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1 Introduction

Let (Xk)k>0 be a sequence of centered random variables with values in a separable Hilbert

space (H, ‖ ·‖H), and let Sn = X1 + · · ·+Xn. In this paper we are interested in the almost

sure behavior of the sequence Sn. To be more precise we are interested by sufficient

conditions under which, for 1/2 < α ≤ 1 and 1/α ≤ p <∞,

(1.1)
∞∑
n=1

nαp−2P
(

max
1≤k≤n

‖Sk‖H ≥ ε nα
)
<∞, for all ε > 0,

or sufficient conditions under which

(1.2) the sequence
Sn√

n ln lnn
is almost surely relatively compact.

To address these problems, one of the main tools is to establish suitable upper bounds

for the quantity

(1.3) P
(

max
1≤k≤n

‖Sk‖H ≥ x

)
.

For instance, applying Proposition 3.5 in Dedecker and Merlevède (2004), we derive sharp

sufficient conditions for (1.1) in the case where p ∈ [1, 2[. In this note, the dependence

conditions are expressed in terms of conditional expectations, and are weaker than Rio’s

conditions (1995) for strongly mixing sequences. Note that the maximal inequality stated

in our Proposition 3.5 is obtained via martingale approximations, and cannot be applied

to prove (1.1) for p ≥ 2.

A suitable tool to prove (1.1) for p ≥ 2 as well as the compact law (1.2), is a Fuk-

Nagaev inequality for (1.3). A way to prove it, is to use approximations by independent

random variables instead of martingale approximations, as done in Rio (2000, Theorem

6.2) for real valued random variables. Since the works of Berbee (1979) and Rüschendorf

(1985), we know that the price to pay for such approximations with respect to a distance

d on H is exactly the value of some dependence coefficients having the coupling property

for d (i.e. the property (2.3) of Lemma 1). To control (1.3), the appropriate distance

is d(x, y) = ‖x − y‖H, and the appropriate measure of dependence is the coefficient τd

defined in Definition 1. Following the proofs of Theorem 6.2 in Rio (2000) and Theorem

2 in Dedecker and Prieur (2004), and using a delicate truncation argument for H-valued

random variables, we obtain the Fuk-Nagaev type inequality given in (4.28). From this

inequality, we derive sharp sufficient conditions for (1.1) and for the compact law (1.2) in
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Theorems 2 and 3 respectively. The optimality of these conditions is discussed in Sections

5 and 6, and an application to Cramér-von Mises statistics is given in Section 7.

One of the main interests of the coefficients considered in this paper, is that they

can be computed in many situations. In particular, we show in Section 3 that they are

well adapted to functions of mixing sequences, iterated random functions, and a class of

iterates of expanding maps of [0, 1]k. Note that it is well known that the processes defined

as iterates of maps cannot be mixing in the sense of Rosenblatt (1956).

2 Definitions and Properties

Definition 1. Let X be a Polish space and let d be a distance on X (the space X need

not be Polish with respect to d). Let Λ1(X , d) be the set of 1-Lipschitz functions from X
to R with respect to d. Assume that the distance d satisfies

(2.1) d(x, y) = sup
f∈Λ1(X ,d)

|f(x)− f(y)| .

Let (Ω,A,P) be a probability space. Let p ≥ 1. We say that a random variable X with

values in X belongs to Lp(X , d) if the variable d(X, s) belongs to Lp(R) for some (and

therefore any) s in X . For any random variable X in Lp(X , d) and any σ-algebra M of

A, let PX|M be a conditional distribution of X given M and let PX be the distribution

of X. We consider the coefficient τd,p(M, X) of weak dependence (introduced for p = 1

by Dedecker and Prieur (2005)) which is defined by

(2.2) τd,p(M, X) =
∥∥∥ sup
f∈Λ1(X ,d)

∣∣∣ ∫ f(x)PX|M(dx)−
∫
f(x)PX(dx)

∣∣∣∥∥∥
p
,

When p = 1, we write τd(M, X) in place of τd,1(M, X) and when p = ∞, we write

ϕd(M, X) in place of τd,∞(M, X).

The coefficient τd,p(M, X) has an interpretation in terms of coupling. The following

result can be deduced from Proposition 4 in Rüschendorf (1985) (see also Dedecker et al.

(2005), Theorem 2).

Lemma 1. Let (Ω,A,P) be a probability space, X a random variable with values in

some Polish space X , and M a σ-algebra of A. Let d be a distance on X satisfying

(2.1). Assume that there exists a random variable U uniformly distributed over [0, 1],

independent of σ(X) ∨ M. Then there exists a random variable X∗ measurable with
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respect to σ(U) ∨ σ(X) ∨M, distributed as X and independent of M, such that for any

p ≥ 1,

(2.3) τd(M, X) = E(d(X,X∗)) and τd,p(M, X) = ‖E(d(X,X∗)|M)‖p .

The coefficients τd,p(M, X) can be compared to other dependence coefficients. Let

B(X ) be the class of Borel sets of X , and define

βp(M, σ(X)) =
∥∥∥ sup
A∈B(X )

|PX|M(A)− PX(A)|
∥∥∥
p

=
1

2
‖‖PX|M − PX‖v‖p ,(2.4)

where ‖ · ‖v is the variation norm.

When p = 1, we write β(M, σ(X)) in place of β1(M, σ(X)) and when p =∞, we write

φ(M, σ(X)) in place of β∞(M, σ(X)). The coefficient β(M, σ(X)) has been introduced

by Rozanov and Volkonskii (1959), and φ(M, σ(X)) has been introduced by Ibragimov

(1962). Note that βp(M, σ(X)) = τd0,p(M, X), where d0 is the discrete metric d0(x, y) =

1Ix 6=y. In particular, Berbee’s coupling lemma (1979) follows from Lemma 1.

Definition 2. For any non-increasing cadlag function f from R+ to R+, define the gen-

eralized inverse f−1(u) = inf{t ≥ 0 : f(t) ≤ u}. For any nonnegative random variable

Y , define the upper tail function LY (t) = P(Y > t) and the quantile function QY = L−1
Y .

On the set [0,P(Y > 0)], the function HY : x→
∫ x

0
QY (u)du is an absolutely continuous

and increasing function with values in [0,E(Y )]. Denote by GY the inverse of HY .

We can now compare τd,p(M, X) and βp(M, σ(X)).

Lemma 2. Let (Ω,A,P) be a probability space, X a random variable with values in some

Polish space X , and M a σ-algebra of A. Let d be a distance on X satisfying (2.1). For

any X∗ distributed as X and independent of M, the following inequality hold:

τd,p(M, X) ≤ E1/p
(
dp(X,X∗)1IX 6=X∗Ep−1(1IX 6=X∗|M)

)
, for p ∈ [1,∞[ .(2.5)

ϕd(M, X) ≤ ‖d(X,X∗)‖∞φ(M, σ(X)) .(2.6)

Consequently, for any s ∈ X and p ∈ [1,∞[,

τd,p(M, X) ≤ 2
(∫ (βp(M,σ(X)))p

0

Qp
d(X,s)(u)du

)1/p

, and(2.7)

τd,p(M, X) ≤ 2
(
φ(M, σ(X))

) p−1
p

(∫ β(M,σ(X))

0

Qp
d(X,s)(u)du

)1/p

.(2.8)
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Remark 1. Let us introduce the usual strong mixing coefficient of Rosenblatt (1956):

(2.9) α(M, σ(X)) = sup
A∈B(X )

‖PX|M(A)− PX(A)‖1 .

With this definition and if X = R and d(x, y) = |x− y|, then

τd(M, X) ≤ 2

∫ α(M,σ(X))

0

Q|X|(u)du .

This inequality has been proved in Dedecker and Prieur (2004). From an example given

by Dehling (1983), we know that this inequality cannot be extended to separable Hilbert

spaces.

Proof of Lemma 2. According to the definition of τd,p(M, X), we clearly have that for

any X∗ distributed as X and independent of M,

(2.10) τd,p(M, X) ≤ ‖E(d(X,X∗)|M)‖p = ‖E(d(X,X∗)1IX 6=X∗|M)‖p .

Applying Hölder’s inequality conditionally to M, we derive that

τd,p(M, X) ≤
(
E
(
E
(
dp(X,X∗)|M

)
Ep−1

(
1IX 6=X∗|M)

)))1/p

,

and (2.5) follows.

To prove (2.6), we first notice that for any X∗ distributed as X and independent of

M,

ϕd(M, X) ≤ ‖E(d(X,X∗)1IX 6=X∗|M)‖∞ ≤ ‖d(X,X∗)‖∞‖E(1IX 6=X∗ |M)‖∞ .

According to Lemma 1 with the discrete metric d0(x, y) = 1Ix6=y, we can choose X∗ such

that ‖E(1IX 6=X∗|M)‖∞ = φ(M, σ(X)).

To prove (2.7), we first give the following elementary result:

Lemma 3. For any positive random variables U and V with V ∈ [0, 1] a.s., we have that

(2.11) E(UV ) ≤
∫ E(V )

0

QU(u)du .

On the other hand, from (2.5) we have for any s ∈ X that

(2.12) τd,p(M, X) ≤ ‖d(X, s)1IX 6=X∗E
p−1
p (1IX 6=X∗|M)‖p

+ ‖d(X∗, s)1IX 6=X∗E
p−1
p (1IX 6=X∗|M)‖p .
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Applying Lemma 3 with U = dp(X, s) ( or U = dp(X∗, s)) and V = 1IX 6=X∗Ep−1(1IX 6=X∗ |M),

and noticing that E(V ) = (βp(M, σ(X)))p, (2.7) follows. Now from (2.12), we derive that

τd,p(M, X) ≤
(
φ(M, σ(X))

) p−1
p

(
‖d(X, s)1IX 6=X∗‖p + ‖d(X∗, s)1IX 6=X∗‖p

)
.

