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Abstract

Considering the centered empirical distribution function Fn − F as a variable in Lp(µ), we derive non

asymptotic upper bounds for the deviation of the Lp(µ)-norms of Fn − F as well as central limit theorems

for the empirical process indexed by the elements of generalized Sobolev balls. These results are valid for a

large class of dependent sequences, including non-mixing processes and some dynamical systems.
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1 Introduction

Let (Xi)1≤i≤n be equidistributed real-valued random variables with common distribution function F . Let Fn

be the empirical distribution function Fn(t) = n−1
∑n

i=1 1IXi≤t . Let 1 ≤ p < ∞ and µ be a σ-finite measure on
R. Suppose that F satisfies ∫

R−
(F (t))pµ(dt) +

∫

R+

(1− F (t))pµ(dt) < ∞ . (1.1)

Under this assumption, the process {t → Fn(t)− F (t), t ∈ R} may be viewed as a random variable with values
in the space Lp(µ). Let ‖.‖p,µ be the Lp-norm with respect to µ, and define

Dp,n(µ) =
(∫

|Fn(t)− F (t)|pµ(dt)
)1/p

= ‖Fn − F‖p,µ .

When p = 2 and µ = dF , D2
2,n(µ) is known as the Cramér-von Mises statistics, and is commonly used for testing

goodness of fit. When p = 1 and λ is the Lebesgue measure on the real line, then D1,n(λ) is the L1(λ)-minimal
distance between Fn and F , denoted in what follows by K(Fn, F ).

It is interesting to write Dp,n(µ) as the supremum of the empirical process over a particular class of functions.
The proof of the following lemma is given in the appendix.

Lemma 1. Let F and G be two distributions functions satisfying (1.1). If p′ is the conjugate exponent of p, let
Wp′,1(µ) be the set of functions

{
f : f(t) = f(0) +

(∫

[0,t[

f ′(x)µ(dx)
)
1It>0 −

(∫

[t,0[

f ′(x)µ(dx)
)
1It≤0, ‖f ′‖p′,µ ≤ 1

}
.
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For any f in Wp′,1(µ), we have
∫

fdF −
∫

fdG = µ(f ′(F −G)) so that ‖F −G‖p,µ = sup
f∈Wp′,1(µ)

∣∣∣∣
∫

fdF −
∫

fdG

∣∣∣∣ .

According to Lemma 1, since Dp,n(µ) = ‖Fn − F‖p,µ, we have that

Dp,n(µ) = sup
f∈Wp′,1(µ)

∣∣∣∣∣
1
n

n∑

i=1

f(Xi)− E(f(Xi))

∣∣∣∣∣ .

If λI is the Lebesgue measure on the interval I ⊂ R, Wp′,1(λI) is the space of absolutely continuous functions
f such that λI(|f ′|p′) ≤ 1 (hence it contains the unit ball of the Sobolev space of order 1 with respect to Lp′(λI)).
Let us now recall what is known about the entropy properties of the class: W 0

p′,1(λI) = {f−f(0), f ∈ Wp′,1(λI)}.
If I is compact and if 1 < p′ ≤ ∞ (or equivalently 1 ≤ p < ∞), then, according to Corollary 1 in Birgé and
Massart (2000), the space W 0

p′,1(λI) is compact with respect to the L∞-norm with ε-entropy of order ε−1. Of
course this is no longer true if I is not compact, and as far as we know, the entropy properties of these classes
have not been studied. However, arguing as in van der Vaart (1994), one can prove that the ε-Lr(P ) bracketing
entropy with respect to a probability P is of order ε−1 provided

∑
n∈Z(|n|rP ([n, n + 1]))1/(1+r) < ∞. To our

knowledge, no entropy bounds are available for the class W 0
p′,1(µ) when µ is not the Lebesgue measure on some

interval.
These entropy bounds can be used to prove uniform central limit theorems and maximal inequalities for

the empirical process indexed by elements of W 0
p′,1(λI) in the iid case (see again van der Vaart (1994), Section

4). Some of these results can be extended to the dependent context, but the general results based on entropy
methods are only available in a mixing context (see Remark 6 below). Our aim in this paper is to show that we
can obtain asymptotic and non-asymptotic results for the empirical process indexed by elements of Wp′,1(µ),
for some dependence coefficients which are perfectly adapted to the class Wp′,1(µ).

In Section 2, we give a nonasymptotic upper bound for the deviation of Dp,n(µ) when 2 ≤ p < ∞. In
Section 3 we study the weak convergence of

√
n(Fn − F ) in the spaces Lp(µ) when 2 ≤ p < ∞, which in

turn is equivalent to the weak convergence of the normalized empirical process indexed by elements of the class
Wp′,1(µ) (see Lemmas 2 and 3). In both cases, the conditions are expressed in terms of some natural dependence
coefficients, which can be viewed as mixing coefficients restricted to the class Wp′,1(µ) (see Definition 1 below).
In Section 4, we compare these coefficients to other well known measures of dependence, and we show how they
can be computed for two large classes of examples, including many non-mixing processes. In Section 5, we apply
our results to the case of iterates of expanding maps of the unit interval, and to the simple example of linear
processes.

2 Exponential bounds

We first define the dependence coefficients which naturally appear in this context.

