,Y (ψ) =
1
n

n∑
i=1

[ψ(Yi)− 〈ψ, fY 〉], so that νn,Z(u∗t ) =
1
n

n∑
i=1

[u∗t (Zi)− 〈t, g〉] .(6.1)
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Since

γn(t)− γn(s) = ‖t− g‖2 − ‖s− g‖2 − 2νn,Z(u∗t−s),(6.2)

we infer that

(6.3) ‖g − ĝ(n)
m ‖2 ≤ ‖g − g(n)

m ‖2 + 2νn,Z
(
u∗
ĝ
(n)
m −g(n)

m

)
.

Writing that âm,j − am,j = νn,Z(u∗ϕm,j
), we obtain

νn,Z

(
u∗
ĝ
(n)
m −g(n)

m

)
=
∑
|j|≤kn

(âm,j − am,j)νn,Z(u∗ϕm,j
) =

∑
|j|≤kn

[νn,Z(u∗ϕm,j
)]2.

Consequently, E‖g− ĝ(n)
m ‖2 ≤ ‖g−g(n)

m ‖2 +2
∑

j∈Z E[(νn,Z(u∗ϕm,j
))2]. According to Comte et al. (2006),

(6.4) ‖g − g(n)
m ‖2 =‖ g − gm ‖2 +‖gm − g(n)

m ‖2 ≤‖ g − gm ‖2 +
(πm)2(M2 + 1)

kn
.

The variance term is studied by using that for f ∈ L1(R),

νn,Z(f∗) =
∫
νn,Z(eix·)f(x)dx.(6.5)

Now, we use (6.5) and apply Parseval’s formula to obtain

(6.6) E

∑
j∈Z

(νn,Z(u∗ϕm,j
))2

 =
1

4π2

∑
j∈Z

E
(∫ ϕ∗m,j(−x)

f∗ε (x)
νn,Z(eix·)dx

)2
=

1
2π

∫ πm

−πm

E|νn,Z(eix·)|2

|f∗ε (x)|2
dx.

Since νn,Z involves centered and stationary variables,

E|νn,Z(eix·)|2 = Var|νn,Z(eix·)| = 1
n2

 n∑
k=1

Var(eixZk) +
∑

1≤k 6=l≤n
Cov(eixZk , eixZl)


=

1
n

Var(eixZ1) +
1
n2

∑
1≤k 6=l≤n

Cov(eixZk , eixZl).(6.7)

Since (Xi)i≥1 and (εi)i≥1 are independent, we have E(eixZk) = f∗ε (x)g
∗(x) so that

Cov(eixZk , eixZl) = E(eix(Zl−Zk))− |E(eixZk)|2 = E(eix(Zl−Zk))− |f∗ε (x)g∗(x)|2.
Next, by independence of X and ε, we write, for k 6= l,

E(eix(Zl−Zk)) = E(eix(Xl−Xk))E(eix(εl−εk)) = E(eix(Xl−Xk))|f∗ε (x)|2,
and consequently

Cov(eixZk , eixZl) = Cov(eixXk , eixXl)|f∗ε (x)|2.(6.8)

From (6.7), (6.8) and the stationarity of (Xi)i≥1, we obtain that

(6.9) E|νn,Z(eix·)|2 ≤ 1
n

+
2
n

n∑
k=2

∣∣Cov(eixX1 , eixXk)
∣∣ |f∗ε (x)|2.

The first part of Proposition 4.1 follows from the stationarity of the Xi’s, and from (6.3), (6.4), (6.6)
and (6.9).
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Let us prove that Rm ≤ min(Rm,β, Rm,τ ), where Rm,β and Rm,τ are defined in Proposition 4.1.
Using the inequalities (2.2) and (2.3), we obtain the bounds

|Cov(eixX1 , eixXk)| ≤ 2βX,1(k − 1) and |Cov(eixX1 , eixXk)| ≤ |x|τX,1(k − 1)

(for the last inequality, note that t→ eixt is |x|-Lipschitz). The result easily follows.

6.2. Proof of Theorem 5.1. By definition, g̃ satisfies that for all m ∈ {1, · · · ,mn},
γn(g̃) + pen(m̂) ≤ γn(gm) + pen(m).

Therefore, by using (6.2) we get that

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + 2νn,Z(u∗

g̃−g(n)
m

) + pen(m)− pen(m̂).

If t = t1 + t2 with t1 in S(n)
m and t2 in S(n)

m′ , t∗ has its support in [−πmax(m,m′), πmax(m,m′)] and t
belongs to S(n)

max(m,m′). Set Bm,m′(0, 1) = {t ∈ S(n)
max(m,m′) / ‖t‖ = 1}. For νn,Z defined in (6.1) we get

|νn,Z(u∗
g̃−g(n)

m
)| ≤ ‖g̃ − g(n)

m ‖ sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t )|.

Using that 2uv ≤ a−1u2 + av2 for any a > 1, leads to

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + a−1‖g̃ − g(n)

m ‖2 + a sup
t∈Bm,m̂(0,1)

(νn,Z(u∗t ))
2 + pen(m)− pen(m̂).

Now, according to Lemma 7.1, write that νn,Z(u∗t ) = ν
(1)
n (t) + νn,X(t), where

ν(1)
n (t) = n−1

n∑
i=1

[u∗t (Zi)− E(u∗t (Zi)|σ(Xi, i ≥ 1))] = n−1
n∑
i=1

[u∗t (Zi)− t(Xi)].(6.10)

Consequently,

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + a−1‖g̃ − g(n)

m ‖2 + 2a sup
t∈Bm,m̂(0,1)

(ν(1)
n (t))2 + 2a sup

t∈Bm,m̂(0,1)
(νn,X(t))2

+pen(m)− pen(m̂).