Applying Lemma 3 with U = dp(X, s) (or U = dp(X∗, s)) and V = 1IX 6=X∗ , and noticing

that E(V ) = β(M, σ(X)), (2.8) follows. Finally, to prove (2.11), note that for any

random variable T uniformly distributed on [0, 1] and independent of U and V , we have:

E(UV ) = E(U1IT≤V ). Hence using Fréchet’s inequality (1957), we get that

E(UV ) ≤
∫ 1

0

QU(u)Q1IT≤V (u)du =

∫ E(V )

0

QU(u)du .

3 Examples

Definition 3. Let X be some Polish space, and let d be a distance on X (the space

X need not be Polish with respect to d). On X k we put the distance d(k) defined by

d(k)(x, y) = d(x1, y1) + · · · + d(xk, yk). Let (Ω,A,P) be a probability space, (Xi)i≥1 a

sequence of X -valued random variables and (Mi)i≥1 a sequence of σ-algebras of A. For

any positive integer k, define

(3.13) τd,p,k(i) = max
1≤`≤k

1

`
sup

{
τd(`),p(Mq, (Xj1 , · · · , Xj`)), q + i ≤ j1 < · · · < j`

}
and τd,p,∞(i) = supk≥0 τd,p,k(i). When p = 1, we set τd,1,k(i) = τd,k(i), and when p = ∞,

we set τd,∞,k(i) = ϕd,k(i).

In the same way, the coefficients βp(i) are defined by

βp,k(i) = sup{βp(Mq, σ(Xj1 , . . . , Xjk)), q + i ≤ j1 < · · · < jk} and βp,∞(i) = sup
k>0

βp,k(i).

When p = 1, we set β1,k(i) = βk(i) , and when p =∞, we set β∞,k(i) = φk(i).

Starting from Inequalities (2.12) and (2.6), and arguing as in Lemma 2, we can prove

the following result.

Lemma 4. Let (Ω,A,P) be a probability space, let (Xi)i>0 be a sequence of random

variables with values in a Polish space X , and let Mi be a sequence of σ-algebra of A.

Let d be a distance on X satisfying (2.1). For any s ∈ X , the following inequalities hold

τd,p,k(i) ≤ 2
(

sup
j>0

∫ βpp,k(i)

0

Qp
d(Xj ,s)

(u)du
)1/p

, for any p ∈ [1,∞[,

ϕd,k(i) ≤ 2φk(i) sup
j>0
‖d(Xj, s)‖∞ .
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Remark 2. Let Λ1(X `,X , d) be the set of functions f from X ` to X such that, for any

x, y in X `, d(f(x), f(y)) ≤ d(`)(x, y). We can define the following weaker version of τd,k(i):

(3.14) τ̃d,k(i) = max
1≤`≤k

1

`
sup

{
sup

f∈Λ1(X `,X ,d)

τd(Mp, f(Xj1 , · · · , Xj`)), p+i ≤ j1 < · · · < j`

}
.

Define also the sequence of strong mixing coefficients (α∞(i))i>0 by:

(3.15) α∞(i) = sup
k>0

α(Mk, σ(Xj, j ≥ k + i)) .

In the case X = R and d(x, y) = |x− y|, we can obtain the bound

(3.16) τ̃d,∞(i) ≤ 2 sup
j>0

∫ α∞(i)

0

Q|Xj |(u)du .

3.1 Example 1: causal functions of stationary sequences

Let (ξi)i∈Z be a stationary sequence of random variables with values in a measurable space

S. Assume that there exists a function H defined on a subset of SN, with values in a

Polish space X and such that H(ξ0, ξ−1, ξ−2, . . . , ) is defined almost surely. The stationary

sequence (Xn)n∈Z defined by Xn = H(ξn, ξn−1, ξn−2, . . .) is called a causal function of

(ξi)i∈Z.

Assume that there exists a stationary sequence (ξ′i)i∈Z distributed as (ξi)i∈Z and in-

dependent of (ξi)i≤0. Define X∗n = H(ξ′n, ξ
′
n−1, ξ

′
n−2, . . .). Clearly X∗n is independent of

M0 = σ(Xi, i ≤ 0) and distributed as Xn. For any p ≥ 1 (p may be infinite), let (δp(i))i>0

be a non increasing sequence such that

(3.17) ‖E(d(Xi, X
∗
i )|M0)‖p ≤ δp(i) ,

where d is a distance on X satisfying (2.1) (the space X need not be Polish with respect

to d). Let Mi = σ(Xj, j ≤ i). From Lemma 1, we infer that the coefficients τd,p,∞ of the

sequence (Xn)n≥0 satisfy

(3.18) τd,p,∞(i) ≤ δp(i) .

For instance, according to Theorem 4.4.7 in Berbee (1979), if Ω is rich enough, there

exists (ξ′i)i∈Z distributed as (ξi)i∈Z and independent of (ξi)i≤0 such that

(3.19) P(ξi 6= ξ′i for some i ≥ k|F0) =
1

2
‖Peξk|F0

− Peξk‖v ,
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where ξ̃k = (ξk, ξk+1, . . .), F0 = σ(ξi, i ≤ 0). In particular if the sequence (ξi)i∈Z is iid, it

suffices to take ξ′i = ξi for i > 0 and ξ′i = ξ′′i for i ≤ 0, where (ξ′′i )i∈Z is an independent

copy of (ξi)i∈Z.

Application: causal linear processes in Banach spaces. Let (B1, ‖ ·‖B1) and (B2, ‖ ·
‖B2) be two Banach spaces. For any linear application A from B1 to B2, let ‖A‖ =

sup{‖A(b)‖B2 , ‖b‖B1 ≤ 1}. Let (Ai)i≥0 be a sequence of linear operators from B1 to B2

such that
∑

i≥0 ‖Ai‖ < ∞, and let (ξi)i∈Z be a stationary sequence of B1-valued random

variables. Define the random variables Xn =
∑

j≥0Aj(ξn−j) with values in B2. For any

p ≥ 1, observe that

‖E(‖Xi −X∗i ‖B2|M0)‖p ≤
∑
j≥0

‖Aj‖‖E(‖ξi−j − ξ′i−j‖B1|M0)‖p

and consequently

‖E(‖Xi −X∗i ‖B2|M0)‖p ≤ ‖‖ξ0 − ξ′0‖B1‖p
∑
j≥i

‖Aj‖+
i−1∑
j=0

‖Aj‖‖E(‖ξi−j − ξ′i−j‖B1|M0)‖p .

Taking (ξi)i∈Z as in (3.19) and arguing as in Lemma 2, we obtain the following inequalities:

for p ∈ [1,∞[ and and Gi = σ(ξk, k ≥ i),

‖E(‖Xi −X∗i ‖B2|M0)‖p

≤ ‖‖ξ0 − ξ′0‖B1‖p
∑
j≥i

‖Aj‖+
i−1∑
j=0

‖Aj‖
(

2p
∫ (βp(F0,Gi−j))p

0

Qp
‖ξ0‖B1

(u)
)1/p

du ,

and

‖E(‖Xi −X∗i ‖B2|M0)‖∞ ≤ ‖‖ξ0 − ξ′0‖B1‖∞
(∑

j≥i

‖Aj‖+
i−1∑
j=0

‖Aj‖φ(F0,Gi−j)
)
.

Hence we can take δp(i) such that

δp(i) ≥ ‖‖ξ0 − ξ′0‖B1‖p
∑
j≥i

‖Aj‖+
i−1∑
j=0

‖Aj‖
(

2p
∫ (βp(F0,Gi−j))p

0

Qp
‖ξ0‖B1

(u)
)1/p

du

and δ∞(i) ≥ ‖‖ξ0 − ξ′0‖B1‖∞
(∑

j≥i

‖Aj‖+
i−1∑
j=0

‖Aj‖φ(F0,Gi−j)
)
.

If the sequence (ξi)i∈Z is iid, we can take δp(i) = ‖ ‖ξ0− ξ′0‖B1‖p
∑

j≥i ‖Aj‖. If further-

more, B2 is of type 2, then we can take δ2(i) = (CE‖ξ0 − ξ′0‖2
B2

∑
j≥i ‖Aj‖2)1/2 where C
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is the type constant. For instance, if B1 = B2 = R, Ai = 2−i−1 and ξ0 ∼ B(1/2), then we

can take δ2(i) = 2−i/
√

6 and δ∞(i) = 2−i. Since X0 is uniformly distributed over [0, 1],

we have ϕd,∞(i) ≤ 2−i for d(x− y) = ‖x− y‖B2 . Recall that this sequence is not strongly

mixing.

3.2 Example 2 : iterated random functions

Let (Xn)n≥0 be a X -valued stationary Markov chain, such that Xn = F (Xn−1, ξn) for

some measurable function F and some iid sequence (ξi)i>0 independent of X0. Let X∗0
be a random variable distributed as X0 and independent of (X0, (ξi)i>0). Define X∗n =

F (X∗n−1, ξn) . The sequence (X∗n)n≥0 is distributed as (Xn)n≥0 and independent of X0. Let

Mi = σ(Xj, 0 ≤ j ≤ i). As in Example 1, let (δp(i))i>0 be a non increasing sequence

satisfying (3.17). The coefficients τd,p,∞ of the sequence (Xn)n≥0 satisfy the bound (3.18)

of Example 1.

Let µ be the distribution of X0 and let (Xx
n)n≥0 be the chain starting from Xx

0 = x.

With these notations, we can take δp(i) such that

δp(i) ≥ ‖d(Xi, X
∗
i )‖p =

(∫∫
‖ d(Xx

i , X
y
i )‖pp µ(dx)µ(dy)

)1/p

.

