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Abstract

In this paper, we give estimates of the minimal L1 distance between the
distribution of the normalized partial sum and the limiting Gaussian distri-
bution for stationary sequences satisfying projective criteria in the style of
Gordin or weak dependence conditions.
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1 Introduction

Let X1, X2, . . . be a sequence of real-valued random variables (r.v.) with mean
zero and finite variance. Set Sn = X1 +X2 + · · ·+Xn. By Fn we denote the distri-
bution function (d.f.) of n−1/2Sn. Let Φσ be the d.f. of the N (0, σ2)-distribution.
For independent and identically distributed r.v.’s, according to the central limit
theorem (CLT), Fn(x) converges to Φσ(x) uniformly for x in R, where σ is the
standard deviation of X1. Agnew (1954) proved that the convergence also holds in
Lr(R) for r > 1/2. Agnew’s result is called mean CLT in the case r = 1. Let then

ρ
(r)
n = ‖Fn−Φσ‖r. For r = 1 and r = 2 and for random variables with an absolute

third moment β, Esseen (1958) proved that n1/2ρ
(r)
n converges to some explicit

constant Ar(F ) depending only on the distribution function F of X1 (Theorems
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3.2 and 4.2 in Esseen). In particular, Esseen’s results imply that

ρ(r)
n = O(n−1/2) as n →∞. (1.1)

Next Zolotarev (1964) obtained the upper bound A1(F ) ≤ β/(2σ2). The proofs
of these results are based on the method of characteristic functions (cf. Ibragimov
and Linnik (1971) for more details).

The case r = 1 is of special interest, since ρ
(1)
n is exactly the minimal distance

d1 between n−1/2Sn and a r.v. with distribution N (0, σ2) in L1 (cf. Major (1978)
for more about this subject). Now let

d1(X, Y ) = sup
f∈Λ1(R)

E(f(X)− f(Y )), (1.2)

where Λ1(R) is the set of 1-Lipschitzian functions from R to R. Applying the

Kantorovich-Rubinstein Theorem we also have that ρ
(1)
n = d1(n

−1/2Sn, σY ) if Y is
a N (0, 1)-distributed random variable.

In this paper we are interested in extensions of (1.1) for r = 1 to sequences
of dependent random variables. This subject was studied by Sunklodas (1982)
in the case of uniformly mixing (in the sense of Ibragimov) stationary sequences
of real-valued random variables. Using the Stein method, he reached the rate of
convergence O(n−1/2(log n)2) in (1.1) for geometrically mixing sequences of ran-
dom variables with finite eight moments. A different approach to get rates of
convergence in the CLT is Bergström’s (1944) inductive proof of the Berry-Esseen
theorem, based on the Lindeberg method. Starting from Bergström’s recursion
argument, Bolthausen (1982a) obtained exact rates of uniform convergence for
martingale difference arrays. Rio (1996) adapted Bergström’s method to weakly
dependent sequences and obtained the Berry-Esseen theorem for stationary and
uniformly bounded sequences of real-valued r.v.’s satisfying the uniform mixing
condition

∑
k kϕ(k) < ∞. This result was extended to the multivariate case by

Jan (2001, Theorem 9). Jan also weakened the notion of weak dependence in-
volved in Rio’s paper (cf. Theorem 1 in Le Borgne and Pène (2005) for more
details). However the dependence coefficients in Jan (2001) are too restrictive
for the applications to some dynamical systems, such as Sinai’s billiard. Pène
(2005) noticed that the inductive proof of Jan (2001) can be adapted to get the
rate of convergence O(n−1/2) for the minimal L1-distance in the multivariate CLT
for stationary sequences satisfying some dependence conditions. In particular her
result applies to sums of bounded r.v.’s defined from dynamical systems (such as
Sinai’s billiard) or strongly mixing Harris recurrent Markov chains. For example,
Pène’s result yields (1.1) (with r = 1) for functionals of Harris recurrent Markov
chains satisfying the mixing condition

∑
k kα(k) < ∞, where (α(k))k denotes the

sequence of strong mixing coefficients of (Xi)i∈Z in the sense of Rosenblatt.
We now describe the contents of our paper. Our aim is to provide rates of

convergence in the mean CLT for stationary sequences of real-valued r.v.’s satis-
fying either projective criteria in the style of Gordin (1973) or weak dependence
conditions.
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In Section 2, we give bounds in the stationary case involving Lp-norms of con-
ditional expectations. Let (Xi)i∈Z be a stationary sequence of real-valued random
variables, Mk = σ(Xi : i ≤ k) and Ek denote the conditional expectation with re-
spect to Mk. In Subsection 2.1, we obtain in Theorem 2.1 the rate of convergence
O(n−1/2 log n) in the mean CLT for stationary and ergodic martingale differences
sequences (Xi)i∈Z with finite absolute third moments satisfying the projective con-
ditions

sup
m>0

∥∥∥
m∑

k=1

E0(X
2
k − σ2)

∥∥∥
1

< ∞ and sup
m>0

∥∥∥
m∑

k=1

X0E0(X
2
k − σ2)

∥∥∥
1

< ∞ (1.3)

where σ2 = Var X0. In Subsection 2.2, we generalize Theorem 2.1 to ergodic
stationary sequences satisfying projective criteria. In Subsection 2.3 we give
some applications to bounded sequences. For example, assuming that the series∑

k>0 E0(Xk) converges in L1, Theorem 2.3 provides rates of convergence in the
mean CLT as soon as E0(S

2
m/m) converges to σ2 in L1. This condition appears

in the conditional CLT of Dedecker and Merlevède (2002) and is rather mild. For
example the rate of convergence O(n−1/2 log n) is obtained under the projective
conditions

∑
m>0

∥∥∥
∑

k≥m

E0(Xk)
∥∥∥

1
< ∞ and sup

m>0
‖E0(S

2
m −mσ2)‖1 < ∞. (1.4)

Again the proofs are based on the Lindeberg method at order three.
In Section 3, we give projective conditions or weak dependence conditions im-

plying (1.1) for r = 1. Conditions (1.3) and (1.4) involve conditional second
moments. It seems difficult to get the optimal rate of convergence O(n−1/2) under
second order conditions (at least for the Berry-Esseen theorem: cf. Rio (1996)
and Bolthausen (1982a), Theorem 4). Therefore our results hold under projective
conditions on the monoms of degree three. For example, (1.1) holds for stationary
bounded martingale difference sequences under the projective conditions

∑

k>0

‖E0(X
2
k)− σ2‖1 < ∞ and

∑

k>0

sup
j≥k

‖E0(XkX
2
j )− E(XkX

2
j )‖1 < ∞. (1.5)

For stationary sequences, one needs to straighten (1.5): we obtain (1.1) for sta-
tionary sequences of bounded r.v.’s under the projective conditions

∑

k>0

k sup
i≥j≥k

‖E0(XkX
α
j Xβ

i )− E(XkX
α
j Xβ

i )‖1 < ∞, with (α, β) ∈ {0, 1}2, (1.6)

which can also be deduced from Theorem 1.1 in Pène (2005). It is worth noticing
that the Berry-Esseen type Theorem 9 in Jan (2001) requires L∞- norms instead of
L1-norms in (1.6). The proofs of these results are based on the Lindeberg method
at order four. Therefore, in the unbounded case, the results hold for sequences of
random variables with finite fourth moments (cf. Theorems 3.1(a) and 3.2(a) for
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detailed conditions). For example, Theorem 3.1(a) applied to strongly mixing and
stationary sequences yields the rate of convergence O(n−1/2) in the mean CLT if
there exists some p > 1 such that

∑

k>0

k(p+1)/(p−1)α(k) < ∞ and E(|X0|ap) < ∞, (1.7)

where a = 4. By contrast, the Berry-Esseen type theorem for functionals of
stationary discrete Markov chains due to Bolthausen (1980) holds under condition
(1.7) with a = 3. In order to improve Theorems 3.1(a) and 3.2(a) in the case of
strongly mixing sequences we adapt the truncation method in Rio (1995) to our
context. We then get the rate O(n−1/2) in the mean CLT under the strong mixing
condition ∑

k>0

kb

∫ α(k)

0

Q3
|X0|(u)du < ∞, (1.8)

where Q|X0| denotes the quantile function of |X0| and b = 1. This condition is im-
plied by (1.7) with a = 3, so that our result holds under Bolthausen’s (1980) con-
dition. Moreover, for stationary strongly mixing martingale difference sequences,
we prove that (1.1) holds for p = 1 under condition (1.8) with b = 0. In Section
5 we give two classical examples of non irreducible Markov chains to which our
results apply.

2 Projective criteria for stationary sequences

Throughout the paper, Y is a N (0, 1)-distributed random variable.

We shall use the following notations. Let (Ω,A,P) be a probability space, and
T : Ω 7→ Ω be a bijective bimeasurable transformation preserving the probability
P. An element A is said to be invariant if T (A) = A. We denote by I the
σ-algebra of all invariant sets. Let M0 be a σ-algebra of A satisfying M0 ⊆
T−1(M0) and define the nondecreasing filtration (Mi)i∈Z by Mi = T−i(M0). Set
M∞ =

∨
i∈ZMi. Denote by Ei the conditional expectation with respect to Mi.

Let X0 be a M0-measurable and centered random variable. Throughout the
sequel, the sequence X = (Xi)i∈Z is defined by Xi = X0 ◦ T i. From the definition
the sequence (Xi)i∈Z is adapted to the filtration (Mi)i∈Z

2.1 Martingale difference sequences

In this section we obtain rates of convergence of the order of n−1/2 log n in the
mean CLT for stationary martingale difference sequences. In order to obtain these
rates of convergence, we will just need a projective condition on the variables X2

l ,
as in Jan (2001). We first recall Jan’s results concerning the rates of convergence
for the uniform distance between the distribution functions.
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Assume that (Xi)i∈Z is a stationary martingale difference sequence in L3 such
that E(X2

0 ) = σ2 and ∑

l>0

‖E0(X
2
l − σ2)‖3/2 < ∞. (2.1)

Then, by Theorem 6 in Jan (2001), if Y is N (0, 1)-distributed,

sup
t∈R

|P(n−1/2Sn ≤ t)− P(σY ≤ t)| = O(n−1/4). (2.2)

Under projective conditions related to (2.1), the rate of convergence in the mean
central limit theorem is at least O(n−1/2 log n) as shown in Theorem 2.1 below.

Theorem 2.1. Let (Xi)i∈Z be a stationary martingale difference sequence in L3,
such that E(X2

0 |I) = E(X2
0 ) = σ2 almost surely. Let Λ = σ−2E|X0|3 and Um =

E0(X
2
1 + · · ·+ X2

m)−mσ2. Then

(a) d1(Sn, σ
√

nY ) ≤ 13σ

6
+

Λ

6
log(1 + 2n) +

[
√

2n]∑
m=1

‖X0Um‖1 + 2σ‖Um‖1

mσ2
.

(b) If sup
m>0

(‖X0Um‖1 + ‖Um‖1) < ∞, then d1(Sn, σY
√

n) = O(log n).

Remark 2.1. From the ergodic theorem, (Um/m) converges a.s. and in L1 to
0 as n tends to ∞. Since X0 ∈ L3, it follows that the sequence (X0Um/m)m is
uniformly integrable. Hence, under the assumptions of Theorem 2.1,

lim
m→∞

m−1(‖X0Um‖1 + ‖Um‖1) = 0.

Therefore Theorem 2.1(a) provides a rate of convergence in the mean CLT. For
example, if ‖X0E0(X

2
l − σ2)‖1 = O(l−δ) and ‖E0(X

2
l − σ2)‖1 = O(l−δ) for some δ

in ]0, 1[, then the rate of convergence in the mean CLT is of the order of n−δ/2. If
Jan’s condition (2.1) holds, then (b) yields the rate of convergence O(n−1/2 log n)
in the mean CLT. For bounded random variables (b) holds as soon as the series∑

l>0 E0(X
2
l − σ2) converges in L1.

Proof of Theorem 2.1. We prove Theorem 2.1 in the case σ = 1. The general
case follows by dividing the r.v.’s by σ.

Let (Yi)i∈N be a sequence of independent random variables with normal dis-
tribution N (0, 1). Suppose furthermore that the sequence (Yi)i∈N is independent
of (Xi)i∈N. Let Y be a N (0, 1)-distributed random variable, independent of the
above defined sequences. Set Tn = Y1 + Y2 + · · · + Yn. For any 1-Lipschitzian
function f , let ∆(f) = E(f(Sn) − f(Tn)). From (1.2), we have to bound ∆(f).
Clearly

∆(f) = E(f(Sn)− f(Tn)) ≤ E(f(Sn + Y )− f(Tn + Y )) + 2E|Y |. (2.3)

In order to bound up the term on right hand, we apply the Lindeberg method.
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Notation 2.1. Set fk(x) = E(f(x + Y + Tn − Tk)). Let S0 = 0, and, for k > 0,
let ∆k = fk(Sk−1 + Xk)− fk(Sk−1 + Yk).