Hence by writing that ‖g̃ − g
(n)
m ‖2 ≤ (1 + κ−1

a )‖g̃ − g‖2 + (1 + κa)‖g − g
(n)
m ‖2 with κa defined in (5.8),

we have

‖g̃ − g‖2 ≤ κ2
a‖g(n)

m − g‖2 + 2aκa sup
t∈Bm,m̂(0,1)

(ν(1)
n (t))2 + 2aκa sup

t∈Bm,m̂(0,1)
(νn,X(t))2

+κa(pen(m)− pen(m̂)).

Choose some positive function p(m,m′) such that

2ap(m,m′) ≤ pen(m) + pen(m′).(6.11)

For this function p(m,m′) we have

‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2κapen(m) + 2aκa sup
t∈Bm,m̂(0,1)

(νn,X(t))2 + 2aκaWn(m, m̂)

≤ κ2
a‖g − g(n)

m ‖2 + 2κapen(m) + 2aκa sup
t∈Bm,m̂(0,1)

(νn,X(t))2 + 2aκa
mn∑
m′=1

Wn(m,m′),(6.12)
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where

(6.13) Wn(m,m′) :=
[

sup
t∈Bm,m′ (0,1)

|ν(1)
n (t)|2 − p(m,m′)

]
+
,

The main parts of the proof lies in the two following points :
1) Study of Wn(m,m′), and more precisely find p(m,m′) such that for a constant A1,

(6.14)
mn∑
m′=1

E(Wn(m,m′)) ≤ A1

n
.

2) Study of supt∈Bm,m̂(0,1)(νn,X(t))2 and more precisely prove that

E
[

sup
t∈Bm,m̂(0,1)

(νn,X(t))2
]
≤ mn +Rmn

n
,(6.15)

where Rm is defined in (4.1). Combining (6.12), (6.14) and (6.15), we infer that, for all 1 ≤ m ≤ mn

E‖g − g̃‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2κapen(m) +
2aκa(mn +Rmn)

n
+

2aκaA1

n
.

If we denote by Ca = max(κ2
a, 2κa), this can also be written

E‖g − g̃‖2 ≤ Ca inf
m∈{1,··· ,mn}

[
‖g − g(n)

m ‖2 + ‖g(n)
m − gm‖+ pen(m)

]
+

2aκa(Lmn +Rmn)
n

+
2aκaA1

n

≤ Ca inf
m∈{1,··· ,mn}

[
‖g − gm‖2 + (M2 + 1)m2/kn + pen(m)

]
+

2aκa(Lmn +Rmn)
n

+
2aκaA1

n
.

Proof of (6.14) We start by writing E(Wn(m,m′)) = E[supt∈Bm,m′ (0,1) |ν
(1)
n (t)|2 − p(m,m′)]+ as

E
{

EX

[
sup

t∈Bm,m′ (0,1)
|ν(1)
n (t)|2 − p(m,m′)

]
+

}
,

where EX(Y ) denotes the conditional expectation E(Y |σ(Xi, i ≥ 0)). The point is that, conditionally
to σ(Xi, i ≥ 0), the random variables u∗t (Zi) − E(u∗t (Zi)|σ(Xi, i ≥ 0)) are centered, independent but
non identically distributed. We proceed as in the independent case (see Comte et al. (2006)), by
applying the following Lemma to the expectation EX[supt∈Bm,m′ (0,1) |ν

(1)
n (t)|2 − p(m,m′)]+.

Lemma 6.1. Let Y1, . . . , Yn be independent random variables and let F be a countable class of uniformly
bounded measurable functions. Then for ξ2 > 0

E
[

sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ξ2)H2
]
+
≤ 4
K1

(
v

n
e−K1ξ2

nH2

v +
98M2

1

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√

2
nH
M1

)
,

with C(ξ) =
√

1 + ξ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M1, E
[

sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1
n

n∑
k=1

Var(f(Yk)) ≤ v.
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The proof of this inequality can be found in Appendix. It comes from a concentration Inequality in
Klein and Rio (2005) and arguments that can be found in Birgé and Massart (1998). Usual density
arguments show that this result can be applied to the class of functions F = Bm,m′(0, 1). Let us denote
by m∗ = max(m,m′). Applying Lemma 6.1, one has the bound

EX

[
sup

t∈Bm,m′ (0,1)
|ν(1)
n (t)|2 − 2(1 + 2ξ2)H2

]
+
≤ 6
K1

(
v

n
e−K1ξ2

nH2

v +
98M2

1

K1n2C2(ξ2)
e
−K1C(ξ)ξ

7
√

2
nH
M1

)
,

where

sup
t∈Bm,m′ (0,1)

‖u∗t (Z1)‖∞ ≤M1, EX

[
sup

t∈Bm,m′ (0,1)
|ν(1)
n (t)|

]
≤ H, sup

t∈Bm,m′

1
n

n∑
k=1

VarX(u∗t (Zk)) ≤ v.

By applying Lemma 7.3, we propose to take

H2 = H2(m∗) =
∆(m∗)
n

, M1 = M1(m∗) =
√
nH2 and v = v(m∗) =

√
∆2(m∗, h)

2π
with, for fZ denoting the density of Z1,

(6.16) ∆2(m,h) =
∫ πm

−πm

∫ πm

−πm

|f∗Z(x− y)|2

|f∗ε (x)f∗ε (y)|2
dxdy.