For instance, if there exists a non increasing sequence (ap(i))i≥0 of positive numbers such

that

‖ d(Xx
i , X

y
i )‖p ≤ ap(i)d(x, y) ,

then we can take δp(i) = ap(i)‖ d(X0, X
∗
0 )‖p. For example, in the usual case where

‖d(F (x, ξ0), F (y, ξ0))‖p ≤ κd(x, y) ,

for some κ < 1, we can take ap(i) = κi and δp(i) = κi‖ d(X0, X
∗
0 )‖p .

An important example is Xn = f(Xn−1) + ξn for some function f which is κ-lipschitz

with respect to d. If X0 belongs to Lp(X , d), then we can take δp(i) = κi‖ d(X0, X
∗
0 )‖p .

3.3 Example 3 : multidimensional expanding maps

Let X be a Polish space and let d be a distance on X satisfying (2.1). Let T be a map

from X to X and define Xi = T i. If µ is invariant by T , the sequence (Xi)i≥0 of random

variables from (X , µ) to X is strictly stationary.
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Notations. For any finite measure ν on X , let L1(ν) be the space of all functions f from

X to R, such that: ‖f‖L1(ν) =
∫
X |f(x)|ν(dx) < ∞ and let B1(ν) = {f : ‖f‖L1(ν) ≤ 1}.

Let L∞(ν) be the space of all functions f from X to R, such that:

‖f‖L∞(ν) = inf
M>0
{ν(|f | > M) = 0} <∞ .

We also use the notations ν(h) =
∫
X h(x)ν(dx). If h is a Lipshitz function with respect

to d, we note

Lip(h) = sup
(x,y)∈X 2

|h(x)− h(y)|
d(x, y)

.

Covariance inequalities. In many interesting cases, one can prove that, for any Lipshitz

function h and any f in L1(µ),

(3.20) |Cov(f(Xn), h(X0))| ≤ an‖f‖L1(µ)Lip(h) ,

for some non increasing sequence an tending to zero as n tends to infinity.

Since

ϕd,1(σ(Xn), X0) = sup
h∈Λ1(X ,d)

sup
f∈B1(µ)

|Cov(f(Xn), h(X0))| ,

we derive that if (3.20) holds then

ϕd,1(σ(Xn), X0) ≤ an .

If X = [0, 1] and d(x, y) = |x − y|, then the inequality (3.20) is satisfied with an = Cρn,

where ρ ∈]0, 1[, for the class of uniformly expanding maps given in Collet et al. (2002).

We now give an example where the inequality (3.20) holds for X a compact of Rk and

d the Euclidean distance on Rk. Let T be a map from X to X satisfying the assumptions

(PE1-PE5) in Saussol (2000). Let |h|α be defined as in page 232 in Saussol and ‖h‖α =

|h|α + λ(|h|) where λ is the Lebesgue measure on X . Let P̃ be the Perron-Frobenius of T

defined on L1(µ), that is for any bounded function f and any h ∈ L1(µ),∫
X

(f ◦ T n)hdµ =

∫
X
fP̃ (h)dµ .

By Theorem 5.1 in Saussol (2000), we know that there exists a finite number of invariant

probabilities by T which are absolutely continuous with respect to λ. Let µ be such a

probability, and assume furthermore that µ is mixing in the ergodic-theoric sense. Denote
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by h? = dµ/dλ. By Theorem 6.2 in Saussol (2000), there exist a positive constant C and

ρ ∈]0, 1[ such that for any α ∈]0, 1] and any h such that ‖h‖α <∞,

(3.21) ‖(P̃ n(h)− µ(h))h?‖α ≤ C‖h‖αρn .

Following the proof of Theorem 6.1 in Saussol, we have that

|Cov(f(Xn), h(X0))| =
∣∣∣ ∫
X
f(P̃ n(h)− µ(h))h?dλ

∣∣∣
≤ ‖f‖L1(µ)‖P̃ n(h)− µ(h)‖L∞(µ)

≤
‖f‖L1(µ)

‖h?‖L∞(λ)

‖(P̃ n(h)− µ(h))h?‖L∞(λ) .

Then using Inequality (6) of Proposition 3.4 in Saussol, we infer that there exists a positive

constant K such that

|Cov(f(Xn), h(X0))| ≤ K
‖f‖L1(µ)

‖h?‖L∞(λ)

‖(P̃ n(h)− µ(h))h?‖α .

Hence using (3.21), we obtain that

(3.22) |Cov(f(Xn), h(X0))| ≤ KC
‖f‖L1(µ)

‖h?‖L∞(λ)

‖h‖αρn .

Now notice that for any s ∈ X ,

|Cov(f(Xn), h(X0))| = |Cov(f(Xn), h(X0)− h(s))| .

From Inequality (3.22) applied with α = 1 and the fact that |h|1 ≤ Lip(h), we then derive

that

|Cov(f(Xn), h(X0))| ≤ KC
‖f‖L1(µ)

‖h?‖L∞(λ)

(
|h|1 + λ(|h− h(s)|)

)
ρn

≤ KC(1 + λ(X ))

‖h?‖L∞(λ)

ρn‖f‖L1(µ)Lip(h) .

Hence (3.20) follows with an = ρnKC(1 + λ(X ))/‖h?‖L∞(λ) and consequently

(3.23) ϕd,1(σ(Xn), X0) ≤ Aρn with A =
KC(1 + λ(X ))

‖h?‖L∞(λ)

.
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Remark 3. Arguing as in Dedecker and Prieur (2005) page 230, there exists a stationary

Markov chain (Yi)i≥0 with transition kernel P̃ such that for all n ≥ 0, (Y0, . . . , Yn) has the

same distribution as (Xn, . . . , X0). Hence, for the Markov chain (Yi)i≥0 and the σ-algebras

Mi = σ(Yj, j ≤ i) we obtain from (3.23) that ϕd,1(i) ≤ Aρi . From Saussol’s paper, it

seems difficult to prove that ϕd,∞(i) decreases exponentially fast. However for X = [0, 1]

and a map T satisfying the assumptions of the paper of Collet et al. (2002), we can prove

that for the Markov chain (Yi)i≥0: ϕd,∞(i) ≤ Bρi (see Dedecker and Prieur (2005) page

230 for more details).

Remark 4. In Buzzi and Maume-Deschamps (2002), others examples of multidimensional

expanding maps for which (3.23) holds are given. They also give sufficient conditions to

obtain an arithmetic decay of the coefficients (see their main theorem in Section 0.2).

4 A Fuk-Nagaev Inequality

¿From now, we shall only consider separable Banach spaces (B, ‖ · ‖B). When d(x, y) =

‖x− y‖B, we shall write τ(M, X) instead of τd(M, X) and τk(i) instead of τd,k(i).

Definition 4. Following Pisier (1975), we say that a Banach space (B, ‖ · ‖B) is 2-smooth

if there exists an equivalent norm ‖ · ‖ such that

sup
t>0

{ 1

t2
sup{‖x+ ty‖+ ‖x− ty‖ − 2 : ‖x‖ = ‖y‖ = 1}

}
<∞ .

¿From Assouad (1975), we know that if B is 2-smooth and separable, then there exists a

constant D such that, for any sequence of B-valued martingale differences (Xi)i≥1,

(4.24) E(‖X1 + · · ·+Xn‖2
B) ≤ D

n∑
i=1

E(‖Xi‖2
B) .

¿From (4.24), we see that 2-smooth Banach spaces play the same role for martingales as

space of type 2 do for sums of independent variables. When the constant D needs to be

specify, we shall say that B is (2, D)-smooth. Note that, for any measure space (T,A, ν),

Lp(T,A, ν) is (2,
√
p− 1)-smooth for any p ≥ 2, and that any separable Hilbert space is

(2, 1)-smooth.

Definition 5. Given a separable Banach space (B, ‖ · ‖B), let (Xi)i>0 be a sequence of

B-valued random variables. Following Woyczińsky (1981), we write (Xi) ≺ X if there

exists a nonnegative random variable X such that QX ≥ supk≥1Q‖Xk‖B .
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Theorem 1. Let (B, ‖ · ‖B) be a (2, D)-smooth separable Banach space. Let (Xk)k>0 be

a sequence of centered random variables with values in B. Let Sn = X1 + · · · + Xn and

Mi = σ(Xk, 1 ≤ k ≤ i). Let τ−1
∞ (u) =

∑
i≥0 1Iu<τ∞(i). Let X be a nonnegative random

variable such that (Xi) ≺ X. Let RX = (τ−1
∞ ◦G−1

X ∧n)QX and SX = R−1
X . Then, for any

x > 0 and r ≥ 1 and every quantity s2
n such that

s2
n ≥ max

1≤q≤n

[n/q]∑
i=1

E‖Siq − S(i−1)q‖2
B ,

one has that

P
(

max
1≤k≤n

‖Sk‖B ≥ 4x
)
≤ 4

(
1 +

x2

D2 rs2
n

)−r/8
+

9n

x

∫ SX(x/r)

0

QX(u)du .(4.25)

Remark 5. In the proof of Theorem 1, note that the inequality (4.41) can be weakened

in τ(Fi−2, Ui) ≤ qτ̃q(q + 1), where τ̃q(i) is defined from (3.14). Consequently, Inequality

(4.25) remains valid with the sequence τ̃∞ = (τ̃∞(i))i≥0 replacing τ∞ = (τ∞(i))i≥0.

Corollary 1. Let (B, ‖ · ‖B) be a (2, D)-smooth separable Banach space. Let (Xk)k>0 be a

sequence of centered random variables with values in B. Let X be a nonnegative random

variable such that (Xi) ≺ X. Then with the notations of Theorem 1, for any p ≥ 2,

(4.26) E
(

max
1≤k≤n

‖Sk‖pH
)
≤ aps

p
n + bp n

∫ 1

0

Rp−1
X (u)QX(u)du ,

where

ap = p 4p+2Dp(4p+ 1)p/2 and bp = 9
p

p− 1
4p(4p+ 1)p−1 .