Since the sequence (Yi)i∈N is independent of the sequence (Xi)i∈N,

E(f(Sn + Y )− f(Tn + Y )) =
n∑

k=1

E(∆k). (2.4)

Next the functions fk are C∞. Consequently, from the Taylor integral formula at
orders three and four,

∆k = f ′k(Sk−1)(Xk − Yk) +
1

2
f ′′k (Sk−1)(X

2
k − Y 2

k )− 1

6
f

(3)
k (Sk−1)Y

3
k + Rk,

with

Rk ≤ 1

6
‖f (3)

k ‖∞|Xk|3 +
1

24
‖f (4)

k ‖∞Y 4
k . (2.5)

Consequently, for any 1-Lipschitzian function f ,

∆(f) ≤ 2E|Y |+
n∑

k=1

E(Rk) +
n∑

k=1

E
(
f ′k(Sk−1)Xk +

1

2
f ′′k (Sk−1)(X

2
k − 1)

)
. (2.6)

The terms E(f ′k(Sk−1)Xk) vanish under the martingale assumption. To bound up
the other terms appearing in (2.6), we need to bound up the derivatives of fk.
This will be done via the lemma below.

Lemma 2.1. Let f be a 1-Lipschitzian function, Y be a standard normal and B
be a real-valued random variable, independent of Y . Then

∣∣∣ di

dxi
Ef(x + tY + B)

∣∣∣ ≤ t1−i‖φ(i−1)‖1 for any t > 0

and any positive integer i, where φ denotes the density of Y .

Proof of Lemma 2.1. Let φt be the density of tY . Then

Ef(x + tY + B) = E(f ∗ φt(x + B)).

Since f is 1-Lipschitzian, the Stieltjes measure df of f is absolutely continuous
with respect to the Lebesgue measure λ and f ′ = df/dλ belongs to [−1, 1]. Next

(f ∗ φt)
(i) = f ′ ∗ φ

(i−1)
t , and consequently

∣∣∣ di

dxi
f ∗ φt(x + B)

∣∣∣ ≤ ‖f ′‖∞‖φ(i−1)
t ‖1.

Since φ
(i−1)
t (x) = t−iφ(i−1)(x/t), it implies Lemma 2.1. ¤

6



Noting that

‖φ′‖1 =

√
2

π
≤ 4

5
, ‖φ′′‖1 =

√
8

πe
≤ 1, ‖φ(3)‖1 =

√
2

π
+

√
32

πe3
≤ 8

5
, (2.7)

and applying Lemma 2.1 with t =
√

n− k + 1, we infer from (2.5) that

E(Rk) ≤ (Λ/6)(n− k + 1)−1 + (1/5)(n− k + 1)−3/2. (2.8)

Summing on k, we infer from 2.8 that

n∑

k=1

E(Rk) + 2E|Y | ≤ ρ(n) with ρ(n) =
13

6
+

Λ

6
log(1 + 2n). (2.9)

The control of the main term in (2.6) is derived from the lemma below.

Lemma 2.2. Let Z0 be an integrable random variable with zero mean. Set Zk =
Z0 ◦ T k and let Wm =

∑m
l=1 E0(Zl). Then, for s = 2 or s = 3,

n∑

k=1

E(f
(s)
k (Sk−1)Zk) ≤

[
√

2n]∑
m=1

2m1−s(‖X0Wm‖1 + 2‖Wm‖1).

Proof of Lemma 2.2. We first divide [1, n] into blocks of nonincreasing length.

Notation 2.2. Define the decreasing sequence of integers (ni)i≥0 by n0 = n and
ni = max(0, ni−1 − i) for i > 0. Let p be the first integer such that np = 0. Set
mi = i for i < p and mp = np−1.

Next fix i in [1, p]. Let then k be any integer in ]ni, ni−1]. Writing

f
(s)
k (Sk−1) = f

(s)
ni+1(Sni

) +
k−1∑

j=ni+1

(f
(s)
j+1(Sj)− f

(s)
j (Sj−1)), (2.10)

we get that
ni−1∑

k=ni+1

E
(
f

(s)
k (Sk−1)Zk

)
= Di +

ni−1−1∑
j=ni+1

Di,j, (2.11)

where

Di = E
(
f

(s)
ni+1(Sni

)

ni−1∑

k=ni+1

Eni
(Zk)

)

Di,j = E
(
(f

(s)
j+1(Sj)− f

(s)
j (Sj−1))

ni−1∑

k=j+1

Ej(Zk)
)
.

By definition of the sequence (Zk)k, for any integer j and any positive m,

Ej(Zj+1 + Zj+2 + · · ·+ Zj+m) = Wm ◦ T j.
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Hence, from Lemma 2.1 applied with t = (n− ni)
1/2 and B = 0, for any i < p,

Di ≤ (n− ni)
(1−s)/2‖Wi‖1. (2.12)

Moreover Dp = 0 from the centering assumption on the random variables Zk. Next
we bound up Di,j. From the elementary equality

f
(s)
j+1(Sj)− f

(s)
j (Sj−1) = Ej(f

(s)
j+1(Sj−1 + Xj)− f

(s)
j+1(Sj−1 + Yj))

we get that

|f (s)
j+1(Sj)− f

(s)
j (Sj−1)| ≤ ‖f (s+1)

j+1 ‖∞Ej|Xj − Yj| ≤ (n− j)−s/2(|Xj|+ 1),

whence
Di,j ≤ (n− j)−s/2E

(
(|X0|+ 1)|Wni−1−j|

)
. (2.13)

Now, by definition, n− ni = i(i + 1)/2 for i < p. Hence, from (2.12),

p−1∑
i=1

Di ≤ 2

p−1∑
i=1

i1−s‖Wi‖1, where− 1 +
√

2n < p < 1 +
√

2n. (2.14)

Next, from (2.13)

Di,j ≤ (n− j)−s/2(‖X0Wni−1−j‖1 + ‖Wni−1−j‖1).

Fix ni−1 − j = m. Then mi > m > 0 and 2(n − j) = i(i − 1) + 2m ≥ (i − 1/2)2.
Hence, from the above inequality (recall that mi = i for i < p)

p∑
i=1

ni−1−1∑
j=ni+1

Di,j ≤
p−1∑
m=1

(‖X0Wm‖1 + ‖Wm‖1)

p∑
i=m+1

2s/2(i− 1/2)−s.

Now, from the convexity of x−s on ]0, +∞[,

p∑
i=m+1

(i− 1/2)−s ≤
∫ p

m

x−sds ≤ 1

s− 1
m1−s

whence
p∑

i=1

ni−1−1∑
j=ni+1

Di,j ≤
p−1∑
m=1

2m1−s(‖X0Wm‖1 + ‖Wm‖1). (2.15)

From (2.11), (2.14) and (2.15), we get Lemma 2.2. ¤
Theorem 2.1(a) follows from both (2.6), (2.9) and lemma 2.2 applied to Z0 =

X2
0 − 1. Theorem 2.1(b) is a consequence of (a). ¤

2.2 Projective criteria

In this subsection we give estimates of the rates of convergence in the mean
CLT for stationary sequences satisfying projective L1-criteria in the style of Gordin
(1973). Our main result is Theorem 2.2 below
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Theorem 2.2. Let (Xi)i∈Z be a stationary sequence of centered random vari-
ables in L3 such that E(X0Xk|I) = E(X0Xk) a.s. for any integer k. Sup-
pose furthermore that the sequence X0E0(Sn) converges in L1. Then the series
E(X2

0 ) + 2
∑∞

k=1 E(X0Xk) is convergent to some nonnegative real σ2. Let

Z0 = X2
0 − σ2 + 2 lim

n
X0E0(Sn), Zl = Z0 ◦ T l and Wm = E0(Z1 + Z2 + · · ·+ Zm).

Suppose that σ2 > 0. Let Λ = σ−2E|X0|3. Then

d1(Sn, σ
√

nY ) ≤ 13σ

6
+

Λ

6
log(1 + 2n) +

[
√

2n]∑
m=1

‖X0Wm‖1 + 2σ‖Wm‖1

mσ2
+ D′,

where D′ =
n∑

m=1

1

σ
√

m

∥∥∥
∑

l≥m

X0E0(Xl)
∥∥∥

1
+

n∑
m=1

1

2m

∥∥(1 + σ−2X2
0 )E0(Sm)

∥∥
1
.

Remark 2.2. From Theorem 1 in Dedecker and Rio (2000), we know that the
convergence in L1 of X0E0(Sn) is a sufficient condition for n−1/2Sn to converges
in distribution to a mixture of Gaussian random variables. From Dedecker and
Merlevède (2002) we know that it also implies that n−1/2E0(Sn) converges to 0
in L1. Consequently, if X2

0E0(Sn) converges in L1 as n → ∞, then D′ = o(
√

n).
Moreover, from the L1-ergodic theorem, (Wm/m) and (X0Wm/m) converge to 0
in L1 under the above additional condition. In that case, Theorem 2.2 gives a rate
of convergence in the mean CLT.

Proof of Theorem 2.2 Dividing the random variables by σ, we may assume
that σ = 1. From (2.6) and and (2.9), for any 1-Lipschitzian function f ,

∆(f) ≤
n∑

k=1

E
(
f ′k(Sk−1)Xk +

1

2
f ′′k (Sk−1)(X

2
k − 1)

)
+ ρ(n), (2.16)

where Tn and (fk) are defined exactly as in Subsection 2.1. In order to bound up
the terms of first order, we write f ′k(Sk−1) = f ′0(0) +

∑k−1
j=1(f

′
j+1(Sj) − f ′j(Sj−1)).

Next

f ′j+1(Sj)− f ′j(Sj−1) = (f ′j(Sj)− f ′j(Sj−1))− Ej(f
′
j+1(Sj + Y )− f ′j+1(Sj))

= f ′′j (Sj−1)Xj + R′
j, (2.17)

where R′
j is some Fj-measurable random variable such that

|R′
j| ≤ (2n− 2j)−1(X2

j + 1). (2.18)

Set Uj,n = Ej(Sn − Sj). From (2.17) and (2.18)

n∑

k=1

E(f ′k(Sk−1)Xk) ≤
n−1∑
j=1

(
E(f ′′j (Sj−1)XjUj,n) + (2n− 2j)−1‖(1 + X2

j )Uj,n‖1

)
.
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Next

E(f ′′j (Sj−1)XjUj,n) ≤ E(f ′′j (Sj−1)XjUj,∞) + (n− j + 1)−1/2‖
∑

l>n

XjEj(Xl)‖1

with the convention XjUj,∞ = limn XjUj,n in L1. From the stationarity, (2.16) and
the above inequalities we get that

∆(f) ≤ ρ(n) +
1

2

n∑
j=1

E(f ′′j (Sj−1)Zj) + D′
1 + D′

2, (2.19)

where

D′
1 =

n∑
m=1

m−1/2‖
∑

l≥m

X0E0(Xl)‖1 and D′
2 =

n∑
m=1

1

2m
‖(1 + X2

0 )E0(Sm)‖1.

Theorem 2.2 follows then from (2.19) and Lemma 2.2 applied with s = 2. ¤

2.3 Applications to bounded random variables

Throughout this subsection we assume that X0 belongs to L∞, and that E0(Sn)
converges in L1. Then the series X0E0(Sn) converges in L1 and consequently
Theorem 2.2 applies. Set

J0 = lim
n→∞

E0(Sn) and Jm = J0 ◦ Tm. (2.20)

We first provide a rate which involves the quantities ‖E0(m
−1S2

m)−σ2‖1 appearing
in the conditional CLT of Dedecker and Merlevède (2002).

Theorem 2.3. Let (Xi)i∈Z be a stationary sequence of centered and bounded ran-
dom variables such that E(X0Xk|I) = E(X0Xk) a.s. for any integer k. Sup-
pose furthermore that the sequence E0(Sn) converges in L1 to J0. Then the series
E(X2

0 )+2
∑∞

k=1 E(X0Xk) is convergent to some nonnegative real σ2 and n−1 Var Sn

converges to σ2. Suppose that σ2 > 0 and let L = σ−1‖X0‖∞.

(a) If S =
∑

m≥0 ‖E0(Jm)‖1 < ∞, then

d1(Sn, σ
√

nY ) ≤ C log(1 + 2n) +

[
√

2n]∑
m=1

(1 + L

mσ

)
‖E0(S

2
m)−mσ2‖1

for some constant C depending only on ‖X0‖∞, σ and S .

(b) If ‖E0(Jm)‖1 ≤ Mδn
−δ for some δ ∈]0, 1[and some constant Mδ, then

d1(Sn, σ
√

nY ) ≤ Cδn
(1−δ)/2 +

[
√

2n]∑
m=1

(1 + L

mσ

)
‖E0(S

2
m)−mσ2‖1

for some constant Cδ depending on δ, Mδ, ‖X0‖∞ and σ.
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Remark 2.3. The assumptions made in this section ensure that

lim
n→∞

‖E0(m
−1S2

m)− σ2‖1 = 0,

which is the condition appearing in the conditional CLT of Dedecker and Mer-
levède (2002). Consequently Theorem 2.3 provides rates of convergence in the
mean CLT. For example, if (a) holds and supm>0 ‖E0(S

2
m) − mσ2‖1 < ∞, then

d1(Sn, σ
√

nY ) = O(log n). If (b) holds and ‖E0(S
2
m) − mσ2‖1 = O(m1−δ) as

m →∞, then d1(Sn, σ
√

nY ) = O(n(1−δ)/2).