From the definition (6.13) of Wn(m,m′), by taking p(m,m′) = 2(1 + 2ξ2)H2(m∗), we get that

E(Wn(m,m′)) ≤ E
{

EX

[
sup

t∈Bm,m′ (0,1)
|ν(1)
n (t)|2 − 2(1 + 2ξ2)H2(m∗)

]
+

}
.(6.17)

According to the condition (6.11), we thus take pen(m) = 4ap(m,m) = 8n−1a(1 + 2ξ2)∆(m) where
ξ2 is suitably chosen in the control of the sum of the right-hand side of (6.17). Set m0 such that for
m∗ ≥ m0

(1/2)λ1(fε, κ′0)Γ(m∗) ≤ ∆(m∗) ≤ 2λ1(fε, κ0)Γ(m∗)(6.18)

where Γ(m) is defined in (4.2) and λ1(fε, κ0) and λ1(fε, κ′0) are defined in (4.3). We split the sum over
m′ in two parts and write

mn∑
m′=1

E(Wn(m,m′)) =
∑

m′|m∗<m0

E(Wn(m,m′)) +
∑

m′|m∗≥m0

E(Wn(m,m′)).(6.19)

By applying Lemma 6.1 and (6.18), we get the global bound EX(Wn(m,m′)) ≤ K[I(m∗) + II(m∗)],
where I(m∗) and II(m∗) are defined by

I(m∗) =
v(m∗)
n

exp
{
−K1ξ

2 ∆(m∗)
v(m∗)

}
and II(m∗) =

∆(m∗)
n2

exp
{
−2K1ξC(ξ)

7
√

2

√
n

}
,

Since I and II do not depend on the Xi’s, we infer that E(Wn(m,m′)) ≤ K[I(m∗) + II(m∗)].
When m∗ ≤ m0, with m0 finite, we get that for all m ∈ {1, · · · ,mn},∑

m′|m∗≤m0

E(Wn(m,m′)) ≤ C(m0)
n

.



ADAPTIVE DENSITY DECONVOLUTION WITH DEPENDENT INPUTS 17

We now come to the sum over m′ such that m∗ > m0.
When δ > 1 we use a rough bound for ∆2(m,h) given by

√
∆2(m,h) ≤ 2πnH2(m).

When 0 ≤ δ ≤ 1, write that

∆2(m,h) ≤‖ |f∗ε |−21I[−πm,πm] ‖∞ ∆(m) ‖ h∗ ‖2 (2π).

Under (Aε
1)-(Aε

2) we use that ‖h∗‖2 ≤ ‖f∗ε ‖2 < ∞, that
√

2π‖f∗ε ‖ = ‖fε‖ and apply (6.18) to infer
that for m∗ ≥ m0,

v(m∗) =

√
∆2(m∗, h)

2π
≤ λ2(fε, κ0)Γ2(m∗),(6.20)

where λ2(fε, κ0) is defined in (5.6) and

Γ2(m) = (1 + (πm)2)γ(πm)min((1/2−δ/2),(1−δ)) exp(2µ(πm)δ) = (πm)−(1/2−δ/2)+Γ(m).(6.21)

Combining (6.18) and (6.20), we get that for m∗ ≥ m0,

I(m∗) ≤ λ2(fε, κ0)Γ2(m∗)
n

exp
{
−K1ξ

2λ1(fε, κ′0)
2λ2(fε, κ0)

(πm∗)(1/2−δ/2)+
}

and II(m∗) ≤ ∆(m∗)
n2

exp
{
−2K1ξC(ξ)

√
n

7
√

2

}
.

• Study of
∑

m′|m∗≥m0
II(m∗). According to the choices for v(m∗), H2(m∗) and M1(m∗), we have

∑
m′|m∗≥m0

II(m∗) ≤
mn∑
m′=1

∆(m∗)
n2

exp
{
−2K1ξC(ξ)

√
n

7
√

2

}

≤ ∆(mn)mn

n2
exp

{
−2K1ξC(ξ)

√
n

7
√

2

}
.

Since under (5.7), n−1∆(mn) is bounded, we deduce that
∑

m′|m∗≥m0
II(m∗) ≤ n−1C.

• Study of
∑

m′|m∗≥m0
I(m∗). Denote by ψ = 2γ + min(1/2 − δ/2, 1 − δ), ω = (1/2 − δ/2)+, and

K ′ = K1λ1(fε, κ′0)/(2λ2(fε, κ0)). For a, b ≥ 1, we have that

max(a, b)ψe2µπ
δ max(a,b)δ

e−K
′ξ2 max(a,b)ω ≤ (aψe2µπ

δaδ
+ bψe2µπ

δbδ)e−(K′ξ2/2)(aω+bω)

≤ aψe2µπ
δaδ
e−(K′ξ2/2)aω

e−(K′ξ2/2)bω + bψe2µπ
δbδe−(K′ξ2/2)bω .(6.22)

Consequently,∑
m′|m∗≥m0

I(m∗) ≤
mn∑
m′=1

λ2(fε, κ0)Γ2(m∗)
n

exp
{
−K1ξ

2(λ1(fε, κ′0)
2λ2(fε, κ0)