By the definition of RX , it follows that

(4.27) E
(

max
1≤k≤n

‖Sk‖pH
)
≤ aps

p
n + (p− 1)bp n

n−1∑
i=0

(i+ 1)p−2

∫ τ∞(i)

0

Qp−1
X ◦GX(u)du .

Proof of Corollary 1 Inequality (4.26) follows from the fact that for p ≥ 1, E(|Z|p) =

p 4p
∫∞

0
xp−1P(|Z| ≥ 4x)dx, and the application of Inequality (4.25) with r = 4p + 1.

Inequality (4.27) comes from (4.26) by making the change of variables v = H(u) and by

using the fact that (i+ 1)p−1 − ip−1 ≤ cp(i+ 1)p−2 where cp = 1 ∨ (p− 1).

Remark 6. In the case where B = H is a separable Hilbert space the constants involved

in the right-hand side of Inequality (4.25) can be sharpened. First we can take D = 1.
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In addition, with the notations of the proof of Theorem 1, E‖Ũi‖2
B ≤ E‖U ′i‖2

H ≤ E‖Ui‖2
H.

Consequently, we can apply Lemma 6 of the appendix with yn = s2
n and c = 4qM to

obtain a better inequality than (4.38). The upper bound (4.25) becomes

(4.28) P
(

max
1≤k≤n

‖Sk‖H ≥ 4x

)
≤ 4

(
1 +

4x2

rs2
n

)−r/8
+

9n

x

∫ SX(x/r)

0

QX(u)du ,

and we can take

(4.29) s2
n =

n∑
i=1

n∑
j=1

|E < Xi, Xj >H | .

The constant ap involved in Inequalities (4.26) and (4.27) becomes in this case ap =

p 2p+4(4p+ 1)p/2 (the constant bp is unchanged).

Proof of Theorem 1. For the sake of brevity, write Q,R, S and G for QX , RX , SX and

GX respectively. Let q be a positive integer and M > 0. Define the random variables

Ui = Siq − Siq−q for 1 ≤ i ≤ [n/q]. Let

U ′i = Ui1I‖Ui‖B≤2qM and U ′′i = Ui1I‖Ui‖B>2qM .(4.30)

With these notations, it is clear that Ui = U ′i +U ′′i . Define ϕM(x) = (|x| −M)+. We first

show that

(4.31) max
1≤k≤n

‖Sk‖B ≤ max
1≤j≤[n/q]

∥∥∥ j∑
i=1

U ′i

∥∥∥
B

+ qM + 2
n∑
k=1

ϕM(‖Xk‖B) .

To prove (4.31), it suffices to note that, if the maximum of ‖Sk‖B is obtained in k0, then

for j0 = [k0/q],

(4.32) max
1≤k≤n

‖Sk‖B ≤
∥∥∥ j0∑
i=1

U ′i

∥∥∥
B

+

j0∑
i=1

‖U ′′i ‖B +

k0∑
k=qj0+1

‖Xk‖B .

Now, by definition of ϕM ,

(4.33)

k0∑
k=qj0+1

‖Xk‖B ≤ (k0 − qj0)M +

k0∑
k=qj 0+1

ϕM(‖Xk‖B) .

On the other hand, since |x|1I(|x| > 2A) ≤ 2(|x| − A)+, we have ‖U ′′i ‖B ≤ 2ϕqM(‖Ui‖B).

By convexity of the function ϕqM , we derive that

(4.34)

j 0∑
i=1

‖U ′′i ‖B ≤ 2

qj 0∑
k=1

ϕM(‖Xk‖B) .
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Starting from (4.32) and using (4.33) and (4.34), we obtain (4.31). Now, since the random

variables are centered, we have that E(U ′i) = −E(U ′′i ) and hence

max
1≤j≤[n/q]

∥∥∥ j∑
i=1

U ′i

∥∥∥
B
≤ max

1≤j≤[n/q]

∥∥∥ j∑
i=1

(U ′i − E(U ′i))
∥∥∥

B
+

[n/q]∑
i=1

E‖U ′′i ‖B .

Using (4.34), it follows that

max
1≤j≤[n/q]

∥∥∥ j∑
i=1

U ′i

∥∥∥
B
≤ max

1≤j≤[n/q]

∥∥∥ j∑
i=1

(U ′i − E(U ′i))
∥∥∥

B
+ 2

n∑
k=1

E(ϕM(‖Xk‖B)) .(4.35)

To control the quantity: max1≤j≤[n/q] ‖
∑j

i=1(U ′i − E(U ′i))‖B, we proceed as follows. Let

(δi)1≤i≤[n/q] be a sequence of independent random variables with uniform distribution over

[0, 1], independent of (Ui)1≤i≤[n/q]. Let U∗1 = U ′1 and U∗2 = U ′2, and apply Lemma 1. For any

3 ≤ i ≤ [n/q], there exists a measurable function Fi such that U∗i = Fi(U
′
1, · · · , U ′i−2, U

′
i , δi)

satisfies the conditions of Lemma 1 withM = σ(U`, ` ≤ i−2). The sequence (U∗i )1≤i≤[n/q]

has the following properties:

1. for any 1 ≤ i ≤ [n/q], the random variable U∗i has the same distribution as U ′i .

2. The random variables (U∗2i)2≤2i≤[n/q] are independent as well as the random variables

(U∗2i−1)1≤2i−1≤[n/q].

3. for any 3 ≤ i ≤ [n/q], E‖U ′i − U∗i ‖B = τ
(
σ(U`, ` ≤ i− 2), U ′i

)
.

Substituting the variables U∗i to U ′i , we obtain the inequality

(4.36) max
1≤j≤[n/q]

∥∥∥ j∑
i=1

(U ′i − E(U ′i))
∥∥∥

B
≤ max

2≤2j≤[n/q]

∥∥∥ j∑
i=1

Ũ2i

∥∥∥
B

+ max
1≤2j−1≤[n/q]

∥∥∥ j∑
i=1

Ũ2i−1

∥∥∥
B

+

[n/q]∑
i=3

‖U ′i − U∗i ‖B ,

where Ũi = U∗i − E(U∗i ) for any 1 ≤ i ≤ [n/q]. Combining (4.31), (4.35) and (4.36), we

obtain the following upper bound

(4.37) max
1≤k≤n

‖Sk‖B ≤ qM + max
2≤2j≤[n/q]

∥∥∥ j∑
i=1

Ũ2i

∥∥∥
B

+ max
1≤2j−1≤[n/q]

∥∥∥ j∑
i=1

Ũ2i−1

∥∥∥
B

+

[n/q]∑
i=3

‖U ′i − U∗i ‖B + 2
n∑
k=1

(
ϕM(‖Xk‖B) + E(ϕM(‖Xk‖B))

)
.
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Since ‖U ′i‖B ≤ 2qM almost surely, it follows that ‖Ũi‖B ≤ 4qM almost surely. Since

E‖Ũi‖2
B ≤ 4E‖U ′i‖2

B ≤ 4E‖Ui‖2
B, we obtain from Lemma 6 of the appendix, with yn = 4s2

n

and c = 4qM ,

(4.38) P
(

max
2≤2j≤[n/q]

∥∥∥ j∑
i=1

Ũ2i

∥∥∥
B
≥ x

)
≤ 2 exp

(
− x

8qM
ln

(
1 +

xqM

D2s2
n

))
.

Obviously, the same bound holds for max1≤2j−1≤[n/q] ‖
∑j

i=1 Ũ2i−1‖B.

Now from Markov’s inequality, we get that

(4.39) P
( [n/q]+1∑

i=3

‖U ′i − U∗i ‖B + 2
n∑
k=1

(
ϕM(‖Xk‖B) + E(ϕM(‖Xk‖B))

)
≥ x

)
≤ 1

x

( [n/q]+1∑
i=3

E‖U ′i − U∗i ‖B + 4
n∑
k=1

E(ϕM(‖Xk‖B))
)
.

Let PU ′i ,Ui|M be a conditional distribution of (U ′i , Ui) given M, and define the σ-algebras

Fi = σ(Ui, 1 ≤ j ≤ i). For any 3 ≤ i ≤ [n/q], we have for d(x, y) = ‖x− y‖B,

(4.40) ‖U ′i − U∗i ‖L1
B

=
∥∥∥ sup

Λ1(B,d)

∣∣∣ ∫∫ f(x)PU ′i ,Ui|Fi−2
(dx, dy)−

∫∫
f(x)PU ′i ,Ui(dx, dy)

∣∣∣ ∥∥∥
1
,

and consequently ‖U ′i − U∗i ‖L1
B
≤ A1 + A2, where

A1 =
∥∥∥ sup
f∈Λ1(B,d)

∣∣∣ ∫ f(y)PUi|Fi−2
(dy)−

∫
f(y)PUi(dy)

∣∣∣ ∥∥∥
1

A2 =
∥∥∥ sup
f∈Λ1(B,d)

∣∣∣ ∫∫ (f(x)− f(y))(PU ′i ,Ui|Fi−2
(dx, dy)− PU ′i ,Ui(dx, dy))

∣∣∣ ∥∥∥
1
.

Clearly A2 ≤ 2E‖U ′i − Ui‖B = 2E‖U ′′i ‖B, and A1 = τ(Fi−2, Ui). By definition of τq(k), we

have, for any 3 ≤ i ≤ [n/q],

(4.41) τ(Fi−2, Ui) ≤ qτq(q + 1) .

Hence, it follows from (4.34) that

(4.42)

[n/q]∑
i=3

E‖U ′i − U∗i ‖B ≤ nτq(q + 1) + 4
n∑
k=1

E(ϕM(‖Xk‖B) .
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Applying (4.42), we infer from (4.39) that

(4.43) P
( [n/q]+1∑

i=3

‖U ′i − U∗i ‖B + 2
n∑
k=1

(
ϕM(‖Xk‖B) + E(ϕM(‖Xk‖B))

)
≥ x

)
≤ 1

x

(
nτq(q + 1) + 8

n∑
k=1

E(ϕM(‖Xk‖B))
)
.