Proof of Theorem 2.3. We first bound up D′. Let M = supm>0 ‖E0(Sm)‖1. We
have that

D′ ≤ L

n∑
m=1

m−1/2
∥∥∥

∑

l≥m

E0(Xl)
∥∥∥

1
+

1

2
(1 + L2)M log(1 + 2n).

Since
∑

l≥m E0(Xl) = E0

( ∑
l≥m Em−1(Xl)

)
= E0(Jm−1), we infer that

D′ ≤
∞∑

m=0

(m + 1)−1/2‖E0(Jm)‖1 +
1

2
(1 + L2)M log(1 + 2n). (2.21)

Next we bound up the r.v.’s Wm + mσ2 − E0(S
2
m) in L1. By definition of Wm,

Wm + mσ2 = E0(S
2
m) + 2

m∑

l=1

E0

(
Xl

∑

k>m

El(Xk)
)
.

Therefore

‖Wm + mσ2 − E0(S
2
m)‖1 ≤

m∑

l=1

‖XlEl(Jm)‖1 ≤ ‖X0‖∞
m∑

l=1

‖E0(Jm−l)‖1.

Hence

[
√

2n]∑
m=1

(mσ2)−1(‖X0Wm‖1 + σ‖Wm‖1) ≤

[
√

2n]∑
m=1

(1 + L

mσ

)(
‖E0(S

2
m)−mσ2‖1 +

m−1∑

l=0

‖E0(Jl)‖1

)
. (2.22)

Theorem 2.3 follows then easily from both Theorem 2.2, (2.21) and (2.22). ¤
we now give an application of Theorem 2.3 to sequences satisfying projective

criteria in the style of Gordin (1969, 1973). The proof, being elementary, is omit-
ted.
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Corollary 2.1. Let (Xi)i∈Z be a stationary sequence of centered and bounded ran-
dom variables.

(a) If
∞∑

m=0

m∑

l=0

‖E−m(X0Xl))− E(X0Xl))‖1 < ∞ and
∑
m>0

m‖E0(Xm)‖1 < ∞,

then the series of covariances converges to σ2 and d1(Sn, σ
√

nY ) = O(log n)
as n tends to ∞, provided that σ 6= 0.

(b) If, for some δ ∈]0, 1[, sup
l∈[0,m]

‖E−m(X0Xl)− E(X0Xl))‖1 = O(m−1−δ) and

‖E0(Xm)‖1 = O(m−1−δ), then the series of covariances converges to σ2 and
d1(Sn, σ

√
nY ) = O(n(1−δ)/2) as n tends to ∞ provided that σ 6= 0.

Remark 2.4. For example, if the strong mixing coefficients α2(k) of the sequence
(Xi)i∈Z (see (3.1) for the definition) satisfy α2(k) = O(k−1−δ) then Corollary 2.1(b)
applies and provides the rate of convergence O(n−δ/2) in the mean CLT.

3 Optimal rates for stationary sequences

Throughout Section 3, the filtration (Mi)i∈Z and the stationary sequence (Xi)i∈Z
are defined exactly as in Section 2.

3.1 Stationary sequences

For stationary sequences, we will give two different conditions under which the
rate of convergence O(n−1/2) holds in the mean CLT. We consider two types of
dependence coefficients.

Definition 3.1. For any integers 0 ≤ i < j and p ≥ 0, let Γi,j,p be the set of
multiintegers (k1, . . . , kj) such that 0 ≤ k1 ≤ · · · ≤ ki and ki +p ≤ ki+1 ≤ · · · ≤ kj.
Set

θi,j(p) = sup
(k1,...,kj)∈Γi,j,p

‖Xk1 · · ·Xki
Eki

(Xki+1
· · ·Xkj

− E(Xki+1
· · ·Xkj

))‖1 .

Definition 3.2. For any random variable (ξ1, · · · , ξk) with value in Rk, and any
σ-algebra M, define the function gx,j(t) = 1It≤x − P(ξj ≤ x). Set

α(M, (ξ1, · · · , ξk)) = sup
(x1,...,xk)∈Rk

∥∥∥E
( k∏

j=1

gxj ,j(ξj)
∣∣∣M

)
− E

( k∏
j=1

gxj ,j(ξj)
)∥∥∥

1
.

For a sequence ξ = (ξi)i∈Z, where ξi = ξ0 ◦ T i and ξ0 is a M0-measurable and
real-valued r.v., let

αk,ξ(n) = max
1≤l≤k

sup
il>...>i1≥n

α(M0, (ξi1 , . . . , ξil)).
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Remark 3.1. Let B1(Rk) be the set of functions f from Rk to R such that |f(x)−
f(y)| ≤ 1 for any x, y in Rk. Recall that the strong mixing coefficient of Rosenblatt
(1956) may be defined as

α(M, σ(ξ1, . . . , ξk)) =
1

2
sup

f∈B1(Rk)

‖E(f(ξ1, . . . , ξk)|M)− E(f(ξ1, . . . , ξk))‖1 .

For the sequence ξ, we define the strong mixing coefficients

αk(n) = sup
ik≥...≥i1≥n

α(M0, σ(ξi1 , . . . , ξil)) and α(n) = sup
k>0

αk(n) . (3.1)

By induction on k, it is easy to prove that g : (t1, . . . , tk) → Πk
i=1gxi,i(ti) belongs

to B1(Rk). It follows that

α(M, (ξ1, · · · , ξk)) ≤ 2α(M, σ(ξ1, . . . , ξk)) and αk,ξ(n) ≤ 2αk(n) .

We emphasize that there exists sequences which are not strongly mixing in the
sense of Rosenblatt, for which αk,ξ(n) tends to 0 as n tends to infinity (see Dedecker
and Prieur (2005, Section 4) and the example of Section 5.1).

Definition 3.3. For any real-valued random variable X, let QX be the generalized
inverse of the tail function x → P(X > x).

Theorem 3.1. Let (Xi)i∈Z be a stationary sequence of centered random variables.
Consider the two conditions

(a) E(X4
0 ) < ∞ and

∞∑
p=1

pθi,j(p) < ∞ for any 0 ≤ i < j ≤ (3 + i) ∧ 4.

(b) Assume that X0 = (f1 − f2)(ξ0) for some real-valued random variable ξ0

and two nondecreasing functions f1, f2, such that f1(ξ0), f2(ξ0) belong to L3.
Letting Q = max(Q|f1(ξ0)|, Q|f2(ξ0)|), the following condition holds

∞∑
p=1

p

∫ α3,ξ(p)

0

Q3(u)du < ∞ . (3.2)

If either (a) or (b) holds, then the series σ2 = E(X2
0 )+2

∑∞
k=1 E(X0Xk) converges

absolutely. Moreover, if σ > 0, then d1(Sn,
√

nσY ) ≤ C for some constant C.

Remark 3.2. For bounded random variables, Theorem 3.1(a) is a consequence
of Theorem 1.1 in Pène (2005). Note that Pène’s result is given for Rd-valued
bounded random variables.

Remark 3.3. For the strong mixing coefficients defined in (3.1), we infer from
Theorem 3.1(b) that, if X0 = f(ξ0) belongs to L3 and if (1.8) holds with α3(k)
instead of α(k) and b = 1, then the conclusion of Theorem 3.1 holds.
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3.2 Martingale difference sequences.

In this subsection we give conditions for stationary martingale difference se-
quences ensuring the optimal rate O(n−1/2) in the mean CLT.

Theorem 3.2. Let (Xi)i∈Z be a stationary martingale difference sequence in L3,
with variance σ2. Consider the two conditions

(a) X0 belongs to L4,

∑

k>0

(
‖(X2

0 ∨ 1)(E0(X
2
k)− σ2)‖1 +

1

k

k∑
i=1

‖X−iX0(E0(X
2
k)− σ2)‖1

)
< ∞,

and
∑

k>0

1

k

k∑

i=[k/2]

‖(|X0| ∨ 1)(E0(XiX
2
k)− E(XiX

2
k))‖1 < ∞ . (3.3)

(b) X0 and Q are defined as in Theorem 3.1(b), and

∞∑
p=1

∫ α3,ξ(p)

0

Q3(u)du < ∞ . (3.4)

If either (a) or (b) holds, then d1(Sn,
√

nσY ) ≤ C for some positive constant C.

Remark 3.4. Note that the first condition in (3.3) implies that E(X2
0 |I) = σ2

almost surely. Assume that E(|X0|p) < ∞ for some p ≥ 4. Applying Hölder’s
inequality, we see that (3.3) holds as soon as

∑

k>0

‖E0(X
2
k)− σ2‖ p

p−2
< ∞ and

∑

k>0

sup
i≥k

‖E0(XkX
2
i )− E(XkX

2
i )‖ p

p−1
< ∞.

4 Proofs of Theorems 3.1 and 3.2

4.1 A first decomposition

The following Proposition is the main step to prove Theorems 3.2 and 3.1. It
is stated in the nonstationary case.

Proposition 4.1. Let (Xi)i≥1 be a sequence of centered random variables, each
having a finite third moment, adapted to the filtration (Mi)i. Let Z be a centered
random variable with finite fourth moment independent of M∞, and let E(Z2) =
β2, E(Z3) = β3, E(Z4) = β4. Let S0 = 0 and Sn = X1 + · · · + Xn. Let Xi,1

and Xi,2 be two Mi-measurable random variables such that Xi = Xi,1 + Xi,2. For
any four times continuously differentiable function f and any integer l such that
1 ≤ l ≤ k − 1,

E(f(Sk−1 + Xk)− f(Sk−1 + Z)) ≤
9∑

i=1

ζiAi,
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where ζi = ζi(f) are defined by ζ1 = ‖f ′‖∞, ζ2 = ζ8 = ‖f ′′‖∞, ζ3 = ζ9 = ‖f (3)‖∞
and ζ4 = ζ5 = ζ6 = ζ7 = ‖f (4)‖∞, and the numbers Ai = Ai(k, l) are defined by

A1 = ‖Ek−l−1(Xk)‖1, A2 =
1

2

∥∥∥β2 − Ek−l−1

(
Xk,1Xk + 2

l∑
j=1

Xk−j,1Xk

)∥∥∥
1
,

A3 =
1

6

∥∥∥β3 − Ek−l−1

(
XkX

2
k,1 + 3

l∑
j=1

(Xk−j,1(Xk,1Xk − β2) + X2
k−j,1Xk

)

−Ek−l−1

( l∑
j=1

j−1∑
p=1

Xk−j,1Xk−p,1Xk

)∥∥∥
1
,

A4 =
1

24
(E(|XkX

3
k,1|) + β4), A5 =

1

6

l∑
j=1

‖X3
k−j,1Ek−j(Xk)‖1,

A6 =
1

4

l∑
j=1

∥∥∥X2
k−j,1

(
β2 − Ek−j

(
XkXk,1 + 2

j−1∑
p=1

Xk−p,1Xk

))∥∥∥
1
,

A7 =
1

6

l∑
j=1

∥∥∥Xk−j

(
β3 − Ek−j

(
X2

k,1Xk + 3

j−1∑
p=1

X2
k−p,1Xk

+3

j−1∑
p=1

Xk−p,1(Xk,1Xk − β2) + 6

j−1∑
p=1

p−1∑
q=1

Xk−p,1Xk−q,1Xk

))∥∥∥
1
,

A8 =
1

2

(
‖XkXk,2‖1 + 2

l∑
j=1

‖Xk−j,2Ek−j(Xk)‖1

)
,

A9 =
1

2

l∑
j=1

∥∥∥Xk−j,2

(
β2 − Ek−j

(
XkXk,1 + 2

j−1∑
p=1

Xk−p,1Xk

))∥∥∥
1
.