(πm∗)(1/2−δ/2)+
}

≤ 2λ2(fε, κ0)Γ2(m)
n

exp
{
−K

′ξ2

2
(πm)(1/2−δ/2)+

} mn∑
m′=1

exp
{
−K

′ξ2

2
(πm′)(1/2−δ/2)+

}

+
mn∑
m′=1

2λ2(fε, κ0)Γ2(m′)
n

exp
{
−K

′ξ2

2
(πm′)(1/2−δ/2)+

}
.(6.23)
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Case 0 ≤ δ < 1/3. In that case, since δ < (1/2 − δ/2)+, the choice ξ2 = 1 ensures that the quantity
Γ2(m) exp{−(K ′ξ2/2)(m)(1/2−δ/2)} is bounded, and thus the first term in (6.23) is bounded by C/n.
Since 1 ≤ m ≤ mn with mn satisfying (5.7), n−1

∑mn
m′=1 Γ2(m′) exp{−(K ′/2)(m′)(1/2−δ/2)} is bounded

by C̃/n, and hence
∑

m′|m∗≥m0
I(m∗) ≤ Dn−1. According to (6.11), the result follows by choosing

pen(m) = 4ap(m,m′) = 24an−1∆(m).

Case δ = 1/3. According to (6.23), we choose ξ2 such that 2µπδ(m)δ− (K ′ξ2/2)mδ = −2µ(πm)δ that
is ξ2 = (8µπδλ2(fε, κ0))/(K1λ1(fε, κ′0)). Arguing as for the case 0 ≤ δ < 1/3, this choice ensures that∑

m′|m∗≥m0
I(m∗) ≤ Dn−1, and consequently (6.14) holds. The result follows by taking p(m,m′) =

2(1 + 2ξ2)∆(m∗)n−1, and pen(m) = 8a(1 + 2ξ2)∆(m)n−1.

Case δ > 1/3. In that case δ > (1/2−δ/2)+. Choose ξ2(m) such that 2µπδ(m)δ−(K ′ξ2/2)m(1/2−δ)+ =
−2µπδ(m)δ. Hence ξ2(m) = (8µ(π)δλ2(fε, κ0)/(K1λ1(fε, κ′0))(πm)δ−(1/2−δ/2)+ . This choice ensures
that

∑
m′|m∗≥m0

I(m∗) ≤ D/n, so that (6.14) holds. The result follows by choosing p(m,m′) =
2(1 + 2ξ2(m∗))∆(m∗)/n, associated to pen(m) = 8a(1 + 2ξ2(m))∆(m)/n.

Proof of (6.15). Since max(m, m̂) ≤ mn, according to (6.5),

sup
t∈Bm,m̂(0,1)

E (νn,X(t))2 ≤ sup
t∈Smn ,‖t‖=1

E
(

1
2π

∫
νn,X(eix·)t∗(−x)dx

)2

≤ 1
2π

∫ πmn

−πmn

Var

(
1
n

n∑
k=1

eixXk

)
dx

≤ mn

n
+

1
πn

∫ πmn

−πmn

n∑
k=2

∣∣Cov
(
eixX1 , eixXk

)∣∣ dx
and Theorem 5.1 is proved. 2

6.3. Proofs of Theorem 5.2 (1). We use the coupling argument recalled in Section 2.1 to build
approximating variables for the Xi’s. For n = 2pnqn + rn, 0 ≤ rn < qn, and ` = 0, · · · , pn − 1, denote
by

E` = (X2`qn+1, ..., X(2`+1)qn), F` = (X(2`+1)qn+1, ..., X(2`+2)qn),

E?` = (X?
2`qn+1, ..., X

?
(2`+1)qn

), F ?` = (X?
(2`+1)qn+1, ..., X

?
(2`+2)qn

).

The variables E?` and F ?` are such that

- E?` , E`, F
?
` and F` are identically distributed,

- P(E` 6= E?` ) ≤ βX,∞(qn) and P(F` 6= F ?` ) ≤ βX,∞(qn),
- The variables (E?` )0≤`≤pn−1 are i.i.d., and so are the variables (F ?` )0≤`≤pn−1.
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Without loss of generality and for sake of simplicity we assume that rn = 0. For κa defined in (5.8),
we start from

‖g̃ − g‖2 ≤ κ2
a‖g(n)

m − g‖2 + 2aκa sup
t∈Bm,m̂(0,1)

(ν(1)
n (t))2 + 2aκa sup

t∈Bm,m̂(0,1)
(νn,X(t))2

+κa(pen(m)− pen(m̂))

≤ κ2
a‖g(n)

m − g‖2 + 2aκa sup
t∈Bm,m̂(0,1)

(ν(1)
n (t))2 + 4aκa sup

t∈Bm,m̂(0,1)
(ν?n,X(t))2

+4aκ sup
t∈Bm,m̂(0,1)

(νn,X(t)− ν?n,X(t))2 + κa(pen(m)− pen(m̂)),

where ν?n,X(t) is defined as νn,X(t) with X?
i instead of Xi. Choose p1(m,m′) and p2(m,m′) such that

2ap1(m,m′) ≤ [pen1(m) + pen1(m
′)] and 4ap2(m,m′) ≤ [pen2(m) + pen2(m

′)],

for pen(m) = pen1(m) + pen2(m). It follows that

‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2κapen(m) + 4aκaW ?
n,X(m, m̂) + 4aκa sup

t∈Bm,m̂(0,1)
(νn,X(t)− ν?n,X(t))2

+2aκaWn(m, m̂)