Definition 1. Let (Ω,A,P) be a probability space, let X be a real-valued random variable and let M be a
σ-algebra of A. Let ‖.‖p be the the Lp-norm with respect to P. Denote by PX the distribution of X and by
PX|M a regular distribution of X given M. Let FX(t) = PX(] −∞, t]) and FX|M(t) = PX|M(] −∞, t]). For
1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, define the coefficient

τµ,p,q(M, X) =
∥∥∥
(∫

|FX|M(t)− FX(t)|pµ(dt)
)1/p∥∥∥

q
=

∥∥ ‖FX|M − FX‖p,µ

∥∥
q
.
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From Lemma 1, we see that an equivalent definition is

τµ,p,q(M, X) =

∥∥∥∥∥ sup
f∈Wp′,1(µ)

∣∣∣
∫

fdFX|M −
∫

fdFX

∣∣∣
∥∥∥∥∥

q

.

Theorem 1. Let (Ω,A,P) be a probability space, and (Xi)1≤i≤n be equidistributed real-valued random variables
with common distribution function F . Let M0 = {∅, Ω} and let (Mk)1≤k≤n be an increasing sequence of σ-
algebra such that σ(Xi, 1 ≤ i ≤ k) ⊆ Mk. For any 2 ≤ p < ∞, any finite measure µ and any positive x, we
have the upper bound

P
(√

nDp,n(µ) ≥ x
) ≤ 2 exp


− nx2

2(p− 1)
∑n

i=1

( ∑n
k=i

∥∥ ‖FXk|Mi
− FXk|Mi−1‖p,µ

∥∥
∞

)2


 . (2.1)

In particular, if

C(p, n, µ) =
n∑

i=1

(
n∑

k=i

(
τµ,p,∞(Mi, Xk) + τµ,p,∞(Mi−1, Xk)

))2

,

we have the upper bound

P
(√

nDp,n(µ) ≥ x
) ≤ 2 exp

(
− nx2

2(p− 1)C(p, n, µ)

)
. (2.2)

Remark 1. Let τµ,p,q(i) = max1≤k≤n−i τµ,p,q(Mk, Xk+i) and Zi = {t → 1IXi≤t − F (t)}. Since

C(p, n, µ) ≤
n∑

i=1

(∥∥‖Z1‖p,µ

∥∥
∞ +

n−i∑

k=1

τµ,p,∞(k) +
(n−i+1∑

k=1

τµ,p,∞(k)
)
1Ii>1

)2

≤ n
(∥∥‖Z1‖p,µ

∥∥
∞ + 2

n−1∑

k=1

τµ,p,∞(k)
)2

,

we obtain from (2.2) that

P
(√

nDp,n(µ) ≥ x
) ≤ 2 exp

(
− x2

2(p− 1)
(∥∥‖Z1‖p,µ

∥∥
∞ + 2

∑n−1
k=1τµ,p,∞(k)

)2

)
. (2.3)

Proof of Theorem 1. Let Zi be as in Remark 1 and Sn =
∑n

i=1 Zi. Clearly, we get that

√
nDp,n(µ) =

‖Sn‖p,µ√
n

. (2.4)

We apply the method of martingale differences, as done in Yurinskii (1974). Since E(Sn|M0) = E(Sn) = 0,
we have that Sn =

∑n
i=1(E(Sn|Mi) − E(Sn|Mi−1)). For all 1 ≤ i ≤ n, let di,n = E(Sn|Mi) − E(Sn|Mi−1).

Clearly di,n is an Mi-measurable random variable with values in Lp(µ) such that E(di,n|Mi−1) = 0 almost
surely. From (2.4) and Theorem 3 in Pinelis (1992), we infer that for any positive real x,

P(
√

nDp,n(µ) ≥ x) ≤ 2 exp
(
− nx2

2(p− 1) b2
n

)
, where b2

n =
n∑

i=1

∥∥‖di,n‖p,µ

∥∥2

∞ . (2.5)

The inequality (2.1) follows by noting that

di,n =
n∑

k=i

FXk|Mi
− FXk|Mi−1 . (2.6)

The inequality (2.2) follows from (2.1) by noting that
∥∥‖FXk|Mi

− FXk|Mi−1‖p,µ

∥∥
∞ ≤ τµ,p,∞(Mi, Xk) + τµ,p,∞(Mi−1, Xk) . ¤
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Remark 2. The bounds of Theorem 1 are valid for 2 ≤ p < ∞. If p belongs to [1, 2[, the space Lp(µ) is no
longer smooth, so that the method of martingale differences in Banach spaces does not work. Hence a reasonable
question is: does (2.2) still holds (with possibly different constants) if p belongs to [1, 2[? This would give a
bound in terms of the coefficients τµ,1,∞ which are the weakest among the coefficients τµ,p,∞.

Of course, since Dp,n(µ) ≤ D2,n(µ) for any probability µ and any 1 ≤ p ≤ 2, Theorem 1 provides an
upper bound for the deviation of Dp,n(µ) in terms of the coefficient τµ,2,∞ (and hence in terms of τµ,1,∞ since
τµ,2,∞(M, X) ≤ (τµ,1,∞(M, X))1/2). If the X ′

i s are in [0, 1] and λ1 is the Lebesgue measure on [0, 1], we obtain
a bound for the deviation of the Kantorovitch distance K(Fn, F ) = ‖Fn − F‖1,λ1 : for any positive x,

P
(√

nK(Fn, F ) ≥ x
) ≤ P(√

nD2,n(λ1) ≥ x
) ≤ 2 exp

(
− nx2

2C(2, n, λ1)

)
. (2.7)

From Remark 1, we also have, for a sequence (Xi)i≥1 of variables with values in [0, 1],

P
(√

nK(Fn, F ) ≥ x
) ≤ P(√

nD2,n(λ1) ≥ x
) ≤ 2 exp

(
− x2

2
(∥∥‖Z1‖2,λ1

∥∥
∞ + 2

∑n−1
k=1τλ1,2,∞(k)

)2

)
. (2.8)

Remark 3. If µ = δt, we are looking for the deviation of
√

n|Fn(t) − F (t)|. Starting from (2.6), we see that
di,n(t) belongs to the interval [Ai, Bi], where Ai and Bi are the Mi−1-measurable random variables

Ai = −F (t)−
n∑

k=i+1

‖E(Zk(t)|Mi)‖∞ −
n∑

k=i

E(Zk(t)|Mi−1)

Bi = (1− F (t)) +
n∑

k=i+1

‖E(Zk(t)|Mi)‖∞ −
n∑

k=i

E(Zk(t)|Mi−1).