Proof of Proposition 4.1. We start from the equality

f(Sk−1 + Xk)− f(Sk−1) = Xk

∫ 1

0

(f ′(Sk−1 + tXk,1)− f ′(Sk−1)) dt

+ Xkf
′(Sk−1) + r1(k),

with 2r1(k) ≤ ζ2|XkXk,2|. Consequently

f(Sk−1 + Xk) = f(Sk−1) + f ′(Sk−1)Xk +
XkXk,1

2
f ′′(Sk−1)

+
XkX

2
k,1

6
f ′′′(Sk−1) + R1(k) + r1(k) ,
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with 24|R1(k)| ≤ ζ4|XkX
3
k,1|. Hence

E(f(Sk−1 + Xk)− f(Sk−1 + Z)) = E(f ′(Sk−1)Xk) +
1

2
E(f ′′(Sk−1)(XkXk,1 − β2))

+
1

6
E(f ′′′(Sk−1)(XkX

2
k,1 − β3)) + R2(k) + E(r1(k)),

with R2(k) ≤ ζ4A4. Consider first the third order terms. Clearly

1

6
f ′′′(Sk−1)(XkX

2
k,1 − β3) =

1

6
f ′′′(Sk−l−1)(XkX

2
k,1 − β3)

+
1

6

l∑
j=1

( ∫ 1

0

f (4)(Sk−j−1 + tXk−j)dt
)
Xk−j(XkX

2
k,1 − β3) . (4.1)

Let g1(Sk−j, Xk−j,1) = f ′′(Sk−j) − f ′′(Sk−j−1 + Xk−j,1). For the second order
terms, we have first

1

2
f ′′(Sk−1)(XkXk,1 − β2) =

1

2
(XkXk,1 − β2)

(
f ′′(Sk−l−1) +

l∑
j=1

g1(Sk−j, Xk−j,1)

+
l∑

j=1

f ′′′(Sk−j−1)Xk−j,1 +
l∑

j=1

( ∫ 1

0

(1− t)f (4)(Sk−j−1 + tXk−j,1)dt
)
X2

k−j,1

)
,

and next

1

2
f ′′(Sk−1)(XkXk,1 − β2) =

1

2
(XkXk,1 − β2)

(
f ′′(Sk−l−1) +

l∑
j=1

g1(Sk−j, Xk−j,1)

+
l∑

j=1

f ′′′(Sk−l−1)Xk−j,1 +
l∑

j=1

l∑
p=j+1

( ∫ 1

0

f (4)(Sk−p−1 + tXk−p)dt
)
Xk−pXk−j,1

+
l∑

j=1

( ∫ 1

0

(1− t)f (4)(Sk−j−1 + tXk−j,1)dt
)
X2

k−j,1

)
. (4.2)

Let g2(Sk−j, Xk−j,1) = f ′(Sk−j)−f ′(Sk−j−1 +Xk−j,1). For the first order terms,
we have first

f ′(Sk−1)Xk = f ′(Sk−l−1)Xk +
l∑

j=1

Xk,1g2(Sk−j, Xk−j,1)

+
l∑

j=1

Xk,1(f
′(Sk−j−1 + Xk−j,1)− f ′(Sk−j−1)) ,
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so that f ′(Sk−1)Xk = f ′(Sk−l−1)Xk +
l∑

j=1

Xkg2(Sk−j, Xk−j,1)

+
l∑

j=1

f ′′(Sk−j−1)Xk−j,1Xk +
1

2

l∑
j=1

f ′′′(Sk−j−1)X
2
k−j,1Xk

+
l∑

j=1

( ∫ 1

0

t(1− t)f (4)(Sk−j−1 + tXk−j,1)X
3
k−j,1Xk.

Next f ′(Sk−1)Xk = Xk

(
f ′(Sk−l−1) +

l∑
j=1

g2(Sk−j, Xk−j,1) +
l∑

j=1

f ′′(Sk−l−1)Xk−j,1

+
1

2

l∑
j=1

f ′′′(Sk−j−1)X
2
k−j,1 +

l∑
j=1

l∑
p=j+1

f ′′′(Sk−p−1)Xk−p,1Xk−j,1

+
l∑

j=1

l∑
p=j+1

Xk−j,1g1(Sk−p, Xk−p,1)

+
l∑

j=1

l∑
p=j+1

( ∫ 1

0

(1− t)f (4)(Sk−p−1 + tXk−p,1)dt
)
X2

k−p,1Xk−j,1

+
l∑

j=1

( ∫ 1

0

t(1− t)f (4)(Sk−j−1 + tXk−j,1)dt
)
X3

k−j,1

)

f ′(Sk−1)Xk,1 = Xk

(
f ′(Sk−l−1) +

l∑
j=1

g2(Sk−j, Xk−j,1) +
l∑

j=1

f ′′(Sk−l−1)Xk−j,1

+
1

2

l∑
j=1

f ′′′(Sk−l−1)X
2
k−j,1 +

l∑
j=1

l∑
p=j+1

f ′′′(Sk−l−1)Xk−p,1Xk−j,1

+
l∑

j=1

l∑
p=j+1

Xk−j,1g1(Sk−p, Xk−p,1)

+
1

2

l∑
j=1

l∑
p=j+1

( ∫ 1

0

f (4)(Sk−p−1 + tXk−p)dt
)
Xk−pX

2
k−j,1

+
l∑

j=1

l∑
p=j+1

l∑
q=p+1

( ∫ 1

0

f (4)(Sk−q−1 + tXk−q)dt
)
Xk−qXk−p,1Xk−j,1

+
l∑

j=1

l∑
p=j+1

( ∫ 1

0

(1− t)f (4)(Sk−p−1 + tXk−p,1)dt
)
X2

k−p,1Xk−j,1

+
l∑

j=1

( ∫ 1

0

t(1− t)f (4)(Sk−j−1 + tXk−j,1)dt
)
X3

k−j,1

)
. (4.3)
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Let us look carefully at the decompositions (4.1), (4.2) and (4.3). In front of
f ′(Sk−l−1) there is Xk, which leads to the term ζ1A1 by taking the conditional
expectation with respect to Mk−l−1. In front of f ′′(Sk−l−1)/2 there is XkXk,1 −
β2 + 2

∑l
j=1 Xk−j,1Xk, which leads to the term ζ2A2 by taking the conditional

expectation with respect to Mk−l−1. In front of f ′′′(Sk−l−1)/6 there is

XkX
2
k,1−β3 +3

l∑
j=1

(
Xk−j,1(XkXk,1−β2)+X2

k−j,1Xk

)
+6

l∑
p=1

p−1∑
j=1

Xk−p,1Xk−j,1Xk ,

which leads to the term ζ3A3 by taking the conditional expectation with respect
to Mk−l−1. Taking the conditional expectation with respect to Mk−j and the
supremum of |f (4)| in the last term of (4.3), we obtain ζ4A5. Gathering the last
term in (4.2) and the last but one in (4.3), we obtain

l∑
j=1

( ∫ 1

0

(1− t)f (4)(Sk−j−1 + tXk−j,1)dt
)
X2

k−j,1

(1

2
(Xk,1Xk − β2) +

j−1∑
p=1

Xk−p,1Xk

)
,

which leads to the term ζ4A6. Gathering the remainder terms in (4.1), (4.2) and
(4.3) (except the terms involving the functions g1, g2), we obtain

l∑
j=1

( ∫ 1

0

f (4)(Sk−j−1 + tXk−j)dt
)
Xk−j

(1

6
(XkX

2
k,1 − β3) +

1

2

j−1∑
p=1

X2
k−p,1Xk

+
1

2

j−1∑
p=1

Xk−p,1(Xk,1Xk − β2) +

j−1∑
p=1

p−1∑
q=1

Xk−p,1Xk−q,1Xk

)
,

which leads to the term ζ4A7. The term ζ2A8 is obtained by gathering ‖r1(k)‖1

and the terms involving the function g2, and by noting that |g2(Sk−j, Xk−j,1)| ≤
ζ2|Xk−j,2|. The term ζ3A9 is obtained by gathering the terms involving the function
g1, and by noting that |g1(Sk−j, Xk−j,1)| ≤ ζ3|Xk−j,2|.

4.2 Upper bounds for the Ai’s

Let Xi,1 and Xi,2 be two Mi-mesurable random variables such that Xi =
Xi,1 + Xi,2. Define b(l) by

b(l) = E(X2
0,1X0) + 3

l∑
i=1

E(X0,1Xi,1Xi + X2
0,1Xi) + 6

l∑
i=1

i−1∑
j=1

E(X0,1Xj,1Xi) . (4.4)

Assume that the series

σ2 = E(X2
0 ) + 2

∞∑

k=1

E(X0Xk) and σ2
1 = E(X0,1X0) + 2

∞∑

k=1

E(X0,1Xk)
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converge absolutely. Let Ai be the terms of Proposition 4.1 with β2 = σ2, and
β3 = b(l), and let Ai,1 be the terms of Proposition 4.1 with β2 = σ2

1, and β3 = b(l).
We now give upper bounds for A2,1, A3,1, A6,1, A7,1 and A9,1. First,

A2,1 ≤ 1

2
‖Ek−l−1(Xk,1Xk − E(Xk,1Xk))‖1 +

l∑

j=[l/2]+1

‖Xk−j,1Ek−j(Xk)‖1

+
∞∑

j=[l/2]+1

|E(X0,1Xj)|+
[l/2]∑
j=1

‖Ek−l−1(Xk−j,1Xk − E(Xk−j,1Xk))‖1 ,

2A6,1 ≤
l∑

j=1

(1

2
‖X2

k−j,1Ek−j(Xk,1Xk − E(Xk,1Xk))‖1

+

j∑

p=[j/2]+1

‖X2
k−j,1Xk−p,1Ek−p(Xk)‖1 + E(X2

0,1)
∞∑

p=[j/2]+1

|E(X0,1Xp)|

+

[j/2]∑
p=1

‖X2
k−j,1Ek−j(Xk−p,1Xk − E(Xk−p,1Xk))‖1

)
,

A9,1 ≤
l∑

j=1

(1

2
‖Xk−j,2Ek−j(Xk,1Xk − E(Xk,1Xk))‖1

+

j∑

p=[j/2]+1

‖Xk−j,2Xk−p,1Ek−p(Xk)‖1 + ‖X0,2‖1

∞∑

p=[j/2]+1

|E(X0,1Xp)|

+

[j/2]∑
p=1

‖Xk−j,2Ek−j(Xk−p,1Xk − E(Xk−p,1Xk))‖1

)
.

Next, we have that A3,1 ≤ C1 + C2 + C3, where

C1 =
1

6

(
‖Ek−l−1(X

2
k,1Xk − E(X2

k,1Xk))‖1 + 3
l∑

j=[l/2]+1

‖X2
k−j,1Ek−j(Xk)‖1

+ 3

[l/2]∑
j=1

‖Ek−l−1(X
2
k−j,1Xk − E(X2

k−j,1Xk))‖1

+ 3
l∑

j=[l/2]+1

‖Xk−j,1Ek−j(Xk,1Xk − E(Xk,1Xk))‖1

+ 3

[l/2]∑
j=1

‖Ek−l−1(Xk−j,1Xk,1Xk − E(Xk−j,1Xk,1Xk))‖1

)
,
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C2 =

[l/2]∑
j=1

j−1∑
p=1

‖Ek−l−1(Xk−j,1Xk−p,1Xk − E(Xk−j,1Xk−p,1Xk))‖1

+
l∑

j=[l/2]+1

[j/2]∑
p=1

‖Xk−j,1Ek−j(Xk−p,1Xk − E(Xk−p,1Xk)‖1

+
l∑

j=[l/2]+1

j−1∑

p=[j/2]+1

‖Xk−j,1Xk−p,1Ek−p(Xk)‖1 ,

C3 =
l∑

j=[l/2]+1

j−1∑
p=1

|E(X0,1Xp,1Xj)|+ 1

2

l∑

j=[l/2]+1

|E(X2
0,1Xj)|

+
1

2

[l/2]∑
j=1

‖Ek−l−1(Xk−j,1)‖1

(
|E(X0,1X0)|+ 2

∞∑
p=1

|E(X0,1Xp)|
)

+
1

2

l∑

j=[l/2]+1

|E(X0,1Xj,1Xj)|+
l∑

j=[l/2]+1

∞∑

p=[j/2]+1

‖X0,1‖1|E(X0,1Xp)| .

In the same way, A7,1 ≤ D1 + D2 + D3, where

D1 =
1

6

l∑
j=1

(
‖Xk−jEk−j(X

2
k,1Xk − E(X2

k,1Xk))‖1

+ 3

j−1∑

p=[j/2]+1

‖Xk−jX
2
k−p,1Ek−p(Xk)‖1

+ 3

[j/2]∑
p=1

‖Xk−jEk−j(X
2
k−p,1Xk − E(X2

k−p,1Xk))‖1

+ 3

j−1∑

p=[j/2]+1

‖Xk−jXk−p,1Ek−p(Xk,1Xk − E(Xk,1Xk))‖1

+ 3

[j/2]∑
p=1

‖Xk−jEk−j(Xk−p,1Xk,1Xk − E(Xk−p,1Xk,1Xk))‖1

)
,

D2 =
l∑

j=1

( j−1∑

p=[j/2]+1

p−1∑

q=[p/2]+1

‖Xk−jXk−p,1Xk−q,1Ek−q(Xk)‖1

+

[j/2]∑
p=1

p−1∑
q=1

‖Xk−jEk−j(Xk−p,1Xk−q,1Xk − E(Xk−p,1Xk−q,1Xk))‖1

+

j−1∑

p=[j/2]+1

[p/2]∑
q=1

‖Xk−jXk−p,1Ek−p(Xk−q,1Xk − E(Xk−q,1Xk))‖1

)
,
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D3 =
l∑

j=1

(
2

l∑

p=[j/2]+1

p−1∑
q=1

‖X0‖1|E(X0,1Xq,1Xp)|

+

[j/2]∑
p=1

‖Xk−jEk−j(Xk−p,1)‖1

(
|E(X0X0,1)|+ 2

∞∑
p=1

|E(X0,1Xp)|
)

+
l∑

p=[j/2]+1

‖X0‖1|E(X2
0,1Xp)|+

l∑

p=[j/2]+1

‖X0‖1|E(X0,1Xp,1Xp)|

+ 2
l∑

p=[j/2]+1

∞∑

q=[p/2]+1

‖X0‖2‖X0,1‖2|E(X0,1Xq)|
)

.