≤ κ2
a‖g − g(n)

m ‖2 + 2κapen(m) + 4aκa
mn∑
m′=1

W ?
n,X(m,m′) + 2aκa

mn∑
m′=1

Wn(m,m′)(6.24)

+4aκa sup
t∈Bm,m̂(0,1)

(νn,X(t)− ν?n,X(t))2,

where

Wn(m,m′) :=
[

sup
t∈Bm,m′ (0,1)

|ν(1)
n (t)|2 − p1(m,m′)

]
+
,(6.25)

W ?
n,X(m,m′) :=

[
sup

t∈Bm,m′ (0,1)
|ν?n,X(t)|2 − p2(m,m′)

]
+
.(6.26)

The main parts of the proof lies in the three following points :
1) Study of Wn(m,m′). More precisely, we have to find p1(m,m′) such that for a constant A2,

(6.27)
mn∑
m′=1

E(Wn(m,m′)) ≤ A2

n
.

2) Study of W ?
n,X(m,m′). More precisely, we have to find p2(m,m′) such that for a constant A3,

(6.28)
mn∑
m′=1

E(W ?
n,X(m,m′)) ≤ A3

n
.

3) Study of supt∈Bm,m̂(0,1)(νn,X(t)− ν?n,X(t))2 and more precisely we have to prove that

E
[

sup
t∈Bm,m̂(0,1)

(ν?n,X(t)− νn,X(t))2
]
≤ 4βX,∞(qn)mn ≤

A4

n
.(6.29)

Proof of (6.27) The proof of (6.27) for ordinary smooth errors (δ = 0 in (Aε
1)) is the same as the

proof of (6.14) by taking p1(m,m′) = p(m,m′), with p(m,m′) as in the proof of (6.14) and ξ2 = 1.



20 F. COMTE∗,1, J. DEDECKER2, AND M. L. TAUPIN 3

Hence we choose pen1(m) = 24an−1∆(m).

Proof of (6.28) We proceed as in the independent case by applying Lemma 6.1. Setm∗ = max(m,m′).
The process W ?

n,X(m,m′) must be split into two terms (W ?
n,1,X(m,m′) +W ?

n,2,X(m,m′))/2 involving
respectively the odd and even blocks, which are of the same type. More precisely W ?

n,k,X(m,m′) is
defined, for k = 1, 2, by

W ?
n,k,X(m,m′) =

[
sup

t∈Bm,m′ (0,1)

∣∣∣ 1
pnqn

pn∑
`=1

qn∑
i=1

(
t(X?

(2`+k−1)qn+i)− 〈t, g〉
)∣∣∣2 − p2,k(m,m′)

]
+

We only study W ?
n,1,X(m,m′) and conclude for W ?

n,2,X(m,m′) by using analogous arguments. The
study of W ?

n,1,X(m,m′) consists in applying Lemma 6.1 to ν?n,1,X(t) defined by

ν?n,1,X(t) =
1
pn

pn∑
`=1

ν?qn,`,X(t) with ν?qn,`,X(t) =
1
qn

qn∑
j=1

t(X?
2`qn+j)− 〈t, g〉,

considered as the sum of the pn independent random variables ν?qn,`,X(t). Denote by M?
1 (m∗), H?(m∗)

and v?(m∗) quantities such that

sup
t∈Bm,m′ (0,1)

‖ ν?qn,`,X(t) ‖∞ ≤ M?
1 (m∗), E

(
sup

t∈Bm,m′ (0,1)
|ν?n,1,X(t)|

)
≤ H?(m∗)

and sup
t∈Bm,m′ (0,1)

Var(ν?qn,`,X(t)) ≤ v?(m∗).

Lemma 7.5 leads to the choices M?
1 (m∗) =

√
m∗,

(H?(m∗))2 =

(
1 + 4

∑n
k=1 βX,1(k)

)
m∗

n
, and v?(m∗) =

8
(∑qn

k=0(k + 1)βX,1(k)‖g‖∞m∗
)1/2

qn
.

Take ξ2(m∗) = 1/2. We use that for m∗ ≥ m0,

2(1 + 2ξ2(m∗))(H?(m∗))2 = 4(H?(m∗))2 ≤ ∆(m∗)/(4n).

Then we take p2,1(m,m′) = ∆(m)/(4n), and get that

mn∑
m′=1

E(W ?
n,1,X(m,m′)) =

∑
m′|m∗≤m0

E(W ?
n,1,X(m,m′)) +

∑
m′|m∗>m0

E(W ?
n,1,X(m,m′))

≤
∑

m′|m∗≤m0

E
[

sup
t∈Bm,m′ (0,1)

|ν?n,1,X(t)|2 − 4(H?(m∗))2
]
+

+
∑

m′|m∗≤m0

|p21(m,m′)− 4(H?(m∗))2|

+
∑

m′|m∗>m0

E
[

sup
t∈Bm,m′ (0,1)

|ν?n,1,X(t)|2 − 4(H?(m∗))2
]
+
.
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It follows that
mn∑
m′=1

E(W ?
n,1,X(m,m′)) ≤ 2

mn∑
m′=1

E
[

sup
t∈Bm,m′ (0,1)

|ν?n,1,X(t)|2 − 4(H?(m∗))2
]
+

+
∑

m′|m∗≤m0

|p2,1(m,m′)− 4(H?(m∗))2|

≤ 2
mn∑
m′=1

E
[

sup
t∈Bm,m′ (0,1)

|ν?n,1,X(t)|2 − 4(H?(m∗))2
]
+

+
C(m0)
n

.