The sum of the lengths (Bi−Ai)2 is then L(t, n) =
∑n

i=1(1 + 2
∑n

k=i+1 ‖E(Zk(t)|Mi)‖∞)2. Applying Azuma’s
inequality (1967), we obtain

P(
√

n|Fn(t)− F (t)| > x) ≤ 2 exp
(
− 2nx2

L(t, n)

)
. (2.9)

Note that, for µ = δt, ‖E(Zk(t)|Mi)‖∞ = τµ,p,∞(Mi, Xk), for any 1 ≤ p ≤ ∞. For this choice of µ, the bound
(2.9) is much more precise than (2.2). In view of (2.9) one can wonder if (2.2) holds for any probability µ with

L(p, n, µ) =
n∑

i=1

(
1 + 2

n∑

k=i+1

τµ,p,∞(Xk,Mi)
)2

instead of 4(p− 1)C(p, n, µ). We have no idea of how to prove such a bound. It is probably delicate, for if it is
true then P(

√
nDp,n(dF ) ≥ x) ≤ 2 exp(−2x2) for iid variables. If this bound holds for any 2 ≤ p < ∞, then it

must hold for p = ∞, which is Massart’s bound (1990) for the deviation of Kolmogorov-Smirnov statistics.

3 Empirical process indexed in Sobolev balls

Let (Ω,A,P) be a probability space and T : Ω 7→ Ω be a bijective bimeasurable transformation preserving the
probability P. An element A of A is said to be invariant if T (A) = A. We denote by I the σ-algebra of all
invariant sets.

Let M0 be a σ-algebra of A satisfying M0 ⊆ T−1(M0) and define the nondecreasing filtration (Mi)i∈Z by
Mi = T−i(M0). Let X0 be an M0-measurable real-valued random variable and define the sequence (Xi)i∈Z
by Xi = X0 ◦ T i. Define the coefficient τµ,p,q(i) of the sequence (Xi)i∈Z by

τµ,p,q(i) = τµ,p,q(M0, Xi) .
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Let F be the distribution function of X0 and Fn be the empirical distribution function. Let Gn be the
centered and normalized empirical measure Gn =

√
n(dFn − dF ) , and F be a class of measurable functions

from R to R. The space `∞(F) is the space of all functions z from F to R such that ‖z‖F = supf∈F |z(f)| is
finite.

Let 1 ≤ p < ∞, let p′ be the conjugate exponent of p, and let µ be any σ-finite measure such that (1.1)
holds. We shall see that the convergence in distribution of Gn indexed by the elements of Wp′,1(µ) is equivalent
to the convergence in distribution of

√
n(Fn − F ) in Lp(µ). We first define an appropriate isometry between

Lp(µ) and a subspace of `∞(Wp′,1(µ)).

Lemma 2. Given f in Wp′,1(µ), let f ′ be as in Lemma 1. Let h : Lp(µ) 7→ `∞(Wp′,1(µ)) be such that
h(g) = {µ(f ′g), f ∈ Wp′,1(µ)}. The function h is an isometry from Lp(µ) to h(Wp′,1(µ)) = Gp′(µ). In
particular, Gp′(µ) is a separable Banach space.

Proof of Lemma 2. By duality ‖h(g1)− h(g2)‖Wp′,1(µ) = ‖g1 − g2‖p,µ. ¤

Now, by Lemma 1, {Gn(f), f ∈ Wp′,1(µ)} = h(
√

n(Fn − F )). Consequently, under (1.1), the empirical process
Gn indexed by the elements of Wp′,1(µ) is a random variable with values in Gp′(µ). In addition, if γ : Gp′(µ) 7→ R
is continuous, then γ ◦ h : Lp(µ) 7→ R is also continuous. It follows immediately that

Lemma 3. If (1.1) holds, then the sequence {Gn(f), f ∈ Wp′,1(µ)} converges in distribution in the space Gp′(µ)
if and only if the sequence

√
n(Fn − F ) converges in distribution in the space Lp(µ).

Consequently, central limit theorems for the empirical process indexed by the elements of Wp′,1(µ) can be
deduced from central limit theorems for Banach-valued random variables. This approach leads to Theorem 2
below.

Theorem 2. Define the function Fµ by: Fµ(x) = µ([0, x[) if x ≥ 0 and Fµ(x) = −µ([x, 0[) if x ≤ 0. Define
also the nonnegative random variable Yp,µ = |Fµ(X0)|1/p and assume that ‖Yp,µ‖2 < ∞. Consider the three
conditions

1. p belongs to [2,∞[, and
∑

k>0

τµ,p,2(k) < ∞.

2. p = 2, µ(R) < ∞, and
∑

k>0

τµ,2,1(k) < ∞.

3. p = 2, FX0|M−∞ = F , and
∑

k>0

∥∥‖FXk|M0 − FXk|M−1‖2,µ

∥∥
2

< ∞.