4.3 Control of the Ai’s for stationary sequences

In this section, we give upper bounds for (Ai)1≤i≤8 in terms of the coefficients
θ, and in terms of αξ in the case where X0 = (f1 − f2)(ξ0), the functions f1, f2

being nondecreasing. For αξ, let

Xi,1 = Xi(a) = (ga ◦ f1 − ga ◦ f2)(ξi)− E((ga ◦ f1 − ga ◦ f2)(ξi)) ,

where ga(x) = (x∧a)∨(−a) for any a > 0. For θ, let Xi,1 = Xi(∞) = Xi, in which
case Ai,1 = Ai and A8(f, k, l) = 0. Denote by b(l, a) the quantity b(l) defined in
(4.4) with Xi,1 = Xi(a). Note that b(l,∞) converges to a limit b(∞,∞) as soon
as both

∑
kθ1,3(k) and

∑
kθ2,3(k) are finite. In the same way, since ga ◦ f1 and

ga◦f2 are nondecreasing, we can use Corollary 6.1 given in the appendix: it follows
easily that b(l, a) converges to a limit b(∞, a) as soon as (3.2) holds.

Notation 4.1. In the following, the notation a<< b means that a ≤ Cb for some
numerical constant C.

To control the Ai’s with the help of the coefficients αξ, the main tool is the

second inequality given in Corollary 6.1 of the appendix. Let X
(a)
k = Xk,2 =

Xk −Xk(a). Then σ2 − σ2
1 = E(X0X

(a)
0 ) + 2

∑∞
k=1 E(X

(a)
0 Xk). Note that

X
(a)
k = (ha ◦ f1 − ha ◦ f2)(ξk)− E((ha ◦ f1 − ha ◦ f2)(ξk)) ,

where ha(x) = x− ga(x). The functions ha ◦ f1 and ha ◦ f2 are nondecreasing and

max(Q|ga◦f1(Y0)|, Q|ga◦f2(Y0)|, Q|ha◦f1(Y0)|, Q|ha◦f2(Y0)|) ≤ Q.

Hence Corollary 6.1 applies and yields |σ2 − σ2
1|<< M(Q, a) where

M(Q, a) =
∞∑
i=0

∫ α1,ξ(i)

0

Q21IQ>a dλ ,
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λ being the Lebesgue measure. Taking into account this upper bound, we get that

|A2 − A2,1| << M(Q, a)

|A3 − A3,1| << l‖X0(a)‖1M(Q, a),

|A6 − A6,1| << l‖X0(a)‖2
2M(Q, a),

|A7 − A7,1| << l2‖X0‖2
2M(Q, a),

|A9 − A9,1| << l‖X(a)
0 ‖1M(Q, a) . (4.5)

We now give some upper bounds for the Ai’s. Clearly

A1 ≤ θ0,1(l + 1) and A1<<

∫ α1,ξ(l)

0

Q dλ . (4.6)

In the same way, since max(Q|ga◦f1(Y0)|, Q|ga◦f2(Y0)|) ≤ (Q ∧ a),

A5<<

l∑
j=1

θ3,4(j) and A5<<

l∑
j=1

∫ α1,ξ(j)

0

Q(Q ∧ a)3 dλ. (4.7)

Let A = sign{Ek−l−1(Xk(a)Xk−E(Xk(a)Xk)}. Recall that α(ξ1, . . . , ξk) is defined
in Proposition 6.1. Since α(A, ξk, ξk) ≤ α(A, ξk) ≤ α1,ξ(l + 1), we infer from
Corollary 6.1 that

‖Ek−l−1(Xk(a)Xk−E(Xk(a)Xk))‖1 = |E((A−E(A))Xk(a)Xk)|<<

∫ α1,ξ(l+1)

0

Q2 dλ .

Using this inequality to control A2,1, we obtain the bounds

A2 << θ0,2(l + 1) +
∞∑

j=[l/2]

θ0,2(j) +
∞∑

j=[l/2]

θ1,2(j) , (4.8)

A2,1 <<

∫ α1,ξ(l+1)

0

Q2 dλ +
∞∑

j=[l/2]

∫ α2,ξ(j)

0

Q2 dλ. (4.9)

In the same way,

A6 <<

∞∑
j=1

jθ2,4(j) +
∞∑

p=1

pθ3,4(p) + E(X2
0 )

∞∑
p=1

pθ1,2(p) , (4.10)

A6,1 <<

l∑
j=1

∫ α1,ξ(j)

0

Q(Q ∧ a)3 dλ +
l∑

p=1

p

∫ α2,ξ(p)

0

Q(Q ∧ a)3 dλ

+ E(X2
0 (a))

∞∑
p=1

p

∫ α1,ξ(p)

0

Q(Q ∧ a) dλ. (4.11)
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The term A9,1 can be handled similarly:

A9,1 << a

l∑
j=1

∫ α1,ξ(j)

0

Q21IQ>a dλ + a

l∑
p=1

p

∫ α2,ξ(p)

0

Q21IQ>a dλ

+ ‖X(a)
0 ‖1

∞∑
p=1

p

∫ α1,ξ(p)

0

Q(Q ∧ a) dλ. (4.12)

In the previous section, we have defined constants C1, C2, C3 such that A3,1 ≤
C1 + C2 + C3. If Xk,1 = Xk(a) we shall use the notation Ci = Ci(a), and if
Xk,1 = Xk(∞) = Xk the notation Ci = Ci(∞). Thus A3,1 ≤ C1(a)+C2(a)+C3(a)
and A3 ≤ C1(∞) + C2(∞) + C3(∞). To control Ci(a), we use Corollary 6.1 and
the fact that, for any M0-measurable r.v. B,

α(B, ξk, ξk, ξk) ≤ α1,ξ(k) and α(B, ξk, ξk, ξl) ≤ α2,ξ(min(k, l)).

Therefrom

C1(∞) <<

l+1∑

j=[l/2]

θ2,3(j) + 2
l∑

j=[l/2]

θ0,3(j) +
l∑

j=[l/2]

θ1,3(j) , (4.13)

C1(a) <<

∫ α1,ξ(l+1)

0

Q(Q ∧ a)2 dλ +
l∑

j=[l/2]

∫ α2,ξ(j)

0

Q(Q ∧ a)2 dλ , (4.14)

C2(∞) << l
( l∑

j=[l/2]

θ0,3(j) +
l∑

j=[l/4]

θ1,3(j) +
l∑

j=[l/4]

θ2,3(j)
)

, (4.15)

C2(a) << l

l∑

j=[l/4]

∫ α3,ξ(j)

0

Q(Q ∧ a)2 dλ . (4.16)

Finally

C3(∞)<< l

l∑

j=[l/4]

(θ1,3(j) + θ2,3(j)) +
∞∑

j=[l/2]

(θ1,3(j) + θ2,3(j))

+
( l∑

j=[l/2]

θ0,1(j)
)(
E(X2

0 ) + 2
∞∑

p=1

|E(X0Xp)|
)

+ l‖X0‖1

∞∑

j=[l/4]

θ1,2(j) (4.17)

and C3(a) << l

l∑

j=[l/4]

∫ α2,ξ(j)

0

Q(Q ∧ a)2 dλ +
∞∑

j=[l/2]

∫ α1,ξ(j)

0

Q(Q ∧ a)2 dλ

+
( l∑

j=[l/2]

∫ α1,ξ(j)

0

Qdλ
)(
|E(X0X0(a))|+ 2

∞∑
p=1

|E(X0(a)Xp)|
)

+ l‖X0(a)‖1

∞∑

j=[l/4]

∫ α1,ξ(j)

0

Q(Q ∧ a) dλ . (4.18)
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In the previous section, we have defined the constants D1, D2, D3 such that A7,1 ≤
D1 + D2 + D3. If Xk,1 = Xk(a) we shall use the notation Di = Di(a), and if
Xk,1 = Xk(∞) = Xk the notation Di = Di(∞). Thus A3,1 ≤ D1(a)+D2(a)+D3(a)
and A3 ≤ D1(∞) + D2(∞) + D3(∞). Furthermore

D1(∞) <<

l∑
j=1

θ1,4(j) +
l∑

j=1

j(θ3,4(j) + θ1,4(j) + θ2,4(j))
)

, (4.19)

D1(a) <<

l∑
j=1

∫ α1,ξ(j)

0

Q2(Q ∧ a)2 dλ +
l∑

j=1

j

∫ α2,ξ(j)

0

Q2(Q ∧ a)2 dλ ,(4.20)

D2(∞) <<

l∑
j=1

(l ∧ 2j)2θ1,4(j) +
l∑

j=1

(l ∧ 2j)2(θ2,4(j) + θ3,4(j)) , (4.21)

D2(a) <<

l∑
j=1

(l ∧ 2j)2

∫ α3,ξ(j)

0

Q2(Q ∧ a)2 dλ . (4.22)

Finally

D3(∞)<< ‖X0‖1

l∑
j=1

(l ∧ 2j)2(θ1,3(j) + θ2,3(j)) + ‖X0‖2
2

∞∑
j=1

(l ∧ 2j)2θ1,2(j)

+
( l∑

j=1

jθ1,2(j)
)(
E(X2

0 ) + 2
∞∑

p=1

|E(X0Xp)|
)

(4.23)

and

D3(a) << ‖X0‖1

( l∑
j=1

(l ∧ 2j)2

∫ α2,ξ(j)

0

Q(Q ∧ a)2dλ +
∞∑

j=1

j

∫ α1,ξ(j)

0

Q(Q ∧ a)2dλ
)

+
( l∑

j=1

j

∫ α1,ξ(j)

0

Q2 dλ
)(
|E(X0X0(a))|+ 2

∞∑
p=1

|E(X0(a)Xp)|
)

+ ‖X0‖2‖X0(a)‖2

∞∑
j=1

(l ∧ 2j)2

∫ α1,ξ(j)

0

Q(Q ∧ a) dλ . (4.24)

It remains to bound up A8. Clearly

A8<<

l∑
j=0

∫ α1,ξ(j)

0

Q21IQ>a dλ . (4.25)

4.4 Control of the Ai’s for martingales

For stationary martingale difference sequences, the control of the eight terms
Ai is much easier, since the terms A1, A5, C2, D2 are equal to 0. If moreover
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Xk,1 = Xk(∞) = Xk, then A8 and A9 are equal to 0. We start from the control of
the previous section. For each term Ai, we shall first give an upper bound when
Xk,1 = Xk(∞) = Xk in terms of sums of conditional expectations, and next an
upper bound involving the mixing coefficients αξ. Clearly,

A2 ≤ 1

2
‖E0(X

2
l )− σ2‖1 and A2,1<<

∫ α1,ξ(l+1)

0

Q2 dλ .

In the same way

A6 ≤ 1

4

l∑
j=1

‖X2
0 (E0(X

2
j )− σ2)‖1 , A6,1<<

l∑
j=1

∫ α2,ξ(j)

0

Q(Q ∧ a)3 dλ

and A9,1<< a

l∑
j=1

∫ α2,ξ(j)

0

Q21IQ>a dλ .

Starting from the control A3 ≤ C1+C2+C3, and noting that C2 = 0 for martingale
difference sequences, we infer that

A3 << ‖E0(X
3
l )− E(X3

l )‖1 +
l∑

j=[l/2]

‖X0(E0(X
2
j )− σ2)‖1

+
l−1∑

j=[l/2]

‖E0(XjX
2
l )− E(XjX

2
l )‖1 ,

A3,1 <<

∫ α1,ξ(l+1)

0

Q(Q ∧ a)2 dλ +
l∑

j=[l/2]

∫ α2,ξ(j)

0

Q(Q ∧ a)2 dλ

+ |E(X0X0(a))|
l∑

j=[l/2]

∫ α1,ξ(j)

0

Qdλ .

Starting from the control A7 ≤ D1(∞)+D2(∞)+D3(∞), and noting that D2(∞) =
0 for martingale difference sequences, we infer that

A7 <<

l∑
j=1

(
‖X0(E0(X

3
j )− E(X3

j ))‖1 + j‖X0‖1‖X0(E0(X
2
j )− σ2)‖1

+

j∑
p=1

‖X−pX0(E0(X
2
j )− σ2)‖1 +

j−1∑

p=[j/2]

‖X0(E0(XpX
2
j )− E(XpX

2
j ))‖1

)
,

A7,1 <<

l∑
j=1

∫ α1,ξ(j)

0

Q2(Q ∧ a)2dλ +
l∑

j=1

j

∫ α2,ξ(j)

0

Q2(Q ∧ a)2dλ

+ ‖X0‖1

l∑
j=1

j

∫ α1,ξ(j)

0

Q(Q ∧ a)2dλ + |E(X0X0(a))|
l∑

j=1

j

∫ α1,ξ(j)

0

Q2dλ.

25



Finally, we have the simple bound A8<<

∫ 1

0
Q21IQ>a dλ.

4.5 End of the proof of Theorems 3.1 and 3.2

We start with two preliminary results.

Proposition 4.2. Let (Xi)i∈Z be a stationary sequence of centered random vari-
ables in L3. Assume that the series σ2 = E(X2

0 ) + 2
∑∞

k=1 E(X0Xk) converges
absolutely and that σ > 0. Consider assumption H: there exists positive constants
K and M and a double array (Yk,n)1≤k≤n of independent and centered r.v.’s with
common variance σ2, such that, setting Tn = Y1,n + · · ·+ Yn,n,

d1(Sn, Tn) ≤ M and max
1≤k≤n

E(|Y 3
n,k|) ≤ K3.