We apply Lemma 6.1 to E
[
supt∈Bm,m′ (0,1) |ν?n,1,X(t)|2 − 4(H?(m∗))2

]
+

and obtain

mn∑
m′=1

E
[

sup
t∈Bm,m′ (0,1)

|ν?n,1,X(t)|2 − 4(H?(m∗))2
]
+
≤ K

mn∑
m′=1

[I?(m∗) + II?(m∗)],

with I?(m∗) and II?(m∗) defined by

I?(m∗) =
m∗

n
exp

{
−K2

√
m∗
}

and II?(m∗) =
q2nm

∗

n2
exp

{
−
√

2K1ξC(ξ)
7

√
n

qn

}
,

where K2 = (K1/32)(1 + 4
∑n

k=1 βX,1(k))/
√
‖g‖∞

∑qn
k=0(k + 1)βX,1(k).

With our choice of ξ2(m), if we take qn = [nc], for c in ]0, 1/2[, then∑
m′

I(m∗) ≤ C

n
, and

mn∑
m′=1

II?(m∗) ≤ C

n
.

Finally
mn∑
m′=1

E
[

sup
t∈Bm,m′ (0,1)

|ν?n,1,X(t)|2 − 4(H?(m∗))2
]
+
≤ C

n

and
mn∑
m′=1

E[W ?
n,X(m,m′)] ≤ 2

mn∑
m′=1

E[W ?
n,1,X(m,m′) +W ?

n,2,X(m,m′)] ≤ C

n
.

The result follows for choosing p2(m,m′) = 2p2,1(m,m′) + 2p2,2(m,m′) = ∆(m)/n, and pen(m) =
25a∆(m)/n.

Proof of (6.29). A rough bound is obtained by writing that

sup
t∈Bm,m̂(0,1)

|ν?n,X(t)− νn,X(t)|2 = sup
t∈S(n)

max(m,m̂)
,‖t‖≤1

|ν?n,X(t)− νn,X(t)|2

≤ sup
t∈Smn ,‖t‖≤1

|ν?n,X(t)− νn,X(t)|2.

According to (6.5),

ν?n,X(t)− νn,X(t) =
1
2π

∫
[ν?n,X(eix·)− νn,X(eix·)]t∗(−x)dx.



22 F. COMTE∗,1, J. DEDECKER2, AND M. L. TAUPIN 3

Since |νn,X(eix·)− ν?n,X(eix·)| ≤ 2, we have

sup
t∈Bm,m̂(0,1)

|ν?n,X(t)− νn,X(t)|2 ≤ sup
t∈Smn ,‖t‖≤1

1
4π2

∣∣∣∣∫ [ν?n,X(eix·)− νn,X(eix·)]t∗(−x)dx
∣∣∣∣2

≤ 1
2π

∫ πmn

−πmn

|ν?n,X(eix·)− νn,X(eix·)|2dx

≤ 1
π

∫ πmn

−πmn

|ν?n,X(eix·)− νn,X(eix·)|dx.

According to the properties of the coupling,

E
[

sup
t∈Bm,m̂(0,1)

|ν?n,X(t)− νn,X(t)|2
]

≤ 1
π

∫ πmn

−πmn

E|ν?n,X(eix·)− νn,X(eix·)|dx ≤ 4βX,∞(qn)mn.

For ordinary smooth errors, according to (5.7), mn ≤ n1/(2γ+1). It follows that if we choose qn such that
βX,∞(qn) = O(n−(2γ+2)/(2γ+1)), then βX,∞(qn)mn = O(n−1). For qn = [nc] and βX,∞(n) = O(n−1−θ),
we obtain the condition n−c(1+θ) = O(n−(2γ+2)/(2γ+1)). If θ > (2γ + 3)/(2γ + 1), one can find c < 1/2
such that this condition is satisfied.

6.4. Proofs of Theorem 5.2 (2). We proceed as in the β-mixing case, by using the coupling argument
given in Section 2.1. The variables E`, E?` , F`, F

?
` are build as in Section 6.3 and are such that

- E?` , E`, F
?
` and F` are identically distributed,

-
qn∑
i=1

E(|X2`qn+i −X?
2`qn+i|) ≤ qnτX,∞(qn) and

qn∑
i=1

E(|X(2`+1)qn+i −X?
(2`+1)qn+i|) ≤ qnτX,∞(qn),

- The variables (E?` )0≤`≤pn−1 are i.i.d., and so are the variables (F ?` )0≤`≤pn−1.
Without loss of generality and for sake of simplicity we assume that rn = 0. As for the proof of
Theorem 5.2 under 2), we start from (6.25). Hence we have to :

1) Study of Wn(m,m′), and more precisely in finding p1(m,m′) such that for a constant K2,

(6.30)
mn∑
m′=1

E(Wn(m,m′)) ≤ K2

n
.

2) Study of W ?
n,X(m,m′), and more precisely in finding p2(m,m′) such that for a constant K3,

(6.31)
mn∑
m′=1

E(W ?
n,X(m,m′)) ≤ K3

n
.

3) Study of supt∈Bm,m̂(0,1)(νn,X(t)− ν?n,X(t))2 and more precisely in proving that

E
[

sup
t∈Bm,m̂(0,1)

(ν?n,X(t)− νn,X(t))2
]
≤ πτX,∞(qn)mn

2 ≤ K4

n
.(6.32)

Proof of (6.30) The proof of (6.30) for ordinary smooth errors is the same as the proof of (6.14).