If one of these conditions holds, then the sequence {Gn(f), f ∈ Wp′,1(µ)} converges in distribution in the space
Gp′(µ) to a random variable whose conditional distribution with respect to I is that of a zero-mean Gaussian
process with covariance function

Γ(f, g) =
∑

k∈Z
Cov(f(X0), g(Xk)|I) .

Remark 4. For p = 2, 1 implies 3. Note also that, if µ(R) < ∞, then Yp,µ is bounded by µ(R)1/p.

Remark 5. According to Remark 6 in Dedecker and Merlevède (2003), by noting that ‖ ‖E(Zk|M0)‖2,µ‖2 =
τµ,2,2(k) with Zk defined in Remark 1, the condition 3 is realized if there exists a sequence (Lk)k>0 of positive
numbers such that

∑

i>0

( i∑

k=1

Lk

)−1

< ∞ and
∑

k>0

Lkτ2
µ,2,2(k) < ∞ . (3.1)

In particular, (3.1) (hence 3) holds if ∑

k>0

τµ,2,2(k)√
k

< ∞ . (3.2)
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In addition, since τµ,2,2(k) ≤ (τµ,1,1(k))1/2, it follows that (3.2) holds as soon as

∑

k>0

√
τµ,1,1(k)√

k
< ∞ .

Proof of Theorem 2. We first prove that any of the conditions of Theorem 2 implies the weak convergence of√
n(Fn − F ) in B = Lp(µ). A random variable Z is in L2(B) if

∥∥‖Z‖p,µ

∥∥
2

< ∞. Let Zi = {t → 1IXi≤t − F (t)}.
Clearly,

‖Zi‖p,µ ≤
(∫

]−∞,0[

(1IXi≤t)pµ(dt) +
∫

[0,∞[

(1− 1IXi≤t)pµ(dt)
)1/p

+
(∫

]−∞,0[

(F (t))pµ(dt) +
∫

[0,∞[

(1− F (t))pµ(dt)
)1/p

,

so that ‖Zi‖p,µ ≤ |Fµ(Xi)|1/p + E(|Fµ(Xi)|1/p) and
∥∥‖Zi‖p,µ

∥∥
2
≤ 2‖Yp,µ‖2.

Case 1. From the non ergodic version of Woyczyński’s result (1975), we know that if M0 in L2(B) is such that
E(M0|M−1) = 0, then n−1/2(M0 ◦T + · · ·+M0 ◦Tn) converges in distribution to a random variable M . Now if

U0 = M0 + N0 −N0 ◦ T and Ui = U0 ◦ T i (3.3)

with N0 in L2(B), we easily infer that n−1/2(U1 + · · ·+ Un) also converges in distribution to M . Assume that∑
k>0 ‖ ‖E(Uk|M0)‖p,µ‖2 < ∞. From a well known decomposition of Gordin (1969), we have

U0 =
∞∑

i=0

E(Ui|M0)− E(Ui|M−1) +
∞∑

i=0

E(Ui|M−1)−
∞∑

i=1

E(Ui|M0) , (3.4)

provided U0 isM0-measurable. Hence, (3.3) holds with M0 =
∑∞

i=0 E(Ui|M0)−E(Ui|M−1) and the coboundary
N0 =

∑∞
i=0 E(Ui|M−1). Applying the preceding remarks to the random variable Ui = Zi, we infer that√

n(Fn−F ) = n−1/2(Z1 + · · ·+Zn) converges in distribution in B as soon as
∑

k≥0 ‖ ‖E(Zk|M0)‖p,µ‖2 is finite.
To conclude, note that ‖ ‖E(Zk|M0)‖p,µ‖2 = τµ,p,2(k).

Case 2. The fact that
√

n(Fn − F ) converges in distribution in B follows from Corollary 2(δ) in Dedecker and
Merlevède (2003), by noting that ‖Z0‖2,µ ≤ 2µ(R)1/2 and that ‖ ‖E(Zk|M0)‖2,µ‖1 = τµ,2,1(k).

Case 3. The fact that
√

n(Fn − F ) converges in distribution in B follows from Corollary 3 in Dedecker and
Merlevède (2003) (the condition FX0|M−∞ = F means that E(Z0|M−∞) = 0 a.s.).

The operator Γ. It remains to identify Γ. Let (fi)1≤i≤k be some functions of Wp′,1(µ) and (αi)1≤i≤k some
real numbers. We shall prove that Gn(α1f1 + · · · + αkfk) converges to a random variable whose conditional
distribution with respect to I is that of a Gaussian random variable with variance

∑n
i=1

∑n
j=1 αiαjΓ(fi, fj).

Let h = α1f1 + · · ·+ αkfk. In case 1, note that, by Lemma 1

‖E(h(Xk)|M0)− E(h(Xk))‖2 ≤
( n∑

i=1

|αi|
)
‖ ‖E(Zk|M0)‖p,µ‖2 (3.5)

and the result follows from Theorem 1 in Dedecker and Rio (2000).
In case 2, note that

‖(h(X0)− E(h(X0)))E(h(Xk)− E(h(Xk))|M0)‖1 ≤
( n∑

i=1

|αi|
)2

E(‖Z0‖2,µ‖E(Zk|M0)‖2,µ).
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Since ‖Z0‖2,µ ≤ 2µ(R)1/2 and ‖ ‖E(Zk|M0)‖2,µ‖1 = τµ,2,1(k), we infer that
∑

k≥1

‖(h(X0)− E(h(X0)))E(h(Xk)− E(h(Xk))|M0)‖1 < ∞ ,

and the result follows from Theorem 1 in Dedecker and Rio (2000).
In case 3, the result follows from (3.5) by applying Corollary 3 and Remark 6 in Dedecker and Merlevède