If H holds, then d1(Sn,
√

nσY ) ≤ C for some constant C depending only on M , σ
and K.

Proof of Proposition 4.2. Assume that H holds. Applying Theorem 5.17 in
Petrov (1995) we infer that there exists a constant A such that, for any x,

|P(Tn ≤ x
√

nσ)− P(Y ≤ x)| ≤ A(K/σ)3n−1/2(1 + |x|)−3 .

Hence, integrating on the real line, d1(Tn,
√

nσY ) ≤ AK3σ−2. The result follows
by taking C = M + Aσ−2K3. ¤

We also need the following lemma, whose proof is elementary.

Lemma 4.1. Let β2 > 0 and β3 be two fixed real numbers, and define

m =
β3 +

√
β2

3 + β3
2/2

β2

, m′ =
−β2

2m
and t =

β3
2

2β3
2 + 4β3(β3 +

√
β2

3 + β3
2/2)

.

Let Zβ2 and Bβ2,β3 be two independent r.v.’s such that Zβ2 has the distribution
N (0, β2/2) and Bβ2,β3 is such that P(Bβ2,β3 = m) = t and P(Bβ2,β3 = m′) = 1− t.
Let Gβ2,β3 = Zβ2 +Bβ2,β3. Then E(Gβ2,β3) = 0, E(G2

β2,β3
) = β2 and E(G3

β2,β3
) = β3.

To prove Theorems 3.1 or 3.2, it is enough to see that under the assumptions
of Theorems 3.1 or 3.2, the condition H of Proposition 4.2 holds. Without loss of
generality, we assume that σ2 = E(X2

0 ) + 2
∑∞

k=1 E(X0Xk) = 1 (the general case
follows by dividing the random variables by σ). Denote by b(l, a) the quantity b(l)
defined in (4.4) with Xk,1 = Xk(a) (see Section 5.3 for the definition of Xk(a)), and
denote by b(l,∞) the quantity b(l) with Xk,1 = Xk(∞) = Xk. Let Y1,n, . . . , Yn,n

be n independent random variables, independent of (Xk)k∈Z, such that Yk,n has
the law of G1,b(l(n,k),a(n,k)) where Gβ2,β3 is defined in Lemma 4.1. Let Y be a
N (0, 1)-distributed random variable, independent of (Xi, Yj,n)i∈Z,1≤j≤n, and let
Tn = Y1,n + · · · + Yn,n. Starting from (2.3), and keeping the same notations as in
Notation 2.1, we have, as in Section 2,

E(f(Sn)− f(Tn)) ≤ 2E|Y |+
n∑

k=1

E(∆k) . (4.26)
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By Lemma 2.1 applied with B = B1,b(l(n,k+1),a(n,k+1)) + · · · + B1,b(l(n,n),a(n,n)) we
have

‖f (i)
k ‖∞ ≤ Di(n− k + 1)(1−i)/2 .

Define α−1(u) =
∑

i≥0 1Iu<α3,ξ(i), and R(u) = α−1(u)Q(u). Let xk = R−1(
√

k)
and choose the truncation level a(n, k) = ∞ for Theorems 3.1(a), 3.2(a) and
a(n, k) = Q(xn−k+1) for Theorems 3.1(b), 3.2(b). Let Bn be the set of positive
integers k such that k − 1 ≤ √

n− k + 1 for Theorems 3.1(a) and 3.2(a), and Bn

be the set of positive integers k such that k − 1 ≤ 4α−1(xn−k+1) for Theorems
3.1(b), 3.2(b). If k belongs to Bn, take l(n, k) = k− 1. If k does not belong to Bn,
take l(n, k) = [

√
n− k + 1] for Theorems 3.1(a), 3.2(a) and l(n, k) = 4α−1(xn−k+1)

for Theorems 3.1(b), 3.2(b). Let g(n) = sup Bn. Applying Proposition 4.1, with
Z = Yk,n, β2 = σ2 = 1, β3 = b(l(n, k), a(n, k)) and β4 = E(Y 4

k,n), we obtain that

n∑

k=g(n)

E(∆k) ≤
n∑

k=g(n)

9∑
i=1

ζi(fk)Ai(k, l(n, k)) and

g(n)−1∑

k=1

E(∆k) ≤
g(n)−1∑

k=1

9∑
i=1

ζi(fk)Ai(k, k − 1) .

We only control the first term, the second one being easier to handle, since in
that case l(n, k) = k − 1 ≤ √

n− k + 1 for Theorems 3.1(a), 3.2(a) and l(n, k) =
k − 1 ≤ 4α−1(xn−k+1) for Theorems 3.1(b), 3.2(b). To prove that condition H of
Proposition 4.2 holds, it is enough to prove that for any i in [1, 9],

sup
n>0

n∑

k=g(n)

ζi(fk)Ai(k, l(n, k)) < ∞ . (4.27)

Proof of Theorem 3.1. We use the control of the Ai’s given in Section 5.3.
In each case, we shall first give the bound for θ (case a(n, k) = ∞ and l(n, k) =
[
√

n− k + 1]) and next for α (case a(n, k) = Q(xn−k+1), l(n, k) = 4α−1(xn−k+1)).
Note that, for any nonnegative measurable function h and any positive p,

∞∑
i=0

ip−1

∫ α3,ξ(i)

0

h dλ < ∞ if and only if

∫ 1

0

(α−1)ph dλ < ∞. (4.28)

For A1, (4.27) holds as soon as, respectively

∞∑

k=1

θ0,1([
√

k]) < ∞ and
∞∑

k=1

∫ 1

0

1Ik≤R2Qdλ < ∞ ,

which follow from (a) and (b) respectively.
To control ζ2A2, we control first ζ2|A2−A2,1| and next ζ2A2,1 (for θ, A2,1 = A2).

From (4.5),
∑n

k=g(n) ζ2|A2 − A2,1| is well controled as soon as

∫ 1

0

α−1Q2

∞∑

k=1

1√
k
1Ik≤R2 dλ < ∞ , (4.29)
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which follows from (b). From (4.8) and (4.9),
∑n

k=g(n) ζ2A2,1 is well controled as
soon as, respectively,

for (p, q) = (0, 2) or (1, 2),
∞∑

k=1

1√
k

∞∑

j=[
√

k/2]

θp,q(j) < ∞ (4.30)

and (4.29) holds. Now (4.30) follows from (a) by interchanging the sums. To con-
trol ζ3A3 and ζ3A9, we control first ζ3|A3−A3,1|, ζ3|A9−A9,1| and next ζ3A3,1, ζ3A9,1

(for θ, A3,1 = A3 and A9 = A9,1 = 0). From (4.5),
∑n

k=g(n) ζ3|A3 − A3,1| and∑n
k=g(n) ζ3|A9 − A9,1| are well controled as soon as

‖X0‖1

∞∑

k=1

1√
kQ(xk)

∞∑
j=1

∫ α3,ξ(j)

0

Q21Ik≤R2 dλ < ∞,

which can be handled as (4.29) by noting that
√

kQ(xk) ≥
√

kQ(x1). From (4.13),∑n
k=g(n) ζ3A3 is well controled as soon as

for 0 ≤ p ≤ 2 and q = 3,
∞∑

k=1

1√
k

∞∑

j=[
√

k/4]

θp,q(j) < ∞. (4.31)

From (4.18) and (4.12), the terms
∑n

k=g(n) ζ3A3,1 and
∑n

k=g(n) ζ3A9,1 are well con-
troled as soon as

∞∑

k=1

R(xk)

k

∞∑
j=1

∫ α3,ξ(j)

0

Q21Ik≤R2 dλ < ∞ . (4.32)

Clearly (4.31) can be handled as (4.30). Since R(xk) ≤
√

k, (4.32) can be handled
as (4.29). From (4.5),

∑n
k=g(n) ζ4|A6 − A6,1| and

∑n
k=g(n) ζ4|A7 − A7,1| are well

controled as soon as

‖X0‖2
2

∞∑

k=1

1√
kQ2(xk)

∞∑
j=1

∫ α3,ξ(j)

0

Q21Ik≤R2 dλ < ∞

which can be handled as (4.29) by noting that
√

kQ2(xk) ≥
√

kQ2(x1). From (4.7),
(4.10), (4.11), and (4.19)-(4.24), we infer that (4.27) holds for A5, A6 and A7, as
soon as, respectively,

for 1 ≤ p ≤ 3 and q = 4,
∞∑

k=1

1

k3/2

∞∑
j=1

(2j ∧
√

k)2θp,q(j) < ∞ , (4.33)

∞∑

k=1

1

k3/2

∞∑
j=1

j21Ixk≤α3,ξ(j/4)

∫ α3,ξ(j)

0

Q2(Q ∧Q(xk))
2 dλ < ∞ . (4.34)

28



Clearly (4.33) holds as soon as

∞∑

k=1

1

k3/2

[
√

k/2]∑
j=1

j2θp,q(j) < ∞ and
∞∑

k=1

1√
k

∞∑

j=[
√

k/2]

θp,q(j) < ∞ . (4.35)

Interchanging the sums, we see that (4.35) follows from (a). In the same way
(4.34) holds as soon as

∫ 1

0

Q2
( ∞∑

k=1

(Q(xk))
2

k3/2
1Ik≤R2

∞∑
j=1

j21Ixk≤α3,ξ(j/4)

)
dλ < ∞ , (4.36)

∫ 1

0

(α−1)3Q4
( ∞∑

k=1

1

k3/2
1Ik>R2

)
du < ∞ . (4.37)

Now (4.36) is equivalent to (4.29), and by definition of R, (4.37) follows from (b).
It remains to control ζ4A4. First note that, for α,

∞∑

k=1

1

k3/2
|E(X0X

3
0 (Q(xk)))| ≤

∫ 1

0

Q2

∞∑

k=1

Q2(xk)

k3/2
1Ik≤R2dλ +

∫ 1

0

Q4
∑

k>R2

1

k3/2
dλ

and these sums can be handled as in (4.36), (4.37). Since ‖f (4)
g(n)‖∞+· · ·+‖f (4)

n ‖∞ ≤
M , we infer that (4.27) holds for A4 as soon as supn>0 max{E(Y 4

k,n) : k ≤ n} < ∞.
Now Yk,n and Z1 + B1,b(l(n,k),a(n,k)) have the same distribution, and consequently
E(Y 4

k,n) ≤ 16(E(Z4
1)+‖B1,b(l(n,k),a(n,k))‖4

∞). Note that ‖B1,b(l(n,k),a(n,k))‖∞ = m∨|m′|,
where m and m′ have been defined in Lemma 5.1 with β2 = σ2 = 1 and β3 =
b(l(n, k), a(n, k)). Next b(l(n, k), a(n, k)) ≤ b3 < ∞ with

b3 = θ0,3(0) + 6
∞∑

k=1

θ1,3(k) + 6
∞∑

k=1

kθ1,3(k) + 6
∞∑

k=1

kθ2,3(k)

b3 =
∞∑

k=1

8k

∫ α3,ξ(k)

0

Q3 dλ ,

under (a) and (b) respectively. Hence, from Lemma 5.1

‖B1,b3,l(n,k)
‖∞ ≤ b3 +

√
b2
3 + 1/2, (4.38)

which completes the proof of H under (a).
From (4.25), (4.27) holds for A8 as soon as (4.29) holds. The proof of H under

(b) is complete.

Proof of Theorem 3.2. Since the proof of Theorem 3.2(b) is similar to that of
Theorem 3.1(b), we shall only give some hints at the end of this subsection.
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To prove Theorem 3.2(a), we use the control of the Ai’s given in Subsection
5.4. Recall that, in that case, A1, A5, A8 and A9 are equal to zero. For A2, (4.27)
holds as soon as ∞∑

k=1

1√
k
‖E0(X

2
[
√

k]
)− 1‖1 < ∞

which follows from the first condition in (3.3). For A6, (4.27) holds as soon as

∞∑

k=1

1

k
√

k

√
k∑

j=1

‖X2
0 (E0(X

2
j )− 1)‖1 < ∞ ,

which follows from the first condition in (3.3) by interchanging the sums. For A3,
(4.27) holds as soon as

∞∑

k=1

1

k

[
√

k]∑

j=[
√

k/2]

‖X0(E0(X
2
j )− 1)‖1 < ∞, (4.39)

∞∑

k=1

1

k

[
√

k]∑

j=[
√

k/2]

‖E0(XjX
2
[
√

k]
)− E(XjX

2
[
√

k]
)‖1 < ∞ . (4.40)

(4.39) follows from (3.3) by interchanging the sums. (4.40) is equivalent to

∞∑

k=1

1

k

k∑

j=[k/2]

‖E0(XjX
2
k)− E(XjX

2
k)‖1 < ∞ ,

which follows from the second condition in (3.3). For A7, (4.27) holds as soon as

∞∑

k=1

‖X0‖1

k3/2

[
√

k]∑
j=1

j‖X0(E0(X
2
j )− 1)‖1 < ∞ (4.41)

∞∑

k=1

1

k3/2

[
√

k]∑
j=1

j∑

p=[j/2]

‖X0(E0(XpX
2
j )− E(XpX

2
j ))‖1 < ∞ (4.42)

∞∑

k=1

1

k3/2

[
√

k]∑
j=1

j∑
p=1

‖X−p(E0(X
2
j )− 1)‖1 < ∞ . (4.43)

Interchanging the sums, we see that (4.41) and (4.43) follow from the first condition
in (3.3), and (4.42) follows from the second condition in (3.3). To control A4, we
proceed as in Theorem 3.1. We have the upper bound b(l(n, k),∞) ≤ d3 with,

d3 = E(|X0|3) + 3
∞∑

k=1

‖X0(E0(X
2
k)− 1)‖1 .
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Hence (4.38) holds with a(n, k) = ∞, and the proof of H under (a) is complete.
The proof of Theorem 3.2(b) is similar to that of Theorem 3.1(b). For 1 ≤ i ≤ 9,

(4.27) holds as soon as

∞∑

k=1

1√
k

∫ 1

0

Q21Ik≤R2 dλ < ∞,

∞∑

k=1

Q(xk)

k

∞∑
j=1

1Ixk≤α(j/4)

∫ 1

0

Q21Ik≤R2 dλ < ∞,

and
∞∑

k=1

1

k3/2

∞∑
j=1

j1Ixk≤α(j/4)

∫ α(j)

0

Q2(Q ∧Q(xk))
2 dλ < ∞ .