Consequently, from (4.37), (4.38) and (4.43),

(4.44) P( max
1≤k≤n

‖Sk‖B ≥ 4x) ≤ 4 exp

(
− x

8qM
ln

(
1 +

xqM

s2
nD

2

))
+

1

x

(
nτq(q + 1) + 8

n∑
k=1

E(ϕM(‖Xk‖B))
)
.

Choose v = S(x/r), q = (τ−1
∞ ◦G−1(v)) ∧ n and M = Q(v). We have that

qM = R(v) = R(S(x/r)) ≤ x/r ≤ x .

Note that QϕM (‖Xk‖B) = (Q‖Xk‖B −M)+. Consequently

n∑
k=1

E(ϕM(‖Xk‖B)) =
n∑
k=1

∫ 1

0

(Q‖Xk‖B(u)−QX(v))+du ≤ n

∫ v

0

(Q(u)−Q(v))du .

In addition the choice of q implies that τq(q + 1) ≤ τ∞(q) ≤
∫ v

0
Q(u)du, and Theorem 1

follows easily from (4.44). �

5 Application to the complete convergence

In this section, we are interested in the complete convergence (or the convergence rate

of the strong law of large numbers) for a τ -dependent sequence with values in a Hilbert

space.

Let (Xk)k>0 be a sequence of random variables with values in a separable Hilbert space

(H, ‖·‖H) and letMk = σ(Xi, i ≤ k). Let Sn =
∑n

i=1(Xi−E(Xi)). Here we are interested

by conditions under which (1.1) holds for 1/2 < α ≤ 1 and 1/α ≤ p < ∞. Note that

Property (1.1) with αp = 1 is equivalent to

(5.1)
∞∑
N=1

P
(

max
1≤k≤2N

‖Sk‖B ≥ ε 2N/p
)
<∞ .
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Using the monotonicity of the sequence max1≤k≤n ‖Sk‖B, we infer from (5.1) that n−1/pSn

tends to 0 almost surely.

In addition Property (1.1) describes speed of convergence in the strong law. Indeed

by Lemma 4 in Lai (1977), it implies in case αp > 1 that

(5.2)
∞∑
n=1

nαp−2P
(

sup
k≥n

k−α‖Sk‖B ≥ ε
)
<∞ .

Since the probabilities in (5.2) are non-increasing in n, it follows that

P
(

sup
k≥n

k−α‖Sk‖B ≥ ε
)

= o
( 1

nαp−1

)
.

Definition 6. Let (Ω,A,P) be a probability space. Let X be a random variable with

values in H and let M be a σ-algebra of A. For any X in L1(H), define

(5.3) γ(M, X) = E(‖E(X|M)− E(X)‖H) ,

The coefficients γ(i) of the sequence (Xk)k>0 are then defined by

γ(i) = sup
k>0

γ(Mk, Xk+i) .

In the special case where p ∈]1, 2[, Dedecker and Merlevède (2004, Theorem 3.3)

sharpened Theorem 1 in Shao (1993), and proved that (1.1) holds as soon as (Xi) ≺ X

(see Definition 5) and

(5.4) DM(p, γ,X) :
∑
i≥0

(i+ 1)p−2

∫ γ(i)

0

Qp−1
X ◦GX(u)du <∞ .

They also proved that if E(X ln+(X)) < ∞ and
∑

i≥1 γ(i)/i < +∞ then Property (1.1)

holds true with α = p = 1. The key of the proof of Theorem 4 in Dedecker and Merlevède

is a new maximal inequality in which the dependence coefficients involved are expressed

in terms of conditional expectations. However the maximal inequality stated in this paper

does not allow to obtain sharp results in the case where 1 ≤ 1/α < 2 ≤ p <∞, which is

also considered by Shao (1993). Here we shall see that an application of Inequality (4.28)

can cover the case where 1 ≤ 1/α < 2 ≤ p <∞.

Theorem 2. Let 1/2 < α ≤ 1 and p such that p > 1 and 1/α ≤ p < ∞. Let (Xk)k>0

be a sequence of random variables with values in a separable Hilbert space (H, ‖ · ‖H) and

let Mk = σ(Xi, i ≤ k). Let Sn =
∑n

i=1(Xi − E(Xi)) and let X be a nonnegative random

variable such that (Xi) ≺ X.
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1. If p ∈]1, 2[ and DM(p, τ1, X) holds then (1.1) is satisfied.

2. If p ≥ 2 and DM(p, τ∞, X) holds then (1.1) is satisfied.

Remark 7. Since the proof of Theorem 2 comes from an application of Theorem 1,

it follows from Remark 5 that Item 2 of Theorem 2 remains valid under the condition

DM(p, τ̃∞, X).

¿From Lemma 2 in Dedecker and Doukhan (2003), we obtain sufficient conditions for

DM(p, τk, X) to hold.

Corollary 2. Let p > 1. Any of the following conditions implies DM(p, τk, X).

1. P(X > x) ≤ (c/x)r for some r > p, and
∑

i≥0(i+ 1)p−2(τk(i))
(r−p)/(r−1) <∞.

2. ‖X‖r <∞ for some r > p, and
∑

i≥1 i
(pr−2r+1)/(r−p)τk(i) <∞.

3. E(Xp(ln(1 +X))p−1) <∞ and τk(i) = O(ai) for some a < 1.

Using Lemma 4, we obtain the following corollary for β-mixing sequences.

Corollary 3. The following condition implies DM(p, τk, X):

(5.5)
∑
i≥0

(i+ 1)p−2

∫ βk(i)

0

Qp
X(u)du <∞ .

Hence if supn≥1 ‖Xn‖H < C almost surely, then (1.1) holds under the condition∑
i≥0(i + 1)p−2β∞(i) < ∞, which was first obtained by Berbee (1987) for real valued

random variables.

Remark 8. In the case H = R and d(x, y) = |x − y|, by taking into account Remark 7

and Inequality (3.16), we can derive the following result: Let 1/2 < α ≤ 1 and p such

that p > 1 and 1/α ≤ p <∞. Define the coefficients (α∞(i))i≥0 by ( 3.15). If

(5.6)
∑
i≥0

(i+ 1)p−2

∫ α∞(i)

0

Qp
X(u)du <∞ ,

then (1.1) holds. The condition (5.6) was first used by Rio (1995a) to prove (1.1), but

only in the case where αp = 1 and p ∈]1, 2[. Let us compare this result with Theorem
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1 in Shao (1993): Shao proved that, if E(Xn) = 0 and there exists r > p such that

supn≥1 ‖Xn‖r <∞, and if

(5.7) α∞(n) = O
(
n−

r(p−1)
r−p (log n)−β

)
with β ≥ rp/(r − p) ,

then (1.1) holds. However, in his concluding remarks, Shao (1993) made the conjecture

that the condition on β may be weakened in β > r/(r − p). He also gives an example

showing that we cannot take β ≤ r/(r − p). As quoted in Rio (1995a), page 923, if

supn≥1 ‖Xn‖r < ∞, then there exists X such that (Xn) ≺ X with P(X > x) = O(x−r),

so that (1.1) holds as soon as∑
i≥0

(i+ 1)p−2α(r−p)/r
∞ (i) <∞ .

Clearly, this proves Shao’s conjecture. Now if the condition supn≥1 ‖Xn‖r <∞ is strength-

ened in: there exists X such that (Xn) ≺ X and E(Xr) <∞, then according to Relation

(C.8) in Rio (2000), (1.1) holds as soon as∑
i≥0

(i+ 1)(pr−2r+p)/(r−p)α∞(i) <∞ ,

which is true by only assuming β > 1 in (5.7).

Proof of Theorem 2. Item 1 follows from (5.4) and Item 1 of the following lemma.

Lemma 5. The following upper bounds hold:

1. γ(M, X) ≤ τ(M, X).

2. γ(M, X) ≤ 18

∫ α(M,σ(X))

0

Q‖X‖H(u)du.

Proof of Lemma 5. For Item 1, notice that

γ(M, X) = E
(∥∥∥∫ x (PX|M − PX)(dx)

∥∥∥
H

)
= E

(
sup

y∈H, ‖y‖H≤1

∫
< y, x >H (PX|M − PX)(dx)

)
.

Since x →< y, x >H belongs to Λ1(H, ‖ · ‖H), the result follows from the definition of

τ(M, X). The item 2 is proved in Dedecker and Merlevède (2003), page 250. �
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We now turn to the proof of Item 2 of Theorem 2. Note first that, if s2
n is defined as in

(4.29), we infer from Inequality (3.33) in Dedecker and Merlevède (2003) that s2
n ≤ nK

for some positive constant K depending on the distribution of X. For the sake of brevity,

write Q,R, S and G for QX , RX , SX and GX respectively. Applying Inequality (4.28) with

x = xn = (εnα)/4, we obtain that, for any r ≥ 1 and ε > 0,

nαp−2P
(

max
1≤k≤n

‖Sk‖H ≥ εnα
)
≤ I1(n) + I2(n),

where

I1(n) = 4nαp−2

(
1 +

ε2n2α−1

4rK

)−r/8
and I2(n) =

36nα(p−1)−1

ε

∫ S(xn/r)

0

Q(u)du .

Choose r > max(1, 8(αp− 1)/(2α − 1)), so that
∑

n≥1 I1(n) < ∞. Now since R is right-

continuous and non-increasing,

(5.8) u < S(xn/r) ⇐⇒ R(u) > (εnα)/4r ⇐⇒ n <
(4rR(u)

ε

)1/α

.