(2003) with H = R (see Remark 5 of the same paper for the expression of the covariance). ¤

4 Comparison of coefficients and examples

4.1 Some upper bounds

Let λ be the Lebesgue measure on R. The four coefficients

τ(M, X) = τλ,1,1(M, X) ϕ(M, X) = τλ,1,∞(M, X)

β(M, X) = τλ,∞,1(M, X) φ(M, X) = τλ,∞,∞(M, X)

have been introduced and studied in Dedecker and Prieur (2004) and (2005). The authors have shown that
these coefficents can be easily computed in many situations. The coefficients β(M, X) and φ(M, X) are weaker
than the usual β-mixing and φ-mixing coefficients, and they can be computed also for many non mixing models.
The following lemma shows how to compare τµ,p,q(M, X) with τ(M, X), ϕ(M, X), β(M, X) and φ(M, X).

Lemma 4. Let X be a real-valued random variable and M a σ-algebra of A.

1. For any p, q in [1,∞] and any finite measure µ, τµ,p,q(M, X) ≤ µ(R)1/pφ(M, X).

2. For any p, q in [1,∞] and any finite measure µ, τµ,p,q(M, X) ≤ µ(R)1/pβ(M, X)1/q.

3. If t → µ(]−∞, t]) is K-lipschitz, then for any p, q in [1,∞], τµ,p,q(M, X) ≤ (Kϕ(M, X))1/p.

4. If t → µ(]−∞, t]) is K-lipschitz, then for any p in [1,∞] and q ≤ p, τµ,p,q(M, X) ≤ (Kτ(M, X))1/p.

Remark 6. Let (Xi)i∈Z and M0 be as in Section 3, and let µ be some finite measure. From Lemma 4 and
Theorem 2, we infer that

√
n(Fn − F ) converges in distribution in Lp(µ) as soon as

1. p belongs to [2,∞[ and
∑

k>0 φ(M0, Xk) < ∞.

2. p belongs to [2,∞[ and
∑

k>0

√
β(M0, Xk) < ∞.

3. p = 2 and
∑

k>0 β(M0, Xk) < ∞.

4. p = 2 and
∑

k>0

φ(M0, Xk)√
k

< ∞.

Arguing as in Dedecker and Merlevède (2003, page 250), one can prove that

τµ,2,1(k) ≤ 18µ(R)α(M0, σ(Xk)) , (4.1)

where α(A,B) is the strong mixing coefficient of Rosenblatt between two σ-algebras A and B. Hence, we
obtain from the condition 2 of Theorem 2 that

√
n(Fn − F ) converges in distribution in L2(µ) as soon as∑

k>0 α(M0, σ(Xk)) < ∞. Note that, when µ = λ1 where λ1 is the Lebesgue measure on [0, 1], Oliveira and
Suquet (1995) obtained the same result under the slightly stronger condition

∑
k>0 α(M0, σ(Xi, i ≥ k)) < ∞

(this condition implies that the sequence (Xi)i∈Z is ergodic, so that the limiting process is Gaussian). In
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Oliveira and Suquet (1998), they proved the convergence of
√

n(Fn−F ) in Lp(λ1) for p > 2 under the condition
α(M0, σ(Xi, i ≥ k)) = O(n−p/2−ε) for some positive ε (in both papers, the authors also consider the case of
associated random variables). In this case, since τλ1,p,2(k) ≤ (τλ1,2,1(k))2/p, we infer from the condition 1 of
Theorem 2 and (4.1), that the convergence in Lp(λ1) for p > 2 holds as soon as

∑
k>0

(
α(M0, σ(Xk))

)2/p
< ∞

which improves on the condition obtained in Oliveira and Suquet. Of course, if µ = λ1, one can also apply the
result of Doukhan et al. (1995): since for 1 < p′ ≤ ∞ the ε-entropy of the class W 0

p′,1(λ1) with respect to the
L∞-norm is of order ε−1, it follows that

√
n(Fn − F ) converges in distribution in Lp(λ1) for any 1 ≤ p < ∞ as

soon as
∑

k>0 β(M0, σ(Xi, i ≥ k)) < ∞, where β(A,B) is the β-mixing coefficient of Rozanov and Volkonskii
between two σ-algebras A and B (recall that 2α(A,B) ≤ β(A,B)).

Proof of Lemma 4. Item 1 is clear. Item 2 follows from the inequality

∥∥‖FX|M − FX‖p,µ

∥∥
q
≤ µ(R)1/p

∥∥∥ sup
t∈R

|FX|M(t)− FX(t)|
∥∥∥

1/q

1
.

To prove the items 3 and 4, note that, if if t → µ(]−∞, t]) is K-lipschitz,

∥∥‖FX|M − FX‖p,µ

∥∥
q
≤

(
E

(( ∫
|FX|M(t)− FX(t)|pKdt

)q/p))1/q

.

For q = ∞, we obtain

∥∥‖FX|M − FX‖p,µ

∥∥
∞ ≤

(
K

∥∥∥
∫
|FX|M(t)− FX(t)|pdt

∥∥∥
∞

)1/p

≤ (Kϕ(M, X))1/p .

If q ≤ p, point 4 follows from Jensen’s inequality and Fubini:

∥∥‖FX|M − FX‖p,µ

∥∥
q
≤

( ∫
E(|FX|M(t)− FX(t)|p)Kdt

)1/p

≤
(
K

∫
‖FX|M(t)− FX(t)‖1dt

)1/p

. ¤

Before giving detailed examples, we state the following useful bounds for τµ,p,q(M, X)) when µ is a probability
measure and X has a continuous distribution function F .