Arguing as in the proof of Theorem 3.1(b), these inequalities follow from (3.4).

5 Examples

5.1 Aperiodic Harris recurrent Markov chains

Throughout this subsection, K is a positive Harris recurrent Markov kernel on
some separable state space (E, E), i.e. there exists an unique probability measure π
with πK = π, and K is π-recurrent. As in Bolthausen (1982b), K is assumed to be
aperiodic, which ensures that the stationary chain (ξi)i∈Z with kernel K is strongly
mixing in the sense of Rosenblatt. Moreover, in the case of discrete Markov chains
or chains with an atom, the rates of strong mixing and the integrability properties
of the recurrence times are strongly linked, as proved by Theorem 2 in Bolthausen
(1980): for any r > −1,

∑
k>0 krα(k) < ∞ if and only if E(τ r+2) < ∞, where τ is

the recurrence time (starting from the atom). From Rio (2000) the above series is
convergent if and only if α−1(u) =

∑
i≥0 1Iu<α(i) belongs to Lr+1([0, 1]).

For any measurable function f , let Sn(f) = f(ξ1) + f(ξ2) + · · · + f(ξn). From
Bolthausen’s results (1980, Corollary 3 and 1982b, Theorem 1), the convergence
rates in the Berry-Esseen Theorem are O(n−1/2) as soon as

π(|f |3p) < ∞ and
∑

k>0

k(p+1)/(p−1)α(k) < ∞ , (5.1)

for any p in ]1,∞], provided that

σ2 = π(f 2) + 2
∑
n>0

π(fKnf) > 0. (5.2)

From Theorem 3.1(b) above, we obtain the bound

d1(n
−1/2Sn(f), σY ) ≤ Cn−1/2. (5.3)

as soon as f satisfies (5.2) and (1.8), with X0 = f(ξ0) and b = 0. From (4.28), the
latter condition is equivalent to

∫ 1

0

[α−1(u)]2Q3
|f(ξ0)|(u)du < ∞. (5.4)
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From the Hölder inequality applied with s = p/(p−1) and t = p, we see that (5.4)
holds as soon as (5.1) holds.

Harmonic functions. If f is a bounded harmonic function for K (i.e. K(f) = 0
almost everywhere), the sequence Xi = f(ξi) is a martingale difference sequence.
Consequently Theorems 3.2 and 2.1 apply with σ2 = π(f 2). From Theorem 3.2(b),
(5.3) holds as soon as the strong mixing coefficients satisfy (1.8) with b = 0. Under
the weaker condition ∫ α(k)

0

Q3
|f(ξ0)|(u)du = O(k−δ) , (5.5)

Theorem 2.1(a) provides the rate

d1(n
−1/2Sn(f), σY ) = O(n−δ/2) . (5.6)

When f is a bounded harmonic function, (5.3) holds under the summabil-
ity condition

∑
k α(k) < ∞, which is related to the ergodicity of degree 2 (cf.

Nummelin (1984) section 6.4). From (5.5), the rate (5.6) holds under the weaker
condition α(k) = O(k−δ).

5.2 The transformation Θ(x) = 2x− [2x]

Let λ be the Lebesgue measure on [0, 1] and consider the map Θ from [0, 1] to
[0, 1]: Θ(x) = 2x− [2x]. On the probability space ([0, 1], λ), the sequence (Θi)i>0

is strictly stationary. Note also that (Θ, Θ2, . . . , Θn) is distributed as (ξn, . . . , ξ1),
where (ξi)i∈Z is a Markov chain with invariant distribution λ and transition kernel

Kf(x) =
1

2

(
f
(x

2

)
+ f

(x + 1

2

))
.

Hence, we can obtain informations on the distribution of Sn(f) = f ◦Θ+· · ·+f ◦Θn

by studying that of f(ξ1) + · · · + f(ξn). For instance, we can apply the criterion
of Dedecker and Rio (2000) for the central limit theorem: if λ(f) = 0,

λ(f 2) < ∞ and
∑

k>0

λ(|fKk(f)|) < ∞ , (5.7)

then σ2 = λ(f 2) + 2
∑∞

k=1 λ(f · f ◦Θk) converges absolutely, and n−1/2Sn(f) con-
verges in distribution to a Gaussian random variable with mean 0 and variance
σ2. Now it is easy to see that (5.7) holds as soon as, for some p ∈ [2,∞],

f ∈ Lp(λ) and

∫ 1

0

1

t
wp/(p−1)(t)dt < ∞ , (5.8)

where wq(f, t) is the Lq([0, 1], λ)-modulus of continuity of f in Lq([0, 1], λ). For
p = 2, the criterion (5.8) has been obtained by Ibragimov (1960). For p = ∞, the
criterion (5.8) follows from the L1-criterion of Gordin (1973) applied to sequences
of bounded variables.

In the same way, applying Theorems 2.2, 3.2 and 3.1, we obtain the following
result:
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Theorem 5.1. Let f be a measurable function from [0, 1] to R such that λ(f) = 0.

(a) Assume that, for some p ∈ [3,∞],

f ∈ Lp(λ), and

∫ 1

0

| log t|
t

wp/(p−2)(f, t) dt < ∞ . (5.9)

If σ > 0, there exists a constant C such that, d1(Sn(f),
√

nσY ) ≤ C log n .

(b) Assume that, for some p ∈ [4,∞],

f ∈ Lp(λ), and

∫ 1

0

| log t|
t

wp/(p−3)(f, t) dt < ∞ . (5.10)

If σ > 0, then there exists a constant C such that,

d1(Sn(f),
√

nσY ) ≤ C . (5.11)

(c) Assume that f is an harmonic function for K (i.e. K(f) = 0 almost every-
where), that is f(x+(1/2)) = −f(x) for almost every x ∈ [0, 1/2]. Then the
sequence (f(ξn))n∈Z is a stationary martingale difference sequence, so that
σ2(f) = λ(f 2). If moreover, for some p ∈ [4,∞],

λ(|f |p) < ∞, and

∫ 1

0

1

t
wp/(p−3)(f, t) dt < ∞ ,

then (5.11) holds.

(d) Assume that f = f1 − f2, where f1 and f2 are nondecreasing functions.
Assume moreover that

∫ 1

0

(
log(t− t2)

)2|f1(t)|3dt < ∞ and

∫ 1

0

(
log(t− t2)

)2|f2(t)|3dt < ∞ .

If σ > 0, then (5.11) holds.

Remark 5.1. If f belongs to L3(λ), Ibragimov (1967) obtained the Berry-Esseen
type estimate

sup
x∈R

|P(Sn(f) ≤ x
√

nσ)− P(Y ≤ x)| ≤ C
( log n

n

)1/2

, (5.12)

under the condition w3(f, t) ≤ Ctα for some α > 0. This condition is slightly
stronger than our condition (5.9) with p = 3. Applying Theorem 9 in Jan (2001),
one can obtain the bound Cn−1/2 in (5.12) as soon as

f ∈ L∞(λ), and

∫ 1

0

| log t|
t

w∞(f, t) dt < ∞ ,

where w∞(f, t) is the modulus of continuity of f .
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Remark 5.2. If f ∈ L∞(λ) and if K(f) = 0 almost everywhere, then (5.11) holds
under the criterion (5.8) applied to p = ∞.

Remark 5.3. Starting from the Hausdorff-Young inequality (cf. Hardy et al.
(1952), p. 202), Ibragimov proved that (5.8) holds for p = 2 as soon as the Fourier
coefficients of f satisfy |f̂(n)| ≤ Mn−1/2(log(n))−3/2−ε for some positive M and
ε. Using the same arguments, one can prove that (5.9) holds for p = 3 as soon
as |f̂(n)| ≤ Mn−2/3(log(n))−8/3−ε, and that (5.10) holds for p = 4 as soon as
|f̂(n)| ≤ Mn−3/4(log(n))−11/4−ε.

Proof of Theorem 5.1. Point (a) follows from Theorem 2.2 and point (b) follows
from Theorem 3.1(a). The proofs being similar, we shall only prove point (b). Let
us just see how to control the coefficient θ1,4(l), the other one being easier to handle.
The sequence (ξi)i∈Z being a stationary Markov chain with invariant distribution
λ and transition kernel K, the coefficient θ1,4(l) is equal to

sup
k≥l,i≥0,j≥0

∫ 1

0

∣∣∣f(x)
(
Kk(fKi(fKj(f)))(x)−

∫ 1

0

(fK i(fKj(f)))(x)dx
)∣∣∣dx

From Theorem 1 in Fominykh (1986), we infer that, for any h in Lq([0, 1], λ),

∥∥∥
∫
|Kk(h)(x)− λ(h)|qdx

∥∥∥
q,λ
≤ 2wq(h, 2−k) .

Hence, applying Hölder’s inequality, we obtain that

θ1,4(l) ≤ sup
i≥0,j≥0

2‖f‖p,λwp/(p−1)(fK i(fKj(f)), 2−l)

We now use the elementary facts that, for p ≥ q and r ≥ q,

wq(fg, t) ≤ ‖f‖p,λwpq/(p−q)(g, t) + ‖g‖r,λwrq/(r−q)(f, t) ,

and that wq(K(f), t) ≤ wq(f, t). It follows that

θ1,4(l) ≤ sup
j≥0

2‖f‖2
p,λ(wp/(p−2)(fKj(f), 2−l) + ‖f‖p,λwp/(p−3)(f, 2−l))

≤ 6‖f‖3
p,λwp/(p−3)(f, 2−l) .

Hence, if f belongs to Lp([0, 1], λ) for some p ≥ 4,
∑

l>0 pθ1,4(l) is finite as soon as∑
l>0 l wp/(p−3)(f, 2−l) is finite, which is equivalent to the condition of (b).
To prove (c), note that, if f(x + (1/2)) = −f(x) for almost every x ∈ [0, 1/2],

then (f(ξi))i∈Z is a sequence of martingale differences, so that Theorem 3.2(a)
applies. To conclude, use the control of θi,j(l) given above.

It remains to prove (d). Let BVa be the space of left continuous bounded
variation functions f on [0, 1] such that ‖df‖v ≤ a (here ‖.‖v is the variation
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norm). Let f (0) = f − λ(f) and M0 = σ(Yi, i ≤ 0). Arguing as in Lemma 1 of
Dedecker and Prieur (2005), one can see that, for any il > · · · > i1 > n,

α(M0, (ξi1 , . . . , ξil)) = sup
f1,...,fl∈BV1

∥∥∥E
( l∏

j=1

f
(0)
j (ξij)

∣∣∣M0

)
− E

( l∏
j=1

f
(0)
j (ξij)

)∥∥∥
1
.

Since K maps BV1 to BV1/2, we infer that f (0) · (K i(g))(0) belongs to BV1 for any
i > 0 and any f, g in BV1. It follows that, for any il > · · · > i1 ≥ n,

α(M0, (ξi1 , . . . , ξil)) ≤ α(M0, ξi1) ≤ 2−n ,

so that α3,ξ(n) ≤ 2−n. Applying Theorem 3.1(a), d1(Sn(f),
√

nσY ) ≤ C as soon
as ∫ 1

0

(log t)2Q3
|f1|(t)dt < ∞ and

∫ 1

0

(log t)2Q3
|f2|(t)dt < ∞ ,

where Qf is the generalized inverse of t → λ(f > t). Let f+ = f ∨ 0 and
f− = −(f ∧ 0). By Lemma 2.1 in Rio (2000),

∫ 1

0

(log t)2Q3
|f1|(t)dt ≤

∫ 1

0

(log t)2Q3
f+
1
(t)dt +

∫ 1

0

(log t)2Q3
f−1

(t)dt

Clearly Qf+
1
(t) = f+

1 (1 − t) almost everywhere and Qf−1 (t) = f−1 (t) almost every-
where. Of course the same is true with f2 and the result follows. ¤

5.3 Symmetric random walk on the circle

Let K be the Markov kernel defined by Kf(x) = (f(x + a) + f(x − a))/2 on
T = R/Z, with a irrational in [0, 1]. The Lebesgue-Haar measure m is invariant
under K. Furthermore K is a symmetric operator on L2(m), and consequently the
Kipnis-Varadhan or the Gordin-Lifshitz central limit theorems apply. Let (ξi)i∈Z
be the stationary Markov chain with transition kernel K. For f in L2(m) with
m(f) = 0, set

Sn(f) = f(ξ1) + f(ξ2) + · · ·+ f(ξn). (5.13)

Then the central limit theorem holds for n−1/2Sn(f) as soon as the series of co-
variances

σ2 =

∫

T

f 2dm + 2
∑
n>0

∫

T

fKnf dm (5.14)

is convergent and the limiting distribution is N (0, σ2). (cf. Derriennic and Lin,
2001, section 2). Our aim in this section is to give conditions on f and on the
properties of the irrational number a ensuring optimal rates of convergence in the
central limit theorem.