Applying Fubini, it follows that there exists a finite constant C depending only on α, p

and ε, such that∑
n≥1

I2(n) ≤ C

∫ 1

0

Rp−1(u)Q(u)du ≤ C

∫ 1

0

(τ−1
∞ ◦G−1(u))p−1Qp(u)du .

Setting v = H(u), the right hand side is finite as soon as∫ 1

0

(τ−1
∞ (u))p−1Qp−1 ◦G(u)du <∞ ,

which is equivalent to DM(p, τ∞, X) (see for instance Rio (2000), Appendix C). This

completes the proof.

6 Application to strong invariances principles

Let us first recall a bounded law of the iterated logarithm for H-valued stationary and

ergodic martingale difference sequences (di)i∈Z, which can be deduced from Theorem 1 in

Morrow and Philipp (1982) (see also the remarks page 112 in Dehling et al. (1986)). If

E(‖d0‖2+ε
H ) <∞ for some ε > 0, then

lim sup
n→∞

‖
∑n

i=1 di‖H√
2n ln lnn

=
√

sup
‖y‖H≤1

Var(< y, d0 >H) almost surely .
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Starting from this result, we can derive a bounded law of the iterated logarithm for

stationary and ergodic sequences (Xi)i∈Z of H-valued random variables, under a projective

criterion in the style of Gordin (1969). Let Mk = σ(Xi, i ≤ k). If

(6.9)
n∑
k=1

E(Xk|M0) converges in L2+ε
H ,

then Sn = Z1−Zn+1 +
∑n

i=1 di where (Zi)i∈Z is a stationary sequence in L2+ε
H , and (di)i∈Z

is a stationary and ergodic martingale difference sequence in L2+ε
H . Hence, if (6.9) holds

for some ε > 0, then

lim sup
n→∞

‖Sn‖H√
2n ln lnn

=
√

sup
‖y‖H≤1

Var(< y, d0 >H) almost surely .

A sufficient condition for (6.9) in terms of the coefficients γ(i) of Definition 6, is

(6.10)
∑
i≥0

(i+ 1)1+ε

∫ γ(i)

0

Q1+ε
‖X0‖H ◦G‖X0‖H(u) <∞ .

By using Item 2 of Lemma 5, it follows easily that (6.10) is satisfied for some ε > 0 as

soon as

(6.11) E(‖X0‖2+δ
H ) < +∞ and α∞(n) = O(n−(2+ε)(1+2/δ)) ,

for some δ > 0 and ε > 0. However, from Theorem 1 in Dehling and Philipp (1982), we

know that the condition (6.11) can be improved to

(6.12) E(‖X0‖2+δ
H ) < +∞ and α∞(n) = O(n−(1+ε)(1+2/δ)) ,

at least in the case where 0 < δ ≤ 1.

In fact we shall see in the next theorem that, if we consider the stronger coefficients

τ∞(i) instead of γ(i), the condition (6.10) can be improved to

DM(2, τ∞, ‖X0‖H) :
∑
i≥0

∫ τ∞(i)

0

Q‖X0‖H ◦G‖X0‖H(u)du <∞ .

As in Theorem 1 in Dehling and Philipp (1982), this condition implies also an almost

sure invariance principle. In the real case, this result was proved by Dedecker and Prieur

(2004, Theorem 3), and is known to be essentially optimal according to Proposition 3 in

Doukhan et al. (1994).
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Notice that according to Corollary 3, DM(2, τ∞, ‖X0‖H) holds as soon as

(6.13)
∑
i≥0

∫ β∞(i)

0

Q2
‖X0‖H(u)du <∞ ,

which is true under (6.12) with β∞(n) replacing α∞(n) and no restriction on δ (except

δ > 0). If H = R, Rio (1995b) proved that the strong invariance principle holds under

the condition (6.13) with α∞(n) replacing β∞(n). It is an open question to know if Rio’s

result can be extended to separable Hilbert spaces.

Definition 7. A nonnegative self adjoint operator Λ on a separable Hilbert space H
will be called an S(H)-operator if it has finite trace, i.e. for some (and therefore every)

orthonormal basis (el)l≥1 of H,
∑

l≥1 < Λel, el >H<∞.

Theorem 3. Let (Xn)n∈Z be a strictly stationary sequence of random variables with values

in a separable Hilbert space (H, ‖ · ‖H), such that E‖X0‖2
H is finite and E(X0) = 0. Let

Mk = σ(Xi, i ≤ k) and Sn = X1 + · · ·+Xn.

1. If the sequence is ergodic and DM(2, τ1, ‖X0‖H) holds, then n−1/2Sn converges in

distribution to N (0,Λ), where the operator Λ ∈ S(H) is defined by

Λ(x, y) = E(< X0, x >< X0, y >)

+
∞∑
k=1

E(< X0, x >< Xk, y >) +
∞∑
k=1

E(< X0, y >< Xk, x >) .

2. If DM(2, τ∞, ‖X0‖H) holds, then there exists a sequence (Yn)n∈N of independent

N (0,Λ)-distributed random variables (possibly degenerate) such that∥∥∥ n∑
i=1

(Xi − Yi)
∥∥∥

H
= o

(√
n ln lnn

)
a.s.

Remark 9. Using Remark 5, the conclusion of Theorem 3.2 remains valid under the

condition DM(2, τ̃∞, ‖X0‖H), which was first obtained by Dedecker and Prieur (2004) in

the real case.

Proof of Theorem 3. Item 1 follows from Corollary 2(β) in Dedecker and Merlevède

(2003) and Lemma 5. We now turn to the proof of Item 2.
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Definition 8. If Lx = max(1, lnx), define the set

Ψ =

{
ψ : N→ N , ψ increasing ,

ψ(n)

n
−−−−→
n→+∞

+∞ , ψ(n) = o (n
√
LLn )

}
.

If ψ is some function of Ψ, let M1 = 0 and Mn =
∑n−1

k=1(ψ(k) + k) for n ≥ 2. For n ≥ 1,

define the random variables

Un =

Mn+ψ(n)∑
i=Mn+1

Xi , Vn =

Mn+1∑
i=Mn+1+1−n

Xi , and Zn =

Mn+1∑
i=Mn+1

‖Xi‖H .

Define the truncated random variables Un = Un1I‖Un‖H≤n/
√
LLn.

Item 2 of Theorem 3 is a consequence of the following Proposition

Proposition 1. Let (Xn)n∈Z be a strictly stationary sequence of random variables with

values in a separable Hilbert space (H, ‖ · ‖H), such that E‖X0‖2
H is finite and E(X0) = 0.

Assume that DM(2, τ∞, ‖X0‖H) holds. There exist a function ψ ∈ Ψ and a sequence

(Wn)n∈N of independent N (0, ψ(n)Λ)-distributed random variables (possibly degenerate)

such that

(a)
∥∥∥ n∑
i=1

(Wi − U i)
∥∥∥

H
= o

(√
MnLLn

)
a.s.

(b)
∞∑
n=1

E(‖Un − Un‖H)

n
√
LLn

<∞

(c) Zn = o
(
n
√
LLn

)
a.s.

Proof of Proposition 1. It is adapted from the proof of Proposition 2 in Rio (1995b).

Proof of (b). Note first that E‖Un − Un‖H ≤ 2E(‖Un‖H − n/2
√
LLn)+, so that

(6.14) E‖Un − Un‖H ≤ 2

∫ +∞

n

2
√
LLn

P(‖Un‖H > t)dt.

In the following we write Q instead of Q‖X0‖H . Since Un is distributed as Sψ(n), we obtain

from (4.28) with s2
n as in (4.29),

(6.15) P(‖Un‖H > t) ≤ 4
(

1 +
t2

4rs2
ψ(n)

)− r
8

+
36ψ(n)

t

∫ S(t/4r)

0

Q(u)du.
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We finish the proof as for the proof of (5.6) in Dedecker and Prieur (2004).

Proof of (c). Let Tn =
∑Mn+1

i=Mn+1 (‖Xi‖H − E‖Xi‖H) . We easily see that

(6.16) Zn = (ψ(n) + n) E‖X1‖H + Tn.

By definition of Ψ, we have ψ(n) = o
(
n
√
LLn

)
. Here note that

(6.17) Tn ≤
n√
LLn

+

(
Tn −

n√
LLn

)
+

.

Since ‖ · ‖H is 1-lipschitz, the coefficients τ(i) of the sequence (‖Xi‖H − E‖Xi‖H)i>0 are

smaller than those of the sequence (Xi)i>0. Hence, using similar arguments as for the

proof of (b), we obtain that

∑
n≥1

E
(
Tn − n√

LLn

)
+

n
√
LLn

< +∞, so that
∑
n≥1

(
Tn − n√

LLn

)
+

n
√
LLn

< +∞ a.s.

Consequently (Tn−n(LLn)−1/2)+ = o(n
√
LLn) almost surely, and the result follows from

(6.16) and (6.17).

Proof of (a). In the following, (δn)n≥1 and (ηn)n≥1 denote independent sequences of inde-

pendent random variables with uniform distribution over [0, 1], independent of (Xn)n≥1.

Using Lemma 1 and arguing as in the proof of Theorem 1, we get the existence of a

sequence (U
∗
n)n≥1 of independent random variables with the same distribution as the

random variables Un such that U
∗
n is a measurable function of

(
U l, δl

)
l≤n and

E‖Un − U
∗
n‖H = τ(σ(Ui, i ≤ n− 1), Un) .

Arguing as in (4.40) of the proof of Theorem 1, we obtain that

E‖Un − U
∗
n‖H ≤ τ(σ(Ui, i ≤ n− 1), Un) + 2E‖Un − Un‖H

≤ ψ(n)τ(n) + 2E‖Un − Un‖H .(6.18)

Since DM(2, τ∞, ‖X0‖H) holds, we obtain from (6.18) and (b) that

∑
n≥1

E‖Un − U
∗
n‖H√

Mn LLn
< +∞ so that

∑
n≥1

‖Un − U
∗
n‖H√

Mn LLn
< +∞ a.s.
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Applying Kronecker’s lemma, we obtain that

(6.19)
n∑
i=1

‖U i − U
∗
i ‖H = o

(√
Mn LLn

)
a.s.