Lemma 5. Let (Ω,A,P) be a probability space, X a real-valued random variable and M a σ-algebra of A.
Assume that X has a continuous distribution function F . If X∗ is a random variable distributed as X and
independent of M then, for any y ∈ [0, 1], any probability measure µ and any p, q in [1,∞], we have that

τµ,p,q(M, X) ≤ y + ‖E(1I|F (X)−F (X∗)|>y|M)‖q . (4.2)

In particular, taking y = ‖F (X)− F (X∗)‖∞ in the previous inequality, we obtain that

τµ,p,q(M, X)) ≤ ‖F (X)− F (X∗)‖∞ .

Now if w is the modulus of continuity of F , then , for any any x > 0 and any r < ∞ such that rq ∈ [1,∞],

τµ,p,q(M, X)) ≤ w(x) +
(‖X −X∗‖qr

x

)r

and τµ,p,q(M, X)) ≤ w(‖X −X∗‖∞) . (4.3)

In particular, if X has a density bounded by K, we have that

τµ,p,q(M, X)) ≤ C(r)(K‖X −X∗‖qr)r/(r+1) and τµ,p,q(M, X)) ≤ K‖X −X∗‖∞ , (4.4)

with C(r) = r1/(r+1) + r−r/(r+1) (note that C(r) ≤ 2 and C(∞) = 1).
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Proof of Lemma 5. Note first that, since µ is a probability measure,

τµ,p,q(M, X)) ≤
∥∥∥ sup

t∈R
|FX|M(t)− F (t)|

∥∥∥
q
.

Let Y = F (X) and Y ∗ = F (X∗). According to Lemma 3 in Dedecker and Prieur (2005), we have that

sup
t∈R

|FX|M(t)− F (t)| = sup
t∈R

|FY |M(t)− FY (t)| .

Since F is continuous, Y is uniformly distributed over [0, 1]. From inequality (3.3) in Dedecker and Prieur
(2005), we obtain for any y ∈ [0, 1],

|FY |M(t)− t| ≤ y + E(1I|Y−Y ∗|>y|M) ,

and (4.2) follows. Now, since |F (X)− F (X∗)| ≤ w(|X −X∗|) we obtain that

τµ,p,q(M, X)) ≤ w(x) + ‖E(1Iw(|F (X)−F (X∗)|)>w(x)|M)‖q ≤ w(x) + ‖E(1I|X−X∗|>x|M)‖q .

Applying Markov inequality at order r, we obtain (4.3). Finally, we prove (4.4) by noting that w(x) ≤ Kx and
by minimizing in x. ¤

4.2 Example 1: Causal functions of stationary sequences

Let (ξi)i∈Z be a stationary sequence of random variables with values in a measurable space X . Assume that
there exists a function H defined on a subset of XN, with values in R and such that H(ξ0, ξ−1, ξ−2, . . . , ) is
defined almost surely. The stationary sequence (Xn)n∈Z defined by Xn = H(ξn, ξn−1, ξn−2, . . .) is called a causal
function of (ξi)i∈Z.

Assume that there exists a stationary sequence (ξ′i)i∈Z distributed as (ξi)i∈Z and independent of (ξi)i≤0.
Define X∗

n = H(ξ′n, ξ′n−1, ξ
′
n−2, . . .). Clearly X∗

n is independent of M0 = σ(ξi, i ≤ 0) and distributed as Xn. For
any p ≥ 1 (p may be infinite) define the sequence (δi,p)i>0 by

‖Xi −X∗
i ‖p = δi,p . (4.5)

From Lemma 5, we infer that, if µ is a probability measure and X0 has a density bounded by K, then for any
p, q in [1,∞] and any r such that rq ∈ [1,∞],

τµ,p,q(M0, Xk) ≤ C(r)(Kδk,qr)r/(r+1) and τµ,p,q(M0, Xk) ≤ Kδk,∞ . (4.6)

In particular, these results apply to the case where the sequence (ξi)i∈Z is β-mixing in the sense of Rozanov
and Volkonskii. Let ξ̃k = (ξk, ξk+1, . . .), F0 = σ(ξi, i ≤ 0) and Gk = σ(ξi, i ≥ k). Let Peξk

be the distribution of

ξ̃k, and let Peξk|F0
be a conditional distribution of ξ̃k given F0. According to Theorem 4.4.7 in Berbee (1979),

if Ω is rich enough, there exists (ξ′i)i∈Z distributed as (ξi)i∈Z and independent of (ξi)i≤0 such that

P(ξi 6= ξ′i for some i ≥ k) =
1
2
E(‖Peξk|F0

− Peξk
‖v) = β(F0,Gk) ,

where ‖ · ‖v is the variation norm. If the sequence (ξi)i∈Z is iid, it suffices to take ξ′i = ξi for i > 0 and ξ′i = ξ′′i
for i ≤ 0, where (ξ′′i )i∈Z is an independent copy of (ξi)i∈Z.