Definition 5.1. a is said to be badly approximable by rationals if for any positive
ε, the inequality d(ka,Z) < |k|−1−ε has only finitely many solutions for k ∈ Z.
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From Roth’s theorem the algebraic numbers are badly approximable (cf. Schmidt
(1980)). Note also that the set of badly approximable numbers in [0, 1] has
Lebesgue measure 1. We will now give results for the symmetric random walk
on the circle in the case of badly approximable numbers a.

Theorem 5.2. Suppose that a is badly approximable by rationals. Let f be a
function in L2(m) with m(f) = 0 and m(f 2) > 0.

(a) If the Fourier coefficients f̂(k) of f satisfy supk 6=0 |k|1+ε|f̂(k)| < ∞ for

some positive ε, then n−1/2Sn(f) converges in distribution to a nondegen-
erate Gaussian distribution N (0, σ2).

(b) If the Fourier coefficients f̂(k) of f satisfy supk 6=0 |k|4+ε|f̂(k)| < ∞ for some
positive ε, then

sup
x∈R

|P(Sn ≤ xσ
√

n)− P(Y ≤ x)| = O(n−1/2), (5.15)

and
d1(n

−1/2Sn, σ Y ) = O(n−1/2). (5.16)

Remark 5.4. The assumption f̂(k) = O(|k|−1−ε) in Theorem 5.2(a) implies that
f is ε-Hölderian, and therefore uniformly continuous. Conversely, if f is C1+ε then
f satisfies (a). In the same way the condition f̂(k) = O(|k|−4−ε) in (b) implies
that f is C3+ε and conversely any C4+ε function f satisfies (b).

Proof of Theorem 5.2. Since
∫

T

fKnf dm =
∑

k∈Z∗
cosn(2πka)|f̂(k)|2,

the series in (5.14) is convergent if
∑

k∈Z∗ cot2(πka)|f̂(k)|2 < ∞. In that case

σ2 =
∑

k∈Z∗
cot2(πka)|f̂(k)|2.

Since cot2(πka) > 0 for any k in Z∗, it ensures that σ2 > 0.

When {ka} = d(ka,Z) tends to 0, cot2(πka) ∼ π−2{ka}−2, so that the conver-
gence of the series in (5.14) is equivalent to

∑

k∈Z∗
{ka}−2|f̂(k)|2 < ∞, (5.17)

as shown in Derriennic and Lin (2001).

In order to complete the proof of Theorem 5.2(a), we will need the elementary
fact below.
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Lemma 5.1. Let a be a badly approximable irrational number. Then, for any
positive η, there exists some positive constant C such that, for any nonnegative
integer N and any p ≥ 2,

2N+1−1∑

k=2N

{ka}−p ≤ 2Cp2p(N+2)(1+η).

Proof of Lemma 5.1. Let k and l be integers in IN = [2N , 2N+1[ with k 6= l.
From the equality |{ka} − {la}| = min({(l − k)a}, {(l + k)a}) and Definition 5.1,
we get that

|{ka} − {la}| ≥ C−1|k − l|−1−η ≥ C−12−(N+2)(1+η)

for some positive constant C. Now, denoting by xN
1 , . . . , xN

2N the order statistic of
({ka})k∈IN

,

xN
m ≥ xN

1 + (m− 1)C−12−N(2+η) ≥ mC−12−(2+N)(1+η).

Hence
2N+1−1∑

k=2N

{ka}−p =
2N∑

m=1

(xN
m)−p ≤ Cp2p(N+2)(1+η)

2N∑
m=1

m−p,

which implies Lemma 5.1. ¤
Now, applying Lemma 5.1 with p = 2 and η = ε/2, we get that

∑

k∈IN

{ka}−2(|f̂(k)|2 + |f̂(−k)|2) ≤ 4C22N(2+ε) max
k∈IN

|f̂(k)|2 ≤ C ′2−Nε

under the assumptions of Theorem 5.2(a), which implies the convergence of the
series in (5.17). Therefore Theorem 5.2(a) holds.

We now prove Theorem 5.2(b). (5.15) is a byproduct of Jan’s Theorem 9 (Jan
(2001), page 61 or Le Borgne and Pène (2005), Theorem 1) and (5.16) is a corollary
of our estimates of the minimal L1-distance. The main tool is Lemma 5.2 below.

Notation 5.1. For s > 0, let Fs be the class of 1-periodic functions g such that
ĝ(0) = 0 and |ĝ(k)| ≤ |k|−s for any k in Z∗.

Lemma 5.2. Let a be a badly approximable irrational number. Then, for any ε
in ]0, 1] ∑

n>0

n sup
g∈F4+4ε

‖Kng‖∞ < ∞.

Proof of Lemma 5.2. For g in L2(m) with m(g) = 0,

Kng(x) =
∑

k∈Z∗
cosn(2πka)ĝ(k) exp(2iπkx).
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Therefore
sup

g∈F4+4ε

‖Kng‖∞ ≤
∑

k∈Z∗
| cosn(2πka)| |k|−4(1+ε),

which ensures that
∑
n>0

n sup
g∈F4+4ε

‖Kng‖∞ ≤
∑

k∈Z∗
(1− | cos(2πka)|)−2|k|−4(1+ε)

≤
∑

k∈Z∗
(|k|1+ε{2ka})−4.

Next, applying Lemma 5.1 with η = ε/2 and p = 4, we get that

∑

k∈Z∗
(|k|1+ε{2ka})−4 ≤ 4C4

∑
N≥0

2(4+2ε)(N+2) max
k∈IN

k−4(1+ε) < ∞ ,

which implies Lemma 5.2. ¤
We now complete the proof of Theorem 5.2(b). Set Xp = f(ξp). In view of the

Berry-Esseen type Theorem 9 in Jan (2001) and Theorem 3.1 we have to bound
up the coefficients

ψn = sup{‖E0(Xp1 . . . Xpj
)− E(Xp1 . . . Xpj

)‖∞ : j ≤ 3, n ≤ p1 ≤ . . . ≤ pj}

in such a way that
∑

n nψn < ∞.
We proceed as in Jan (2001). Set p0 = n. Then (in the case j = 3)

E0(Xp1 . . . Xpj
) = E0(Ep0(Xp1(Ep1(Xp2Ep2(Xp3)))).

Hence, setting qi = pi − pi−1, we get E0(Xp1 . . . Xpj
) = Kn(Kq1(fKq2(fKq3f))).

Starting from this equality, we now prove that, for s > 1 there exists some constant
Cs (depending only on s) such that, for any f ∈ Fs,

ψn ≤ Cs sup
g∈Fs

‖Kng‖∞. (5.18)

To prove (5.18) one can prove that, for f in Fs and g = Kq1(fKq2(f . . .Kqjf) . . .),

|ĝ(k)| ≤ Cs|k|−s for any k ∈ Z∗, (5.19)

any j ≤ 3 and all natural integers q1, . . . , qj. This is derived from Lemma 5.3
below.

Lemma 5.3. Let s > 1. For any g in Fs and any natural p, Kp g lies in Fs. For
any g and h in Fs and any k 6= 0, |ĝh(k)| ≤ (s− 1)−122s+1|k|−s.

The proof of Lemma 5.3, being elementary, is omitted. Now, from (5.18) and
Lemma 5.2,

∑
n nψn < ∞ under the assumptions of Theorem 5.2(b). Since the

function f is uniformly bounded, it implies (5.15) via Theorem 9 in Jan (2001)
and (5.16) via Theorem 3.1. ¤

38



6 Appendix

In this section, we give an upper bound for the expectation of the product of k
centered random variables Πk

i=1(Xi−E(Xi)). This upper bound is given in term of
a dependence coefficients α(X1, . . . Xk), which is a generalization of the coefficient
introduced in Rio (2000), equation (1.8a), for k = 2 (note that, for k = 2, our
definition differs from that of Rio from a factor 2).

Proposition 6.1. Let X = (X1, · · · , Xk) be a random variable with values in Rk

and define the number

α = α(X1, . . . , Xk) = sup
(x1,...,xk)∈Rk

∣∣∣E
( k∏

i=1

1IXi>xi
− P(Xi > xi)

)∣∣∣ (6.1)

Let Fi be the distribution function of Xi, let F−1
i be the generalized inverse of Fi

and let Di(u) = (F−1
i (1− u)− F−1

i (u))+. We have the inequality

∣∣∣E
( k∏

i=1

Xi − E(Xi)
)∣∣∣ ≤ 2

∫ α/2

0

( k∏
i=1

Di(u)
)
du . (6.2)

In particular, if X1 is M-measurable, we have α ≤ α(M, (X2, . . . , Xk)). Hence

∣∣∣E
( k∏

i=1

Xi − E(Xi)
)∣∣∣ ≤ 2

∫ α(M,(X2,...,Xk))/2

0

( k∏
i=1

Di(u)
)
du . (6.3)

Proof of Proposition 6.1. We have that

E
( k∏

i=1

Xi − E(Xi)
)

=

∫
E

( k∏
i=1

1IXi>xi
− P(Xi > xi)

)
dx1 . . . dxk . (6.4)

Now A = |E(Πk
i=1(1IXi>xi

−P(Xi > xi)))| is such that A ≤ α, and for any 1 ≤ i ≤ k,

A ≤ 2P(Xi > xi)P(Xi ≤ xi) ∧ α ≤ 2{P(Xi > xi) ∧ P(Xi ≤ xi) ∧ α/2} . (6.5)

Consequently, we obtain from (6.4) and (6.5) that

∣∣∣E
( k∏

i=1

Xi − E(Xi)
)∣∣∣ ≤ 2

∫ α/2

0

( k∏
i=1

∫
1Iu<P(Xi>xi)1Iu≤P(Xi≤xi)dxi

)
du

≤ 2

∫ α/2

0

( k∏
i=1

∫
1IF−1

i (u)≤xi<F−1
i (1−u)dxi

)
du

and (6.2) follows. ¤

Lemma 6.1. Let X+ = X ∧ 0 and X− = −(X ∨ 0). For almost every u < 1/2,
we have the inequalities 0 ≤ DX(u) ≤ QX+(u)+QX−(u) ≤ 2Q|X|(u). Furthermore
the second inequality is an equality if 0 is a median for X.
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Proof of Lemma 6.1. First, we have F−1
X (1− u) = QX(u) ≤ QX+(u). Next, by

definition of F−1
X , we have −F−1

X (u) = sup{x : P(−X ≥ x) ≥ u}. By definition
Q−X(u) = inf{x : P(−X > x) ≥ u}, so that −F−1

X (u) = Q−X(u) for every
continuity point u of Q−X and hence almost everywhere. To obtain the desired
inequality, note that Q−X(u) ≤ QX−(u).

Corollary 6.1. Let X = (X1, · · · , Xk) be a random variable with values in Rk

and let α be defined by (6.1). Let (fi)1≤i≤k be k functions from R to R, such

that fi = f
(1)
i − f

(2)
i where f

(1)
i and f

(2)
i are nondecreasing. For 1 ≤ i ≤ k and

j ∈ {1, 2}, let Q
(j)
i = Q|f (j)

i (Xi)|. We have the inequality

∣∣∣E
( k∏

i=1

fi(Xi)− E(fi(Xi))
)∣∣∣ ≤ 2k+1

2∑
j1=1

· · ·
2∑

jk=1

∫ α/2

0

Q
(j1)
1 (u) · · ·Q(jk)

k (u)du .

In particular, if X1 is M-measurable,

∣∣∣E
( k∏

i=1

fi(Xi)− E(fi(Xi))
)∣∣∣ ≤

2k+1

2∑
j2=1

· · ·
2∑

jk=1

∫ α(M,(X2,...,Xk))/2

0

Q|f1(X1)|(u)
( k∏

i=2

Q
(ji)
i (u)

)
du .

Proof of Corollary 6.1. Clearly

∣∣∣E
( k∏

i=1

fi(Xi)−E(fi(Xi))
)∣∣∣ ≤

2∑
j1=1

· · ·
2∑

jk=1

∣∣∣E
( k∏

i=1

f
(ji)
i (Xi)−E(f

(ji)
i (Xi))

)∣∣∣ (6.6)

Since f
(ji)
i is nondecreasing, α(f

(j1)
1 (X1), . . . , f

(jk)
k (Xk)) ≤ α(X1, . . . , Xk). To ob-

tain the result, apply (6.2) and Lemma 6.1 to each term of the sum in (6.6).
¤
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de Rennes 1. (2001).

[19] Le Borgne S. and Pène F., Vitesse dans le théorème limite central pour certains
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