Proof of (6.31) As for the proof (6.28) we apply Lemma 6.1 with

(H?(m∗))2 =

(
m∗ + π

∑n−1
k=1 τX,1(k)(m

∗)2
)

n
, M?

1 (m∗) = m∗,
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and v?(m∗) =

(
m∗ + π

∑n−1
k=1 τX,1(k)(m

∗)2
)

qn
.

We take ξ2 = ξ2(m) = (3/K1 + 1) ln(m). In the same way as for the proof Theorem 5.2(1), we use
that for m∗ ≥ m0,

2(1 + 2ξ2(m∗))(H?(m∗))2 ≤ ∆(m∗)/(4n).
Then we take p21(m,m′) = ∆(m∗)(4n)−1 and get that
mn∑
m′=1

E(W ?
n,1,X(m,m′)) ≤ 2

mn∑
m′=1

E
[

sup
t∈Bm,m′ (0,1)

|ν?n,1,X(t)|2 − 2(1 + 2ξ2(m∗))(H?(m∗))2
]
+

+
C(m0)
n

.

We now apply Lemma 6.1 to E
[
supt∈Bm,m′ (0,1) |ν?n,1,X(t)|2 − 2(1 + 2ξ2(m∗))(H?(m∗))2

]
+

and obtain

mn∑
m′=1

E
[

sup
t∈Bm,m′ (0,1)

|ν?n,1,X(t)|2 − 2(1 + 2ξ2(m∗))(H?(m∗))2
]
+
≤ K

mn∑
m′=1

[I?(m∗) + II?(m∗)],

with I?(m∗) and II?(m∗) now defined by

I?(m∗) =
m∗2

n
exp{−K1ξ

2(m∗)}

and II?(m∗) =
q2nm

∗2

n2
exp

−
√

2K1ξC(ξ)
(
1 + π

∑n
k=1 τX,1(k)

)
7

√
n

qn

 .

With this ξ2(m), if we take qn = [nc], with c in ]0, 1/2[ then∑
m′

I(m∗) ≤ C

n
and

mn∑
m′=1

II(m∗) ≤ C

n
.

Finally
∑mn

m′=1 E[W ?
n(m,m′)] ≤ 2

∑mn
m′=1 E[W ?

n,1,X(m,m′)+W ?
n,2,X(m,m′)] ≤ Cn−1. The result follows

by choosing p2(m,m′) = 2p21(m,m′) + 2p22(m,m′) = ∆(m)n−1, and pen(m) = 25a∆(m)n−1.

Proof of (6.32) The proof of (6.32) is similar to the proof of (6.15). Since |e−ixt − e−ixs| ≤ |x||t− s|,
one has

qn∑
i=1

E(|e−iX2`qn+i − e−iX
?
2`qn+i |) ≤ qn|x|τX,∞(qn)

It follows that

E
[

sup
t∈Bm,m̂(0,1)

|ν?n,X(t)− νn,X(t)|2
]

≤ 1
π

∫ πmn

−πmn

E|ν?n,X(eix·)− νn,X(eix·)|dx ≤ πτX,∞(qn)mn
2.

For ordinary smooth errors, according to (5.7), mn
2 ≤ n2/(2γ+1). It follows that if we choose qn

such that τX,∞(qn) = O(n−(2γ+3)/(2γ+1)), then τX,∞(qn)m2
n = O(n−1). For qn = [nc] and τX,∞(n) =

O(n−1−θ), we obtain the condition n−c(1+θ) = O(n−(2γ+3)/(2γ+1)). If θ > (2γ + 5)/(2γ + 1), one can
find c < 1/2 such that this condition is satisfied. 2

6.5. Proof of Corollary 5.2. The result follows from the proof of Theorem 5.2 (1), where only the
process νn,X appears.2
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7. Technical lemmas

Lemma 7.1. If we denote by νn,X(t) the quantity defined by (6.1), then

n−1
n∑
k=1

E(u∗t (Zk)|σ(Xi, i ≥ 0))− < t, g >= νn,X(t).

The proof of Lemma 7.1, rather straightforward, is omitted.

Lemma 7.2. Let νn,Z(u∗t ) be defined by (6.1), ∆(m) being defined in (3.5). Then∑
j∈Z

∣∣∣u∗ϕm,j
(z)
∣∣∣2 = (2π)−1m

∫ ∣∣∣∣ ϕ∗(x)f∗ε (xm)

∣∣∣∣2 dx = ∆(m).

Lemma 7.3. Let νn,Z(u∗t ), ∆(m) and ∆2(m,h) be defined in (6.1), (3.5) and in (6.16). Then

sup
t∈Bm,m′ (0,1)

‖ u∗t ‖∞≤
√

∆(m∗) E[ sup
t∈Bm,m′ (0,1)

|νn,Z(u∗t )|] ≤
√

∆(m∗)/n,

and sup
t∈Bm,m′ (0,1)

Var(u∗t (Z1)) ≤
√

∆2(m∗, h)/(2π).

We refer to Comte et al. (2006) for the proofs of Lemmas 7.2 and 7.3.

Lemma 7.4. ‖
∑

j∈Z |ϕm,j |2 ‖∞≤ m.

Proof of Lemma 7.4 Write∑
j∈Z

|ϕm,j(x)|2 =
1

(2π)2
∑
j∈Z

∣∣∣∣∫ e−iuxϕ∗m,j(u)du
∣∣∣∣2 =

m

(2π)2
∑
j∈Z

∣∣∣∣∫ e−ixumeijuϕ∗(u)du
∣∣∣∣2 .