¿From Corollary 2(β) in Dedecker and Merlevède (2003), we know that ψ(n)−1‖Un‖2
H is

uniformly integrable and that ψ(n)−1/2Un converges in distribution to a centered Gaussian

mesure PΛ with covariance operator Λ belonging to S(H). Using the uniform integrability

of ψ(n)−1‖Un‖2
H and the fact that U

∗
n has the same distribution as Un, it follows that

ψ(n)−1/2U
∗
n converges in distribution to N (0,Λ). Consequently, if ρ(P,Q) is the Prohorov

distance between P and Q, we have that ρ(Pψ(n)−1/2U
∗
n
, PΛ) tends to 0 as n tends to infinity.

From Theorem 2 in Dudley (1968), it follows that there exists a sequence µn of probability

on (H×H,B(H)⊗B(H)) with marginals Pψ(n)−1/2U
∗
n

and PΛ, such that µn(‖x− y‖H > ε)

converges to 0 for any positive ε. By Skorohod’s lemma (1976), one can construct some

sequence (Wn)n≥1 of σ(U
∗
n, ηn)-measurable random variables with respective distribution

N (0, ψ(n)Λ) such that, for any ε > 0,

lim
n→∞

P
(
‖U∗n −Wn‖H > ε

√
ψ(n)

)
= 0 .

Using the uniform integrability of ψ(n)−1‖U∗n‖2
H and of ψ(n)−1‖Wn‖2

H, it follows that

(6.20) E
(
‖U∗n −Wn‖2

H

)
= o (ψ(n)) as n→ +∞ .

Let W n = Wn1I‖Wn‖H≤n/
√
LLn. We have

E‖Wn −W n‖H ≤ 2E(‖Wn‖H − n/2
√
LLn)+ = 2

∫ +∞

n/2
√
LLn

P(‖Wn‖H > t)dt .

Now according to Remark 4 in Pinelis and Sakhanenko (1985), if G is a centered Gaussian

random variable with values in H then

(6.21) P(‖G‖H > t) ≤ 2 exp
(
− t2

2E‖G‖2
H

)
.

It follows that

E‖Wn −W n‖H ≤ 8
E‖Wn‖2

H
n

√
LLn exp

(
− n2

8(LLn)E‖Wn‖2
H

)
.

Then there exist constants C1 and C2 depending on ψ and Λ such that

(6.22) E‖Wn −W n‖H ≤ C1(LLn) exp

(
−C2n

(LLn)3/2

)
,
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so that
∑

n>0 E‖Wn −W n‖H is finite. By Kronecker’s lemma, it follows that

(6.23)
n∑
i=1

‖Wi −W i‖H = o(
√
MnLLn) a.s.

In view of (6.19) and (6.23), it only remains to prove that∥∥∥ n∑
i=1

(W i − U
∗
i )
∥∥∥

H
= o(

√
MnLLn) a.s.

Since U
∗
i is distributed as U i and since the random variables are centered, E(U

∗
i ) = E(U i−

Ui). Consequently, Proposition 1(b) yields
∑n

i=1 ‖E(U
∗
i )‖H = o(

√
MnLLn). In the same

way, E(W i) = E(Wi −W i). Then according to (6.22),
∑n

i=1 ‖E(W i)‖H = o(
√
MnLLn).

Hence, it remains to prove that

(6.24)
∥∥∥ n∑
i=1

W i − E(W i)− U
∗
i + E(U

∗
i )
∥∥∥

H
= o(

√
MnLLn) a.s.

Proof of (6.24). Notice first that

E‖W n − E(W n)− U∗n + E(U
∗
n)‖2

H ≤ E‖W n − U
∗
n‖2

H

≤ 2E‖W n −Wn‖2
H + 2E‖Wn − U

∗
n‖2

H .

Since ψ(n)−1‖Wn‖2
H is uniformly integrable, E‖Wn −W n‖2

H = o(ψ(n)), which combined

with (6.20) implies that

E‖W n − E(W n)− U∗n + E(U
∗
n)‖2

H ≤ εnψ(n)

for some sequence εn of positive reals decreasing to 0 as n tends to infinity. Since the

random variables (W i − E(W i) − U
∗
i + E(U

∗
i ))1≤i≤n are independent and almost surely

bounded by 4n/
√
LLn, we obtain from the last inequality of Lemma 6 that for all x > 0,

P

(
sup

1≤j≤n

∥∥∥ j∑
i=1

(
W i − E(W i)− U

∗
i + E(U

∗
i )
)∥∥∥

H
≥ x

)

≤ 2 exp

(
−x2

4
∑n

i=1 εiψ(i)

)
∨ 2 exp

(
−3x
√
LLn

16n

)
.

Taking

xn = max
(

32n
√
LLn/3,

(
8LLn

n∑
i=1

εiψ(i)
)1/2)

,
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we obtain that∑
n>0

1

n
P

(
sup

1≤j≤n

∥∥∥ j∑
i=1

(
W i − E(W i)− U

∗
i + E(U

∗
i )
)∥∥∥

H
≥ xn

)
<∞ ,

which implies (6.24), since xn = o(
√
MnLLn).

Proof of Theorem 3. By Skohorod’s lemma (1976), there exists a sequence (Yi)i≥1 of

independent N (0,Λ)-distributed random variables satisfying Wn =
∑Mn+ψ(n)

i=Mn+1 Yi for all

positive n. Define the random variable V ′n =
∑Mn+1

i=Mn+1+1−n Yi .

Define n(k) = sup {n ≥ 0 : Mn ≤ k}, and note that by definition of Mn we have

n(k) = o(
√
k). Applying Proposition 1(c) we see that

(6.25)
∥∥∥ k∑
i=1

Xi −
n(k)∑
i=1

(Ui + Vi)
∥∥∥

H
≤ Zn(k) = o

(√
k LLk

)
a.s.

Using the same arguments as in the proof of (a) and (b) of Proposition 1, one can prove

that there exists a sequence (W ′
n)n>0 of independent N (0, nΛ)-distributed random vari-

ables such that ∥∥∥ n∑
i=1

(Vi −W ′
i )
∥∥∥

H
= o(

√
MnLLn) a.s.

Since ‖
∑n

i=1W
′
i‖H = O(n

√
LLn) almost surely, by the bounded law of the iterated loga-

rithm for Gaussian random variables with values in H, we infer that

(6.26)
∥∥∥ n(k)∑
i=1

Vi

∥∥∥
H

= o
(√

k LLk
)

a.s. and also
∥∥∥ n(k)∑
i=1

V ′i

∥∥∥
H

= o
(√

k LLk
)

a.s.

Gathering (6.25), (6.26) and Proposition 1(a) and (b), we obtain that

(6.27)
∥∥∥ k∑
i=1

Xi −
n(k)∑
i=1

(Wi + V ′i )
∥∥∥

H
= o

(√
k LLk

)
a.s.

Clearly
∑k

i=1 Yi−
∑n(k)

i=1 (Wi +V ′i ) is normally distributed with covariance (Mn(k)+1−k)Λ.

Since n(k) = o(
√
k) we have that Mn(k)+1−k ≤ ψ(n(k))+n(k) = o(

√
kLLk) by definition

of ψ. Applying again Inequality (6.21), we infer that there exists a positive constant C

depending on Λ and ψ such that, for any ε > 0,

P
(∥∥∥ k∑

i=1

Yi −
n(k)∑
i=1

(Wi + V ′i )
∥∥∥

H
> ε
√
kLLk

)
≤ 2 exp(−Cε2

√
kLLk) .
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Applying Borel-Cantelli, we infer that

(6.28)
∥∥∥ k∑
i=1

Yi −
n(k)∑
i=1

(Wi + V ′i )
∥∥∥

H
= o

(√
k LLk

)
a.s.

Theorem 3 follows from (6.27) and (6.28).

7 Cramér-von Mises statistics

Let (Xi)1≤i≤n be a strictly stationary sequence of real-valued random variables with com-

mon distribution function F . Let Fn be the empirical distribution function Fn(t) =

n−1
∑n

i=1 1IXi≤t . Let µ be a σ-finite measure on R. Suppose that F satisfies

(7.1)

∫
R−

(F (t))2µ(dt) +

∫
R+

(1− F (t))2µ(dt) <∞ .

Under this assumption, the process {t→ Fn(t)−F (t), t ∈ R} may be viewed as a random

variable with values in the space L2(µ). Let ‖.‖L2(µ) be the L2-norm with respect to µ,

and define

Dn(µ) =
(∫
|Fn(t)− F (t)|2µ(dt)

)1/2

= ‖Fn − F‖L2(µ) .

When µ = dF , D2
n(µ) is known as the Cramér-von Mises statistics, and is commonly

used for testing goodness of fit. It is interesting to write Dn(µ) as the supremum of the

empirical process over a particular class of functions. Indeed,

Dn(µ) = sup
f∈W1(µ)

∣∣∣∣∣ 1n
n∑
i=1

(
f(Xi)− E(f(Xi))

)∣∣∣∣∣ ,
where W1(µ) is the set of functions{

f : f(t) = f(0) +
(∫

[0,t[

f ′(x)µ(dx)
)

1It>0 −
(∫

[t,0[

f ′(x)µ(dx)
)

1It≤0, ‖f ′‖L2(µ) ≤ 1
}
.

Notice that if λ is the Lebesgue measure on the real line, W1(λ) contains the unit ball of

the Sobolev space of order 1 with respect to L2(λ).