Application: causal linear processes. In that case Xn =
∑

j≥0 ajξn−j . For any p ≥ 1, we have that

δi,p ≤
∑

j≥0

|aj |‖ξi−j − ξ′i−j‖p ≤ ‖ξ0 − ξ′0‖p

∑

j≥i

|aj |+
i−1∑

j=0

|aj |‖ξi−j − ξ′i−j‖p .
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From Proposition 2.3 in Merlevède and Peligrad (2002), we obtain that

δi,p ≤ ‖ξ0 − ξ′0‖p

∑

j≥i

|aj |+
i−1∑

j=0

|aj |
(
2p

∫ β(F0,Gi−j)

0

Qp
ξ0

(u)
)1/p

du .

where Qξ0 is the cadlag inverse of the tail function x → P(|ξ0| > x).
If the sequence (ξi)i∈Z is iid, it follows that δi,p ≤ ‖ξ0 − ξ′0‖p

∑
j≥i |aj |. Moreover, for p = 2 we have exactly

δi,2 = (2Var(ξ0)
∑

j≥i a2
j )

1/2. For instance, if ai = 2−i−1 and ξ0 ∼ B(1/2), then δi,∞ ≤ 2−i. Since X0 is
uniformly distributed over [0, 1], we have τµ,p,q(M0, Xi) ≤ 2−i. Recall that this sequence is not strongly mixing
in the sense of Rosenblatt.

4.3 Example 2: iterated random functions

Let (Xn)n≥0 be a real-valued stationary Markov chain, such that Xn = F (Xn−1, ξn) for some measurable
function F and some iid sequence (ξi)i>0 independent of X0. Let X∗

0 be a random variable distributed as X0

and independent of (X0, (ξi)i>0). Define X∗
n = F (X∗

n−1, ξn) . The sequence (X∗
n)n≥0 is distributed as (Xn)n≥0

and independent of X0. Let Mi = σ(Xj , 0 ≤ j ≤ i). As in Example 1, define the sequence (δi,p)i>0 by (4.5).
From Lemma 5, we infer that, if µ is a probability measure and X0 has a density bounded by K, then for any
p, q in [1,∞] and any r such that rq ∈ [1,∞], the bounds given in (4.6) hold.

Let ν be the distribution of X0 and (Xx
n)n≥0 the chain starting from Xx

0 = x. With these notations, we
have

δp
i,p =

∫∫
‖Xx

i −Xy
i ‖p

pµ(dx)µ(dy) .

For instance, if there exists a sequence (di,p)i≥0 of positive numbers such that

‖Xx
i −Xy

i ‖p ≤ di,p|x− y| ,

then δi,p ≤ di,p‖X0 −X∗
0‖p. In the usual case where ‖F (x, ξ0)− F (y, ξ0)‖p ≤ κ|x − y| for some κ < 1, we can

take di,p = κi.
An important example is Xn = f(Xn−1) + ξn for some κ-lipschitz function f . If X0 has a moment of

order p, then δi,p ≤ κi‖X0 − X∗
0‖p . In particular, if X0 is bounded and has a density bounded by K then

τµ,p,q(M0, Xi) ≤ 2K‖X0‖∞κi.

5 Applications

5.1 Iterates of expanding maps

Let I = [0, 1], T be a map from I to I and define Xi = T i. If the probability π is invariant by T , the sequence
(Xi)i≥0 of random variables from (I, π) to I is strictly stationary. Denote by ‖g‖1,λ1 the L1-norm with respect
to the Lebesgue measure λ1 on [0, 1] and by ‖ν‖ = |ν|(I) the total variation of a signed measure ν. Let
Mn = σ(Xi, i ≥ n). In many interesting cases (see Section 4.4 in Dedecker and Prieur (2005)), one can prove
that, for any bounded variation function h on I and any integrable Mn-measurable random variable Y ,

|Cov(h(X0), Y )| ≤ an‖Y ‖1(‖h‖1,λ1 + ‖dh‖) , (5.1)

for some nonincreasing sequence an tending to zero as n tends to infinity. Note that if (5.1) holds, then
|Cov(h(X0), Y )| = |Cov(h(X0) − h(0), Y )| ≤ an‖Y ‖1(‖h − h(0)‖1,λ1 + ‖dh‖) . Since ‖h − h(0)‖1,λ1 ≤ ‖dh‖, we
obtain that

|Cov(h(X0), Y )| ≤ 2an‖Y ‖1‖dh‖ . (5.2)
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From Lemma 4 in Dedecker and Prieur (2005), we infer that if the inequality (5.2) holds, then φ(Mn, X0) ≤ 2an.
Applying Lemma 4, we infer that τλ1,p,∞(Mn, X0) ≤ 2an for any p in [1,∞]. In particular, it follows from (2.8)
that

P
(√

nK(Fn, F ) ≥ x
) ≤ P(√nD2,n(λ1) ≥ x

) ≤ 2 exp
(
− x2

2(1 + 4(a1 + · · ·+ an−1))2

)
. (5.3)

In a recent paper, Collet, Martinez and Schmitt (2002) studied a class of expanding maps for which (5.1) (and
hence (5.2)) holds with an = Cρn for some ρ < 1. Using a concentration inequality for Lipschitz functions they
prove in Theorem III.1 that there exist a number x0 > 0 and a constant R > 0 (both depending on T ) such
that, for any x > x0 and any integer n,

P
(√

nK(Fn, F ) ≥ x
) ≤ exp(−Rx2) . (5.4)

Clearly, (5.3) is more precise than (5.4), for it holds for any positive x. Moreover, we do not require that an

decreases geometrically, and we are able to give an expression for R in terms of the coefficients (ai)1≤i≤n−1.