We conclude by applying Parseval’s Formula which gives that∑
j∈Z

|ϕm,j(x)|2 = (2π)−1m

∫
|ϕ∗(u)|2 du = m.

Lemma 7.5. For Bm,m′(0, 1) = {t ∈ Sm∨m′ / ‖t‖2 = 1}, we have, for m∗ = m ∨m′,

sup
t∈Bm,m′ (0,1)

‖ t ‖∞≤
√
m∗, E[ sup

t∈Bm,m′ (0,1)
|ν?n,1,X(t)|] ≤

√
(1 + 4

∑n
k=1 βX,1(k))m∗

n

and sup
t∈Bm,m′ (0,1)

Var(ν?qn,`,X(t)) ≤
[2‖g‖∞(1 + 32

∑n
k=1(1 + k)βX,1(k))]

1/2√m∗

qn
.

Proof of Lemma 7.5 For t in Bm,m′(0, 1), with m∗ = m∨m′, one has t =
∑

j∈Z bm∗,jϕm∗,j . Applying
Cauchy-Schwarz Inequality and Lemma 7.4 we obtain

sup
t∈Bm,m′ (0,1)

‖ t ‖∞≤
∥∥∥∑
j∈Z

|ϕm∗,j |2
∥∥∥1/2

∞
≤
√
m∗.



ADAPTIVE DENSITY DECONVOLUTION WITH DEPENDENT INPUTS 25

Now, using again Cauchy-Schwarz Inequality

E

[
sup

t∈Bm,m′ (0,1)
|ν?n,1,X(t)|

]
≤ E

√∑
j∈Z

(ν?n,1X(ϕm∗,j))2

 ≤√∑
j∈Z

Var(ν?n,1,X(ϕm∗,j)).

By analogy with (6.6), we write

E

∑
j∈Z

(
ν?n,1,X(ϕm,j)

)2 =
1

4π2

∑
j∈Z

E
(∫

ϕ∗m,j(−x)ν?n,1,X(eix·)dx
)2

=
1
2π

∫ πm

−πm
E|ν?n,1,X(eix·)|2dx.

This yields

E

[
sup

t∈Bm,m′ (0,1)
|ν?n,1,X(t)|

]
≤

(1 + 4
∑n

k=1 βX,1(k))m∗

n
.

Finally, we apply Viennet’s (1997) variance inequality (see Theorem 2.1 p. 472 and Lemma 4.2 p.
481). Hence there exist some measurable functions bk, such that 0 ≤ bk ≤ 1 and E

[
(
∑n

k=1 bk(X1))
2
]
≤∑

k≥1(1 + k)βX,1(k), for which

sup
t∈Bm,m′ (0,1)

Var(νqn,`,X(t)) ≤ sup
t∈Bm,m′ (0,1)

1
qn

∫ (
1 + 4

qn∑
k=1

bk

)
t2(x)g(x)dx .

Consequently

sup
t∈Bm,m′ (0,1)

Var(νqn,`,X(t)) ≤ sup
t∈Bm,m′ (0,1)

1
qn
‖t‖∞‖g‖1/2

∞

∫ (1 + 4
qn∑
k=1

bk

)2

g(x)dx

1/2

≤

√√√√2‖g‖∞(1 + 32
qn∑
k=1

(1 + k)βX,1(k))
√
m∗

qn
.

Proof of Lemma 6.1 : Starting from the concentration inequality given in Klein and Rio (2005) and
arguing as in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354) we obtain the
upper bound

P

(
sup
g∈G

|νn(g)| ≥ (1 + η)H + λ

)
≤ 2 exp

[
−K1n

(
λ2

v
∧ 2λ(η ∧ 1)

7M1

)]
,(7.1)
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where K1 = 1/6. By taking η = (
√

1 + ε− 1) ∧ 1 = C(ε) ≤ 1 we get

E[sup
g∈G

|νn(g)|2 − 2(1 + 2ε)H2]+ ≤
∫ +∞

0
P

(
sup
g∈G

|νn(g)|2 ≥ 2(1 + 2ε)H2 + τ

)
dτ

≤
∫ +∞

0
P

(
sup
g∈G

|νn(g)| ≥
√

2(1 + ε)H2 + 2(εH2 + τ/2)

)
dτ

≤ 2
∫ +∞

0
P

(
sup
g∈G

|νn(g)| ≥
√

(1 + ε)H +
√
εH2 + τ/2

)
dτ

≤ 4
(∫ +∞

0
e−

K1n
v

(εH2+τ/2)dτ +
∫ +∞

0
e
− 2K1nC(ε)

7M1
√

2
(
√
εH+

√
τ/2)

dτ

)
≤ 4e−K1ε

nH2

v

∫ +∞

0
e−

K1n
2v

τdτ + 4e−
√

2K1C(ε)
√

ε
7

nH
M1

∫ +∞

0
e
−K1C(ε)n

√
τ

7M1 dτ.

Using that for any positive constant C,
∫ +∞
0 e−Cxdx = 1/C and

∫ +∞
0 e−C

√
xdx = 2/C2, we get that

E[sup
g∈G

|νn(g)|2 − 2(1 + 2ε)H2]+ ≤ 8
K1

(
v

n
e−K1ε

nH2

v +
49M2

1

K2
1n

2C2(ε)
e
−
√

2K1C(ε)
√

ε
7

nH
M1

)
. 2
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