We now define the dependence coefficients which naturally appear in this context.

Define first the function Fµ by

(7.2) Fµ(x) = µ([0, x[) if x ≥ 0 and Fµ(x) = −µ([x, 0[) if x ≤ 0 .
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Let now dµ be the distance defined by: for all x and y in R

(7.3) dµ(x, y) =
√
|Fµ(x)− Fµ(y)| .

For the sequence (Xi)i∈Z and the σ-algebras Mi = σ(Xk, k ≤ i), we define the sequence

(τdµ,∞(i))i≥0 as in Definition 3.

With the help of this coefficient, we can describe the asymptotic behavior of Dn(µ).

Proposition 2. Assume that the distribution function F of X0 satisfies (7.1). Define the

function Fµ by (7.2). Define also Yµ =
√
|Fµ(X0)|.

1. If the sequence is ergodic and Yµ is integrable, then Dn(µ) converges to 0 almost

surely.

2. If DM(p, τdµ,1, Yµ) holds for some p ∈]1, 2[, then for α such that 1/2 < α ≤ 1 and

α ≥ 1/p, we have

(7.4)
∞∑
n=1

nαp−2P
(

max
1≤k≤n

kDk(µ) ≥ ε nα
)
<∞ .

In particular, n(p−1)/pDn(µ) converges to 0 almost surely.

3. If DM(p, τdµ,∞, Yµ) holds for some p ≥ 2, then for α such that 1/2 < α ≤ 1 and

α ≥ 1/p, the condition (7.4) is satisfied.

4. If the sequence is ergodic and DM(2, τdµ,1, Yµ) holds, then
√
nDn(µ) converges in

distribution to
√∫

G2(x)µ(dx), where G is a gaussian process in L2(µ) with covari-

ance function defined by

for (f, g) in L2(µ)× L2(µ), Λ(f, g) =

∫∫
f(s)g(t)C(s, t)µ(dt)µ(ds),

where C(s, t) = F (t ∧ s)− F (t)F (s) + 2
∑

k≥1(P(Y0 ≤ t, Yk ≤ s)− F (t)F (s)).

5. If DM(2, τdµ,∞, Yµ) holds then

(7.5) lim sup
n→∞

√
n

2LLn
Dn(µ) =

√
ρ(Λ) almost surely.

where ρ(Λ) is the spectral radius of Λ, that is ρ(Λ) = sup‖y‖H≤1 < y,Λ(y) >H.
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We now give two sufficient conditions for DM(p, τdµ,k, Yµ) to hold.

Corollary 4. The condition DM(p, τdµ,k, Yµ) holds if one of the two following conditions

does:

1.
∑
i≥1

ip−2

∫ βk(i)

0

Qp
Yµ

(u)du <∞.

2. Fµ is α-Hölder, that is |Fµ(x)− Fµ(y)| ≤ C|x− y|α for α ∈]0, 1] and C > 0, and∑
i≥1

ip−2

∫ (τk(i))α/2

0

Qp−1
Yµ
◦GYµ(u)du <∞ ,

where τk(i) = τd,k(i) with d(x, y) = |x− y|.

Proof of Proposition 2. Define the variable Zi = {t → 1IXi≤t − F (t), t ∈ R} which

belongs to H = L2(µ) as soon as (7.1) holds. Clearly Dn(µ) = n−1‖
∑n

i=1 Zi‖H and

(7.6) ‖Zi‖H ≤
(∫

]−∞,0[

(1IXi≤t)
2µ(dt) +

∫
[0,∞[

(1− 1IXi≤t)
2µ(dt)

)1/2

+
(∫

]−∞,0[

(F (t))2µ(dt) +

∫
[0,∞[

(1− F (t))2µ(dt)
)1/2

,

so that ‖Zi‖H ≤
√
|Fµ(Xi)|+E(

√
|Fµ(Xi)|) and E(‖Zi‖H) ≤ 2E(Yµ). Hence Item 1 follows

from Mourier’s ergodic theorem (1953). Now let (τZk (i)) be the sequence of coefficients

associated to the Hilbert valued random sequence (Zi) and to the distance ‖ · ‖H. Let

(x1, . . . , x`) and (y1, . . . , y`) be two elements of R` and define the functions fi and gi of

L2(µ) by

fi(t) = 1Ixi≤t − F (t) and gi(t) = 1Iyi≤t − F (t) .

Since for any f in Λ1(H`, ‖ · ‖H`),

|f(f1, . . . , f`)− f(g1, . . . , g`)| ≤
∑̀
i=1

√
|Fµ(xi)− Fµ(yi)| ,

we clearly get that τZ(i) ≤ τdµ,∞(i). On the other hand, we infer from (7.6) that

(7.7) Q‖Zi‖H ≤ QYµ+E(Yµ) ≤ QYµ + E(Yµ) .

Since E‖Yµ ‖H ≤
∫ 1

0
QYµ(u)du and since QYµ is non-increasing, we get for all x ∈ [0, 1],

(7.8)

∫ x

0

Q‖Z0 ‖H(u)du ≤
∫ x

0

QYµ(u)du+ x

∫ 1

0

QYµ(u)du ≤ 2

∫ x

0

QYµ(u)du .
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Now for two increasing continuous functions f and g, we have that f ≤ g if and only if

f−1 ≥ g−1. In addition [2g(x)]−1 = g−1(x/2) and consequently G‖Z0‖H(u) ≥ GYµ(u/2).

From (7.7) and the last inequality, we infer that∫ τZk (i)

0

Qp−1
‖Z0‖H ◦G‖Z0‖H(u)du ≤ 2p−1

( ∫ τdµ,k(i)

0

QYµ ◦G‖Z0‖H(u)du+

∫ τdµ,k(i)

0

(E(Yµ))p−1du
)

≤ 2p
∫ τdµ,k(i)/2

0

QYµ ◦GYµ(u)du+ 2p−1τdµ,k(i)(E(Yµ))p−1 .(7.9)

It follows that DM(p, τZk , ‖Z‖H) holds as soon as DM(p, τdµ,k, Yµ) does. Items 2 and

3 follow by applying Theorem 2 to the sequence {Zi}i∈Z. Item 4 follows from Item 1 of

Theorem 3. Now by applying Item 2 of Theorem 3 to the sequence {Zi}i∈Z, we deduce that∑n
k=1 Zk satisfies the Strassen form of the law of the iterated logarithm with covariance

structure Λ, as described in Section 8.2 in Ledoux and Talagrand (1991). Hence Item 5

follows from the limit (8.22) in Ledoux and Talagrand. �

Proof of Corollary 4. Note first that

(7.10)

∫ τdµ,k(i)

0

Qp−1
Yµ
◦GYµ(u)du ≤ 2

∫ τdµ,k(i)/2

0

Qp−1
Yµ
◦GYµ(u)du .

Applying Lemma 4, we get that

τdµ,k(i) ≤ 2

∫ βk(i)

0

Qdµ(X0,0)(u)du = 2

∫ βk(i)

0

QYµ(x)dx.

Hence GYµ(τdµ,k(i)/2) ≤ βk(i). Using the change-of-variables v = GYµ(u) in (7.10), Item

1 follows. To prove Item 2, notice first that for all (X∗j1 , . . . , X
∗
j`

) independent ofM0 and

distributed as (Xj1 , . . . , Xj`), we have that

1

`
τdµ(M0, (Xj1 , . . . , Xj`)) ≤

1

`

∑̀
i=1

E
√
|Fµ(Xji)− Fµ(X∗ji)| .

Since Fµ is α-Hölder, we get

1

`
τdµ(M0, (Xj1 , . . . , Xj`)) ≤

√
C

`

∑̀
i=1

E(|Xji −X∗ji |
α/2) .

Applying Lemma 1, we can choose the `-tuple (X∗j1 , . . . , X
∗
j`

) such that

∑̀
i=1

E(|Xji −X∗ji |) = τ(M0, (Xj1 , . . . , Xj`)) .
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Hence, using Jensen’s inequality, it follows that

1

`
τdµ(M0, (Xj1 , . . . , Xj`)) ≤

√
C
(1

`
τ(M0, (Xj1 , . . . , Xj`)

)α/2
.

Consequently, τdµ,k(i) ≤
√
C(τk(i))

α/2, and the result follows.

8 Appendix

In this section, we recall a result given in Pinelis (1994, Theorem 3.4).

Lemma 6. Let (B, ‖ · ‖B) be a (2, D)-smooth separable Banach space. Let {dj,Fj}j≥1 be

a sequence of B-valued martingale differences such that

‖ ‖dj‖B‖∞ ≤ c and
∥∥∥ n∑
j=1

E(‖dj‖2
B|Fj−1)

∥∥∥
∞
≤ yn .

Set Mj =
∑j

i=1 di. Then for all x > 0,

(8.1) P
(

sup
1≤j≤n

‖Mj‖B ≥ x

)
≤ 2 exp

(
−ynD

2

c2
h

(
xc

ynD2

))
where h(u) = (1 + u) ln(1 + u)− u. Consequently, we have the bounds

P
(

sup
1≤j≤n

‖Mj‖B ≥ x

)
≤ 2 exp

(
− x

2c
ln

(
1 +

xc

ynD2

))
, and

P
(

sup
1≤j≤n

‖Mj‖B ≥ x

)
≤ 2 exp

(
−x2

2ynD2 + 2cx/3

)
≤ 2 max

(
exp

(
−x2

4ynD2

)
, exp

(
−3x

4c

))
.

References

[1] Assouad, P. (1975). Espaces p-lisses et q-convexes, inégalités de Burkholder. Séminaire
Maurey-Schwartz 1974-1975: Espaces Lp, applications radonifiantes et géométrie des es-
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[16] Dudley, R. M. (1968) Distances of probability measures and random variables. Ann. Math.
Statist. 39 1563-1572.

34
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