5.2 Causal linear processes

The main interest of the coefficients τµ,p,q is that they are very easy to evaluate in many situations. Let us
focus on the stationary sequence

Xk =
∑

j≥0

ajξk−j (5.5)

where (ξi)i∈Z is a sequence of iid random variables and
∑

j≥0 |aj | < ∞. From (4.6) and the application of
Section 4.2, we know that if µ is a probability measure and if X0 has a density bounded by K, then for any p, q

in [1,∞] and any r such that rq ∈ [1,∞],

τµ,p,q(M0, Xn) ≤ C(r)
(
K‖ξ0 − ξ1‖rq

∑

j≥n

|aj |
)r/(r+1)

and τµ,p,∞(M0, Xn) ≤ K‖ξ0 − ξ1‖∞
∑

j≥n

|aj | . (5.6)

where M0 = σ(ξk, k ≤ 0). For instance, if we use the last bound in (5.6), we obtain from (2.3) that

P(
√

nDp,n(µ) ≥ x) ≤ 2 exp

(
− x2

2(p− 1)
(
1 + 4K‖ξ0‖∞

∑∞
j=1(n ∧ j)|aj |

)2

)
. (5.7)

Applying this result in the particular case µ = δt, we infer that

sup
t∈R

P(
√

n|Fn(t)− F (t)| ≥ x) ≤ 2 exp

(
− x2

2
(
1 + 4K‖ξ0‖∞

∑∞
j=1(n ∧ j)|aj |

)2

)
, (5.8)

which is similar (up to numerical constants) to the upper bound obtained in Corollary 2 in Rio (2000). In that
case, the bound (5.8) can be improved by using the inequality (2.9).

From Condition 1 of Theorem 2, we infer that
√

n(Fn − F ) converges in distribution in any Lp(µ), where
µ is a probability measure and 2 ≤ p < ∞, as soon as ‖ξ0‖2r < ∞ and

∑
k>0(

∑
j≥k |aj |)r/(r+1) < ∞ for some

r in [1/2,∞]. From Condition (3.2), we infer that
√

n(Fn − F ) converges in distribution in L2(µ) as soon as
‖ξ0‖2r < ∞ and

∑
k>0 k−1/2(

∑
j≥k |aj |)r/(r+1) < ∞. In particular, the latter condition is realized for bounded

innovations provided |ai| = O(i−3/2−ε) for some positive ε.
Note that all the results mentioned above are valid without assuming that the innovations have a density :

we have only assumed that X0 has a density, which is much weaker (think of the well know example where
ai = 2−i−1 and ξ0 ∼ B(1/2)). Now, if we assume that ξ0 has a density bounded by C, we can also evaluate the
quantities

∥∥‖FXk|Mi
− FXk|Mi−1‖p,µ

∥∥
q

which appear in the inequality (2.1) and in Condition 3 of Theorem 2.
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Lemma 6. Let (Xk)k>0 be defined by (5.5) and let Mi = σ(ξk, k ≤ i). If ξ0 has a density bounded by C, then,
for any probability measure µ and any p, q in [1,∞],

∥∥‖FXk|M0 − FXk|M−1‖p,µ

∥∥
q
≤ C‖ξ1 − ξ0‖q

|ak|
|a0| .

Applying Lemma 6, we infer from Inequality (2.1) that,

P(
√

nDp,n(µ) ≥ x) ≤ 2 exp

(
− x2

2(p− 1)
(
1 + 2|a0|−1C‖ξ0‖∞

∑n−1
k=1 |ak|

)2

)
(5.9)

which is more precise than (5.7), since it gives P(
√

nDp,n(µ) ≥ x) ≤ 2 exp(−Rx2) for some positive constant R

as soon as
∑

i>0 |ai| < ∞. In the same way, we infer from Condition 3 of Theorem 2 that
√

n(Fn−F ) converges
in distribution in L2(µ) as soon as ‖ξ0‖2 < ∞ and

∑
i>0 |ai| < ∞.

Proof of Lemma 6. Let Yk =
∑k−1

i=0 aiξk−i. Clearly

FXk|M0(t) = FYk
(t− (Xk − Yk)) and FXk|M−1(t) =

∫
FYk

(t− akx− (Xk − Yk+1))Pξ0(dx) .

Let fξ be the density of ξ0. The density of Yk is given by fYk
= |a0|−1fξ(·/a0) ∗ · · · ∗ |ak−1|−1fξ(·/ak−1), and

hence it is bounded by C|a0|−1. Consequently

|FXk|M0(t)− FXk|M−1(t)| ≤ C|a0|−1|ak|
∫
|x− ξ0|Pξ0(dx) .

The result follows by taking the ‖.‖q-norm and applying Jensen’s inequality. ¤

6 Appendix: Proof of Lemma 1.

Let f ∈ Wp′,1(µ). We first check that under (1.1), |f | is integrable with respect to dF . Without loss of generality,
assume that f(0) = 0. Clearly

∫
|f(t)|dF (t) ≤

∫

R+

(∫

[0,t[

|f ′(x)|µ(dx)
)
dF (t) +

∫

R−

(∫

[t,0[

|f ′(x)|µ(dx)
)
dF (t) .

Applying Fubini, we obtain that
∫
|f(t)|dF (t) ≤

∫

R+
|f ′(x)|(1− F (x))µ(dx) +

∫

R−
|f ′(x)|F (x)µ(dx) .

Since f ′ belongs to Lp′(µ), the right hand side is finite as soon as (1.1) holds. In the same way, we have both
∫

f(t)dF (t) =
∫

R+
f ′(x)(1− F (x))µ(dx)−

∫

R−
f ′(x)F (x)µ(dx)

∫
f(t)dG(t) =

∫

R+
f ′(x)(1−G(x))µ(dx)−

∫

R−
f ′(x)G(x)µ(dx).

Consequently ∫
f(t)dF (t)−

∫
f(t)dG(t) =

∫
f ′(x)(G(x)− F (x))µ(dx) .

The second equality follows by noting that

‖F −G‖p,µ = sup
‖g‖p′,µ≤1

∣∣∣
∫

R
g(x)(F (x)−G(x))dµ(x)

∣∣∣ . ¤
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